In this work, we study the relation of the eikonal quasinormal modes (EQNMs) and the unstable fundamental photon orbits (UFPOs) in the Kerr-Newman spacetime. We find that in the eikonal limit the gravitational and electromagnetic perturbations of the Kerr-Newman black hole are naturally decoupled, and a single one-dimensional Schrodinger-like equation encoding the QNM spectrum can be derived. We then show that the decoupled Teukolsky master equation and the Klein-Gordon equation for the massless scalar field in the Kerr-Newman spacetime are of the same form in the eikonal limit. As a direct
consequence, taking into account of the boundary conditions for EQNMs we show an exact correspondence between EQNMs and UFPOs, that is, EQNM/UFPO correspondence. More precisely, similar to the Kerr case, the real part of EQNM's frequency is a linear combination of the precessional and (polar) orbital frequencies, while the imaginary part of the frequency is proportional to the Lyapunov exponent of the UFPO.
Our group coordinated the "Numerical Relativity and High Energy Physics" IRSES network (2012-2015). Here is a list of the global network meetings organized: