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Testing the strong field limit of gravity is one of the main objectives of current gravitational experiments,
both ground-based (Adv. LIGO/Virgo) and space-based (LISA or its smaller version by ESA).

These detectors are expected not only to directly observe gravitational waves, but to study their 
features, opening up a new window to the universe (“gravitational wave astronomy”) and enabling us

to test General Relativity (GR), in its strong field, fully non-linear regime, against other theories.

Motivation
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Testing the strong field limit of gravity is one of the main objectives of current gravitational experiments,
both ground-based (Adv. LIGO/Virgo) and space-based (LISA or its smaller version by ESA).

These detectors are expected not only to directly observe gravitational waves, but to study their 
features, opening up a new window to the universe (“gravitational wave astronomy”) and enabling us

to test General Relativity (GR), in its strong field, fully non-linear regime, against other theories.

Indeed, even though General Relativity has passed many tests in the weak field regime,
open problems from both theory and observations suggest that it should not be considered
as the ultimate theory of gravity, but as the low energy limit of a more fundamental theory.

A signature of new physics in gravitational experiments could be a sort of “message in a bottle”
coming from a theory standing at energies far beyond our reach.

Motivation



Chern-Simons modified gravity (see S. Alexander & N. Yunes ’09 and references therein)
is one of the most interesting extensions of General Relativity.

The gravitational field is coupled with a scalar field through a parity-violating Chern-Simons term:
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This theory has first been introduced in a non-dynamical version,  
in which the scalar field is given a priori, like an external field.

Later, a dynamical version of the theory has been proposed, in which the scalar field is 
treated as a dynamical field:
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I will speak about Dynamical Chern-Simons (DCS) gravity and its possible gravitational signatures.
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- The CS term violates parity, thus it has a characteristic observational signature
  which could allow to discriminate an effect of this theory from other phenomena
  (for instance, the two polarizations of gravitational waves propagate differently)

IV  Workshop on Black Holes                                                     Aveiro, Portugal, December 2011           



Chern-Simons modified gravity is one of the most interesting extensions of General Relativity

Indeed:

- The CS term violates parity, thus it has a characteristic observational signature
  which could allow to discriminate an effect of this theory from other phenomena
  (for instance, the two polarizations of gravitational waves propagate differently)

- Could help to explain several problems of cosmology, from inflation to baryon asymmetry

IV  Workshop on Black Holes                                                     Aveiro, Portugal, December 2011           



Chern-Simons modified gravity is one of the most interesting extensions of General Relativity

Indeed:

- The CS term violates parity, thus it has a characteristic observational signature
  which could allow to discriminate an effect of this theory from other phenomena
  (for instance, the two polarizations of gravitational waves propagate differently)

- Could help to explain several problems of cosmology, from inflation to baryon asymmetry

- It is “predicted” from String Theory: a CS term is required in most of its solutions to preserve            
  unitarity, and it is induced in most string theories by duality

IV  Workshop on Black Holes                                                     Aveiro, Portugal, December 2011           



Chern-Simons modified gravity is one of the most interesting extensions of General Relativity

Indeed:

- The CS term violates parity, thus it has a characteristic observational signature
  which could allow to discriminate an effect of this theory from other phenomena
  (for instance, the two polarizations of gravitational waves propagate differently)

- Could help to explain several problems of cosmology, from inflation to baryon asymmetry

- It is “predicted” from String Theory: a CS term is required in most of its solutions to preserve            
  unitarity, and it is induced in most string theories by duality

- It is “predicted” from Loop Quantum Gravity: it  is required to ensure gauge invariance of the  
  Ashtekar variables

IV  Workshop on Black Holes                                                     Aveiro, Portugal, December 2011           



Chern-Simons modified gravity is one of the most interesting extensions of General Relativity

Indeed:

- The CS term violates parity, thus it has a characteristic observational signature
  which could allow to discriminate an effect of this theory from other phenomena
  (for instance, the two polarizations of gravitational waves propagate differently)

- Could help to explain several problems of cosmology, from inflation to baryon asymmetry

- It is “predicted” from String Theory: a CS term is required in most of its solutions to preserve            
  unitarity, and it is induced in most string theories by duality

- It is “predicted” from Loop Quantum Gravity: it  is required to ensure gauge invariance of the  
  Ashtekar variables

IV  Workshop on Black Holes                                                     Aveiro, Portugal, December 2011           

We will discuss two possible observational signature of DCS gravity:

•  Black hole oscillations

•  Extreme mass-ratio inspirals
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Black hole oscillations

A perturbed black hole oscillates with damped pulsations
at characteristic frequencies and damping times, the so-called quasi-normal modes (QNMs), 

which are expected to be detected by gravitational-wave experiments.
For instance, in the coalsescence of two black holes 

(which is one of the most promising sources for both ground-based and space-based detectors), 
the last stages of the signal (the so-called ringdown) will be characterized by 

the quasi-normal oscillations of the final black hole.
These frequencies and damping times, which can be described as complex frequencies

ωn=σn+i/τn

carry the imprint of the underlying gravitational theory.
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Black hole oscillations

A perturbed black hole oscillates with damped pulsations
at characteristic frequencies and damping times, the so-called quasi-normal modes (QNMs), 

which are expected to be detected by gravitational-wave experiments.
For instance, in the coalsescence of two black holes 

(which is one of the most promising sources for both ground-based and space-based detectors), 
the last stages of the signal (the so-called ringdown) will be characterized by 

the quasi-normal oscillations of the final black hole.
These frequencies and damping times, which can be described as complex frequencies

ωn=σn+i/τn

carry the imprint of the underlying gravitational theory.

Recently (V. Cardoso & L.G. ’09; C. Molina, P. Pani, V. Cardoso, L.G. ’10) we have determined the QNMs of
spherically symmetric black holes in DCS gravity, finding how they differ from those obtained in GR.

Detection of a black hole ringdown could allow to discriminate between GR and DCS gravity.



Spherically symmetric BH in DCS gravity are described by the Schwarzschild metric.

In previous work on this subject (N. Yunes & C. Sopuerta, ‘08) is was found that
in presence of a background scalar field,

 perturbations of the spacetime metric with polar parity and axial parity are mixed, and their equations
are very involved; their explicit expression has been worked out only recently (H. Motohashi & T. Suyama, ’11).

We have found that if                           ,   polar and axial metric perturbations decouple.
Only axial perturbations are coupled with the scalar field; polar perturbations

are not affected by the scalar field, and satisfy the equations of General Relativity (the Zerilli equation).

gµν = g(Schw)
µν + hµν ϑ = ϑ(0) + δϑ

ϑ(0) = 0
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 perturbations of the spacetime metric with polar parity and axial parity are mixed, and their equations
are very involved; their explicit expression has been worked out only recently (H. Motohashi & T. Suyama, ’11).

We have found that if                           ,   polar and axial metric perturbations decouple.
Only axial perturbations are coupled with the scalar field; polar perturbations

are not affected by the scalar field, and satisfy the equations of General Relativity (the Zerilli equation).

gµν = g(Schw)
µν + hµν ϑ = ϑ(0) + δϑ

ϑ(0) = 0

If we expand the scalar field in scalar spherical harmonics: 
 

and we expand the metric perturbations in tensor spherical harmonics, defining the 
Regge-Wheeler master function ψ(r), which describes axial perturbations, as in GR,

we find a system of two coupled differential equations 

(we set α=1 using the freedom of scalar field normalization):

ϑ =
Θ
r

Y lme−iωt
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The solutions behaving as purely ingoing waves at the horizon and outgoing waves at infinity
are the black hole proper oscillation modes. 

The system admits such solutions for a discrete set of values of the complex frequency ωn=σn+i/τn : 
the QNMs of the black hole.

Black hole oscillations
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The solutions behaving as purely ingoing waves at the horizon and outgoing waves at infinity
are the black hole proper oscillation modes. 

The system admits such solutions for a discrete set of values of the complex frequency ωn=σn+i/τn : 
the QNMs of the black hole.

Solving numerically this system is not an easy task: the well-known numerical problems 
related to the divergence of stable solutions  far away from the black hole 

(which also plague perturbations of black holes in GR) are much more severe in the case of 
coupled equations, since the solution through the continued fraction methond can not be applied.

Black hole oscillations
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The solutions behaving as purely ingoing waves at the horizon and outgoing waves at infinity
are the black hole proper oscillation modes. 

The system admits such solutions for a discrete set of values of the complex frequency ωn=σn+i/τn : 
the QNMs of the black hole.

Solving numerically this system is not an easy task: the well-known numerical problems 
related to the divergence of stable solutions  far away from the black hole 

(which also plague perturbations of black holes in GR) are much more severe in the case of 
coupled equations, since the solution through the continued fraction methond can not be applied.

At the end, we overcame these technical problems, and found the QNM solutions using 
two independent numerical approaches: time evolution and a formulation of the frequency domain 

approach which had never been used before to study black hole perturbations.
The results of the two independent methods agree within 0.1%, validating each other.

The solutions crucially depend on the coupling parameter β (or the dimensionless quantity βM4).

Black hole oscillations
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Black hole oscillations
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We found that:

• For small values of the coupling constant (βM4≤0.5) there are no oscillation, but an exponential decay

ations. However, we cannot find the entire QNM spectrum
using this method. Indeed even the single equation version
of this method fails to find first overtones of Schwarzschild
BHs in general relativity [20]. This is the reason why, as
discussed in the next section, we can find QNMs with this
approach only for M4! * 0:5. For smaller values of ! the
iteration scheme ceases to converge.

IV. NUMERICAL RESULTS

In this section we present the results of our numerical
integrations, performed using both the time domain ap-
proach and the iteration scheme approach in the frequency
domain. The results for time domain evolutions refer to
Gaussian initial data, with a Gaussian wave packet char-
acterized by vc ¼ 10:0 and " ¼ 1:0 in Eq. (3.11); the field
is extracted at r? ¼ 50:0M.

A. Small M4! limit

For small values of M4! ( & 0:5), the perturbative
dynamics is characterized by a stable exponential mode
phase. The intermediate late time evolution is dominated
by

!ðt; rfixedÞ ¼ e!not
a
b

! "
(4.1)

with Re½!no% ¼ 0 and Im½!no%< 0.
After an extensive numerical exploration performed us-

ing the time domain approach, the nonoscillatory frequen-
cies !no obtained are consistent with the expression

M!no ¼ &0:040 24ðM4!Þ0:44‘
!
1þ 2:0953

‘
& 3:4460

‘2

"
;

(4.2)

which is illustrated in Fig. 1.

B. Intermediate values of M4!

For M4! * 0:5, the system evolves with damped oscil-
lations. The transition between nonoscillating and oscilla-
tory mid-late time behavior can be seen in Fig. 2, where we
show the time evolution of the " and # components with
‘ ¼ 2 for ! ¼ 5( 10&3, 0.25, 1. The behavior for higher
values of ‘ is qualitatively similar.
In this oscillatory regime we have found, for each value

of M4!, two modes. In Table I we present the correspond-
ing QNM frequencies (for ‘ ¼ 2), computed using both
numerical methods described above; we find that the agree-
ment between the two approaches is always better than
0.4%. As we discuss in Sec. IVC, these two modes belong
to two different branches, which we term ‘‘gravitational’’
and ‘‘scalar’’; thus we can consider them as the ‘‘funda-
mental’’ modes, i.e. the lowest lying modes of these two
branches. We stress that these names refer to the large !
limit of the modes, but both perturbations, " and #,
oscillate with both modes.1

The three different ‘ ¼ 2 modes are shown, for 10&2 &
M4! & 105, in Fig. 3, where the dot-dashed line refers to
the nonoscillating mode, the continuous line to the gravi-
tational oscillating mode, and the dashed line to the scalar
oscillating mode. We can see that, for small values of !,
the nonoscillating mode !no, which dominates the time
profile, is excited together with the gravitational oscillating
mode; for ! ¼ 0:3 all three modes are present, and for
larger values of ! the two oscillating modes are present.
Qualitatively similar plots can be found also for ‘ ¼ 3 and
‘ ¼ 4. The time evolution of" forM4! ¼ 0:3, which is a
combination of the three modes, is shown in Fig. 4.
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FIG. 1 (color online). !no as a function of ‘ for different
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methods, continuous lines indicate the fit (4.2).
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FIG. 2 (color online). Time profiles for the j"j (upper panel)
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1This happens for M4! & 100; for larger values of M4!, the
scalar perturbation# oscillates with one mode only, as discussed
in Sec. IVC.

MOLINA et al. PHYSICAL REVIEW D 81, 124021 (2010)

124021-6
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• For intermediate values of the coupling constant, there is oscillatory behaviour, with two families of 
   modes, which we call “scalar” modes and “gravitational” modes. These names are related to their 
   β→∞ limit, but both perturbations (Ψ and Θ) oscillate with (different superpositions of) both 
   families.

It should be mentioned that the numerical determination
of the different modes for the same value of M4! is not an
easy task. For instance, neither of the two approaches is
able to find the scalar nonoscillating mode forM4!! 0:5.
The numerical difficulties are related to the fact that the
convergence of the iteration scheme in the frequency do-
main approach is more difficult for small values of !. On
the other hand, the time profiles are usually available for all
the ! range considered, but the extraction of the frequen-
cies from them is not always possible. However, we remark
that the concordance of the two methods is very good in a
wide range of parameter space.

C. Large M4! limit

A time profile for the wave function forM4! ¼ 100 and
‘ ¼ 2 is presented in Fig. 5. The data for the! component
are consistent with a two-mode fit. The values obtained are

M!grav ¼ 0:3736# 0:088 99i; (4.3)

M!sc ¼ 0:4837# 0:096 71i; (4.4)

which coincide, up to numerical precision, with the com-
plex frequencies of the (lowest lying) QNMs of
Schwarzschild BHs in Einstein’s theory for gravitational
(!grav) and scalar (!sc) perturbations [22]. The data for the
" component, instead, are consistent with a single mode
fit, with frequency !sc. The obtained frequencies fit the
numerical data very accurately. We can conclude that in the
! ! 1 limit and for low multipole numbers ‘, the gravi-
tational perturbations and the scalar field oscillate with the
QNMs of Schwarzschild BHs: the former, with a combi-
nation of the scalar QNM and of the gravitational QNM;
the latter, with the scalar QNM. This behavior can easily be
understood if we consider the ! ! 1 limit of the pertur-
bation equations:

d2

dr2?
!þ

!
!2 # f

"
‘ð‘þ 1Þ

r2
# 6M

r3

#$
! ¼ 96"Mf

r5
";

(4.5)

d2

dr2?
"þ

!
!2 # f

"
‘ð‘þ 1Þ

r2
þ 2M

r3

#$
" ¼ 0: (4.6)

These equations show that, as discussed in Sec. II, the limit
! ! 1 does not correspond to the general relativity limit.
Indeed, the gravitational field is coupled with the scalar
field: Eq. (4.5) for ! is sourced by ". To recover general
relativity, one should restrict to the solutions with " ' 0;
note that " ' 0 is the solution of the ! ! 1 equations
(4.5) and (4.6), not of the general equations (2.8) and (2.9).
Equation (4.6) coincides with the equation for scalar-

field perturbations of a Schwarzschild BH in general rela-
tivity. It does not depend on ! and can be solved sepa-
rately, yielding the well-known scalar QNM frequencies of
Schwarzschild BHs [22]. Once Eq. (4.6) is solved, one can
solve Eq. (4.5), treating it like the equation of a forced
oscillator, since "ðrÞ can be considered as ‘‘known.’’ The
homogeneous equation associated with (4.5) yields the
gravitational QNM frequencies, like !grav [22], whereas
the source oscillates with frequency !sc. Its solution !ðrÞ,

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

M
4 β

0.0

0.5

1.0

1.5

2.0

2.5

R
e 

( M
 ω

 )

Gravitational mode
Scalar mode

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

M
4 β

-0.15

-0.10

-0.05

0.00

Im
 ( 

M
 ω

 )

Gravitational mode
Scalar mode
Non oscillatory mode

10
1

10
2

FIG. 3 (color online). Real (upper panel) and imaginary (lower
panel) parts of the fundamental QNMs as functions of ! for ‘ ¼
2.
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FIG. 4 (color online). Time profile for the ! component from
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TABLE I. Quasinormal frequencies for the oscillatory modes
with several values of M4! and ‘ ¼ 2. We compare the results
obtained with the time domain (TD) approach with those ob-
tained with the frequency domain (FD) approach.

M!, ‘ ¼ 2
M4! TD FD

0.50 0:276# 0:0967i 0:276# 0:0936i
1:98# 0:145i 1:97# 0:144i

1.00 0:291# 0:0970i 0:292# 0:0971i
1:43# 0:142i 1:43# 0:142i

10.0 0:340# 0:0980i 0:340# 0:0983i
0:634# 0:110i 0:634# 0:110i

100 0:366# 0:0921i 0:367# 0:0919i
0:501# 0:0952i 0:501# 0:0954i

1 0:374# 0:0890i 0:374# 0:0890i
0:484# 0:0967i 0:484# 0:0967i
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We found that:

• For small values of the coupling constant (βM4≤0.5) there are no oscillation, but an exponential decay

ations. However, we cannot find the entire QNM spectrum
using this method. Indeed even the single equation version
of this method fails to find first overtones of Schwarzschild
BHs in general relativity [20]. This is the reason why, as
discussed in the next section, we can find QNMs with this
approach only for M4! * 0:5. For smaller values of ! the
iteration scheme ceases to converge.

