Chiral Magnetohydrodynamic Turbulence

Event type
Event date
GAP room
Natacha Leite (DESY, U. Hamburg)

Abstract: I will present the influence of the chiral anomaly on the evolution of magnetohydrodynamics. In the early universe, before electroweak symmetry breaking, and in systems at high enough temperatures such that the electron mass can be ignored, the general description of a charged plasma needs to take into account the triangle anomaly. The interplay between turbulence and chiral magnetic effect can have important consequences on the evolution of magnetic fields, leading to the creation of maximally-helical fields from initially non-helical ones. Chiral effects can support a turbulent inverse cascade, causing a slower decrease of magnetic field with time and a faster growth of correlation length, when compared to the evolution predicted by the standard magnetohydrodynamical description. Using the weak anomaly approximation, specific solutions for the inverse cascade regime that show how chiral effects support it are derived.


This seminar is supported by Portuguese Funds through the CIDMA - Centre for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology ("FCT" - Fundação para a Ciência e a Tecnologia), within the project UID/MAT/04106/2013.