Rotating black holes in Lorentz-violating gravity theories

Event type
Event date
Venue
GAP room
Speaker
Ian Vega (SISSA)

AbstractThere is considerable interest in the strong-field behavior of Lorentz-violating gravity theories. One point of interest is whether or not the notion of a black hole as an absolute causal boundary persists in these theories, which can sometimes propagate signals infinitely fast. Past work on spherically-symmetric black holes reveal that absolute causal boundaries exist in spite of these infinitely-fast propagating modes. These causal boundaries have come to be known as universal horizons. In this talk, I shall discuss black holes in two popular Lorentz-violating theories, Hořava gravity and Einstein-aether theory, and showcase progress made in exploring their rotating black holes. For Hořava gravity, I shall discuss three-dimensional black holes in its infrared sector. Within this setting, we have derived the most general class of stationary, circularly symmetric, asymptotically anti–de Sitter black hole solutions. I also discuss slowly-rotating black holes in four-dimensional Einstein-aether theory, which we construct numerically. Most notably, we learn from these solutions that universal horizons may not be a generic feature of black holes in Lorentz-violating theories.

 

----------
This seminar is supported by Portuguese Funds through the CIDMA - Centre for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology ("FCT" - Fundação para a Ciência e a Tecnologia), within the project UID/MAT/04106/2013.