IV. NUMERICAL RESULTS

In this section we present the results of our numerical
integrations, performed using both the time domain ap-
proach and the iteration scheme approach in the frequency
domain. The results for time domain evolutions refer to
Gaussian initial data, with a Gaussian wave packet char-
acterized by vc ¼ 10:0 and " ¼ 1:0 in Eq. (3.11); the field
is extracted at r? ¼ 50:0M.

A. Small M4! limit

For small values of M4! ( & 0:5), the perturbative
dynamics is characterized by a stable exponential mode
phase. The intermediate late time evolution is dominated
by

!ðt; rfixedÞ ¼ e!not
a
b

! "
(4.1)

with Re½!no% ¼ 0 and Im½!no%< 0.
After an extensive numerical exploration performed us-

ing the time domain approach, the nonoscillatory frequen-
cies !no obtained are consistent with the expression

M!no ¼ &0:040 24ðM4!Þ0:44‘
!
1þ 2:0953

‘
& 3:4460

‘2

"
;

(4.2)

which is illustrated in Fig. 1.

B. Intermediate values of M4!

For M4! * 0:5, the system evolves with damped oscil-
lations. The transition between nonoscillating and oscilla-
tory mid-late time behavior can be seen in Fig. 2, where we
show the time evolution of the " and # components with
‘ ¼ 2 for ! ¼ 5( 10&3, 0.25, 1. The behavior for higher
values of ‘ is qualitatively similar.
In this oscillatory regime we have found, for each value

of M4!, two modes. In Table I we present the correspond-
ing QNM frequencies (for ‘ ¼ 2), computed using both
numerical methods described above; we find that the agree-
ment between the two approaches is always better than
0.4%. As we discuss in Sec. IVC, these two modes belong
to two different branches, which we term ‘‘gravitational’’
and ‘‘scalar’’; thus we can consider them as the ‘‘funda-
mental’’ modes, i.e. the lowest lying modes of these two
branches. We stress that these names refer to the large !
limit of the modes, but both perturbations, " and #,
oscillate with both modes.1

The three different ‘ ¼ 2 modes are shown, for 10&2 &
M4! & 105, in Fig. 3, where the dot-dashed line refers to
the nonoscillating mode, the continuous line to the gravi-
tational oscillating mode, and the dashed line to the scalar
oscillating mode. We can see that, for small values of !,
the nonoscillating mode !no, which dominates the time
profile, is excited together with the gravitational oscillating
mode; for ! ¼ 0:3 all three modes are present, and for
larger values of ! the two oscillating modes are present.
Qualitatively similar plots can be found also for ‘ ¼ 3 and
‘ ¼ 4. The time evolution of" forM4! ¼ 0:3, which is a
combination of the three modes, is shown in Fig. 4.
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1This happens for M4! & 100; for larger values of M4!, the
scalar perturbation# oscillates with one mode only, as discussed
in Sec. IVC.
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• For intermediate values of the coupling constant, there is oscillatory behaviour, with two families of 
   modes, which we call “scalar” modes and “gravitational” modes. These names are related to their 
   β→∞ limit, but both perturbations (Ψ and Θ) oscillate with (different superpositions of) both 
   families.

It should be mentioned that the numerical determination
of the different modes for the same value of M4! is not an
easy task. For instance, neither of the two approaches is
able to find the scalar nonoscillating mode forM4!! 0:5.
The numerical difficulties are related to the fact that the
convergence of the iteration scheme in the frequency do-
main approach is more difficult for small values of !. On
the other hand, the time profiles are usually available for all
the ! range considered, but the extraction of the frequen-
cies from them is not always possible. However, we remark
that the concordance of the two methods is very good in a
wide range of parameter space.

C. Large M4! limit

A time profile for the wave function forM4! ¼ 100 and
‘ ¼ 2 is presented in Fig. 5. The data for the! component
are consistent with a two-mode fit. The values obtained are

M!grav ¼ 0:3736# 0:088 99i; (4.3)

M!sc ¼ 0:4837# 0:096 71i; (4.4)

which coincide, up to numerical precision, with the com-
plex frequencies of the (lowest lying) QNMs of
Schwarzschild BHs in Einstein’s theory for gravitational
(!grav) and scalar (!sc) perturbations [22]. The data for the
" component, instead, are consistent with a single mode
fit, with frequency !sc. The obtained frequencies fit the
numerical data very accurately. We can conclude that in the
! ! 1 limit and for low multipole numbers ‘, the gravi-
tational perturbations and the scalar field oscillate with the
QNMs of Schwarzschild BHs: the former, with a combi-
nation of the scalar QNM and of the gravitational QNM;
the latter, with the scalar QNM. This behavior can easily be
understood if we consider the ! ! 1 limit of the pertur-
bation equations:

d2

dr2?
!þ

!
!2 # f

"
‘ð‘þ 1Þ

r2
# 6M

r3

#$
! ¼ 96"Mf

r5
";

(4.5)

d2

dr2?
"þ

!
!2 # f

"
‘ð‘þ 1Þ

r2
þ 2M

r3

#$
" ¼ 0: (4.6)

These equations show that, as discussed in Sec. II, the limit
! ! 1 does not correspond to the general relativity limit.
Indeed, the gravitational field is coupled with the scalar
field: Eq. (4.5) for ! is sourced by ". To recover general
relativity, one should restrict to the solutions with " ' 0;
note that " ' 0 is the solution of the ! ! 1 equations
(4.5) and (4.6), not of the general equations (2.8) and (2.9).
Equation (4.6) coincides with the equation for scalar-

field perturbations of a Schwarzschild BH in general rela-
tivity. It does not depend on ! and can be solved sepa-
rately, yielding the well-known scalar QNM frequencies of
Schwarzschild BHs [22]. Once Eq. (4.6) is solved, one can
solve Eq. (4.5), treating it like the equation of a forced
oscillator, since "ðrÞ can be considered as ‘‘known.’’ The
homogeneous equation associated with (4.5) yields the
gravitational QNM frequencies, like !grav [22], whereas
the source oscillates with frequency !sc. Its solution !ðrÞ,

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

M
4 β

0.0

0.5

1.0

1.5

2.0

2.5

R
e 

( M
 ω

 )

Gravitational mode
Scalar mode

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

M
4 β

-0.15

-0.10

-0.05

0.00

Im
 ( 

M
 ω

 )

Gravitational mode
Scalar mode
Non oscillatory mode

10
1

10
2

FIG. 3 (color online). Real (upper panel) and imaginary (lower
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TABLE I. Quasinormal frequencies for the oscillatory modes
with several values of M4! and ‘ ¼ 2. We compare the results
obtained with the time domain (TD) approach with those ob-
tained with the frequency domain (FD) approach.

M!, ‘ ¼ 2
M4! TD FD

0.50 0:276# 0:0967i 0:276# 0:0936i
1:98# 0:145i 1:97# 0:144i

1.00 0:291# 0:0970i 0:292# 0:0971i
1:43# 0:142i 1:43# 0:142i

10.0 0:340# 0:0980i 0:340# 0:0983i
0:634# 0:110i 0:634# 0:110i

100 0:366# 0:0921i 0:367# 0:0919i
0:501# 0:0952i 0:501# 0:0954i

1 0:374# 0:0890i 0:374# 0:0890i
0:484# 0:0967i 0:484# 0:0967i
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• For β→∞, the “gravitational” and “scalar” branches tend to the QNMs of gravitational and scalar
  perturbations in GR. ψ oscillates with a combination of the two, Θ oscillates with the scalar mode only.

Black hole oscillations
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We found that:

• For small values of the coupling constant (βM4≤0.5) there are no oscillation, but an exponential decay

ations. However, we cannot find the entire QNM spectrum
using this method. Indeed even the single equation version
of this method fails to find first overtones of Schwarzschild
BHs in general relativity [20]. This is the reason why, as
discussed in the next section, we can find QNMs with this
approach only for M4! * 0:5. For smaller values of ! the
iteration scheme ceases to converge.

IV. NUMERICAL RESULTS

In this section we present the results of our numerical
integrations, performed using both the time domain ap-
proach and the iteration scheme approach in the frequency
domain. The results for time domain evolutions refer to
Gaussian initial data, with a Gaussian wave packet char-
acterized by vc ¼ 10:0 and " ¼ 1:0 in Eq. (3.11); the field
is extracted at r? ¼ 50:0M.

A. Small M4! limit

For small values of M4! ( & 0:5), the perturbative
dynamics is characterized by a stable exponential mode
phase. The intermediate late time evolution is dominated
by

!ðt; rfixedÞ ¼ e!not
a
b

! "
(4.1)

with Re½!no% ¼ 0 and Im½!no%< 0.
After an extensive numerical exploration performed us-

ing the time domain approach, the nonoscillatory frequen-
cies !no obtained are consistent with the expression

M!no ¼ &0:040 24ðM4!Þ0:44‘
!
1þ 2:0953

‘
& 3:4460

‘2

"
;

(4.2)

which is illustrated in Fig. 1.

B. Intermediate values of M4!

For M4! * 0:5, the system evolves with damped oscil-
lations. The transition between nonoscillating and oscilla-
tory mid-late time behavior can be seen in Fig. 2, where we
show the time evolution of the " and # components with
‘ ¼ 2 for ! ¼ 5( 10&3, 0.25, 1. The behavior for higher
values of ‘ is qualitatively similar.
In this oscillatory regime we have found, for each value

of M4!, two modes. In Table I we present the correspond-
ing QNM frequencies (for ‘ ¼ 2), computed using both
numerical methods described above; we find that the agree-
ment between the two approaches is always better than
0.4%. As we discuss in Sec. IVC, these two modes belong
to two different branches, which we term ‘‘gravitational’’
and ‘‘scalar’’; thus we can consider them as the ‘‘funda-
mental’’ modes, i.e. the lowest lying modes of these two
branches. We stress that these names refer to the large !
limit of the modes, but both perturbations, " and #,
oscillate with both modes.1

The three different ‘ ¼ 2 modes are shown, for 10&2 &
M4! & 105, in Fig. 3, where the dot-dashed line refers to
the nonoscillating mode, the continuous line to the gravi-
tational oscillating mode, and the dashed line to the scalar
oscillating mode. We can see that, for small values of !,
the nonoscillating mode !no, which dominates the time
profile, is excited together with the gravitational oscillating
mode; for ! ¼ 0:3 all three modes are present, and for
larger values of ! the two oscillating modes are present.
Qualitatively similar plots can be found also for ‘ ¼ 3 and
‘ ¼ 4. The time evolution of" forM4! ¼ 0:3, which is a
combination of the three modes, is shown in Fig. 4.
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1This happens for M4! & 100; for larger values of M4!, the
scalar perturbation# oscillates with one mode only, as discussed
in Sec. IVC.

MOLINA et al. PHYSICAL REVIEW D 81, 124021 (2010)

124021-6

• For intermediate values of the coupling constant, there is oscillatory behaviour, with two families of 
   modes, which we call “scalar” modes and “gravitational” modes. These names are related to their 
   β→∞ limit, but both perturbations (Ψ and Θ) oscillate with (different superpositions of) both 
   families.

It should be mentioned that the numerical determination
of the different modes for the same value of M4! is not an
easy task. For instance, neither of the two approaches is
able to find the scalar nonoscillating mode forM4!! 0:5.
The numerical difficulties are related to the fact that the
convergence of the iteration scheme in the frequency do-
main approach is more difficult for small values of !. On
the other hand, the time profiles are usually available for all
the ! range considered, but the extraction of the frequen-
cies from them is not always possible. However, we remark
that the concordance of the two methods is very good in a
wide range of parameter space.

C. Large M4! limit

A time profile for the wave function forM4! ¼ 100 and
‘ ¼ 2 is presented in Fig. 5. The data for the! component
are consistent with a two-mode fit. The values obtained are

M!grav ¼ 0:3736# 0:088 99i; (4.3)

M!sc ¼ 0:4837# 0:096 71i; (4.4)

which coincide, up to numerical precision, with the com-
plex frequencies of the (lowest lying) QNMs of
Schwarzschild BHs in Einstein’s theory for gravitational
(!grav) and scalar (!sc) perturbations [22]. The data for the
" component, instead, are consistent with a single mode
fit, with frequency !sc. The obtained frequencies fit the
numerical data very accurately. We can conclude that in the
! ! 1 limit and for low multipole numbers ‘, the gravi-
tational perturbations and the scalar field oscillate with the
QNMs of Schwarzschild BHs: the former, with a combi-
nation of the scalar QNM and of the gravitational QNM;
the latter, with the scalar QNM. This behavior can easily be
understood if we consider the ! ! 1 limit of the pertur-
bation equations:

d2

dr2?
!þ

!
!2 # f

"
‘ð‘þ 1Þ

r2
# 6M

r3

#$
! ¼ 96"Mf

r5
";

(4.5)

d2

dr2?
"þ

!
!2 # f

"
‘ð‘þ 1Þ

r2
þ 2M

r3

#$
" ¼ 0: (4.6)

These equations show that, as discussed in Sec. II, the limit
! ! 1 does not correspond to the general relativity limit.
Indeed, the gravitational field is coupled with the scalar
field: Eq. (4.5) for ! is sourced by ". To recover general
relativity, one should restrict to the solutions with " ' 0;
note that " ' 0 is the solution of the ! ! 1 equations
(4.5) and (4.6), not of the general equations (2.8) and (2.9).
Equation (4.6) coincides with the equation for scalar-

field perturbations of a Schwarzschild BH in general rela-
tivity. It does not depend on ! and can be solved sepa-
rately, yielding the well-known scalar QNM frequencies of
Schwarzschild BHs [22]. Once Eq. (4.6) is solved, one can
solve Eq. (4.5), treating it like the equation of a forced
oscillator, since "ðrÞ can be considered as ‘‘known.’’ The
homogeneous equation associated with (4.5) yields the
gravitational QNM frequencies, like !grav [22], whereas
the source oscillates with frequency !sc. Its solution !ðrÞ,
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2.
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2, compared with a combination of oscillatory and nonoscilla-
tory modes (dashed line).

TABLE I. Quasinormal frequencies for the oscillatory modes
with several values of M4! and ‘ ¼ 2. We compare the results
obtained with the time domain (TD) approach with those ob-
tained with the frequency domain (FD) approach.

M!, ‘ ¼ 2
M4! TD FD

0.50 0:276# 0:0967i 0:276# 0:0936i
1:98# 0:145i 1:97# 0:144i

1.00 0:291# 0:0970i 0:292# 0:0971i
1:43# 0:142i 1:43# 0:142i

10.0 0:340# 0:0980i 0:340# 0:0983i
0:634# 0:110i 0:634# 0:110i

100 0:366# 0:0921i 0:367# 0:0919i
0:501# 0:0952i 0:501# 0:0954i

1 0:374# 0:0890i 0:374# 0:0890i
0:484# 0:0967i 0:484# 0:0967i
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• For β→∞, the “gravitational” and “scalar” branches tend to the QNMs of gravitational and scalar
  perturbations in GR. ψ oscillates with a combination of the two, Θ oscillates with the scalar mode only.

Black hole oscillations

• At late times, the field decays with a power-law tail, depending neither by β nor by M. 
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What kind of information one can extract from the observation of black hole QNMs?
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Black hole oscillations
What kind of information one can extract from the observation of black hole QNMs?

Let us imagine that a ringdown is detected, 
and that it is a superposition with the same amplitude of the two lowest lying QNMs.

If GR is the theory of gravity, these modes would probably be the fundamental l=2 and l=3 modes:
Mωl=2 = 0.37367 - i 0.8896           Mωl=3 = 0.59944 - i 0.09270.

If, instead, DCS is the theory of gravity, these modes would probably be the 
fundamental l=2 modes of the gravitational and scalar branches: for a large value of β

Mωgrav = 0.37367 - i 0.8896           Mωscal = 0.4839  - i 0.09671.

A standard Fisher matrix computation shows that with a signal-to-noise ratio greater than 6
(which is expected to be well reached by Advanced LIGO/Virgo detectors)

it would be possible to discriminate between the two scenarios.

For smaller values of β, the frequency of the l=2 “scalar” mode would be larger, 
and a larger signal-to-noise ratio would be required.

SNRcrit =
max(ρσf1 , ρσf2)

|f1 − f2|
with ρσf ∼ 0.1

M
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Black hole oscillations

This is in a sense an optimistic scenario, but it shows that it could be possible,
with gravitational wave observation expected in the next few years, to discriminate 

between General Relativity and Dynamical Chern-Simons gravity.

This study also gives strong evidence that spherically symmetric black holes
are stable (at least, when the background scalar field vanishes - see H. Motohashi & T. Suyama, ’11).
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Black hole oscillations

This is in a sense an optimistic scenario, but it shows that it could be possible,
with gravitational wave observation expected in the next few years, to discriminate 

between General Relativity and Dynamical Chern-Simons gravity.

This study also gives strong evidence that spherically symmetric black holes
are stable (at least, when the background scalar field vanishes - see H. Motohashi & T. Suyama, ’11).

It would be extremely important to generalize these studies to rotating black holes,
or to other spacetimes with a nonvanishing background scalar field.
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Extreme mass-ratio inspirals

Inspirals of stellar mass compact objects into supermassive black holes at galactic centers.

EMRIs are promising sources for the space-based detector LISA
(even in its ESA-led, reduced configuration).

They would allow for stringent test of GR in its strong field regime,
where possible deviations may show up:
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Extreme mass-ratio inspirals

Inspirals of stellar mass compact objects into supermassive black holes at galactic centers.

EMRIs are promising sources for the space-based detector LISA
(even in its ESA-led, reduced configuration).

They would allow for stringent test of GR in its strong field regime,
where possible deviations may show up:

• They emit ~105 cycles of gravitational radiation in the LISA band in the mission timescale (1-5 yrs).

• The signal is emitted when the stellar-mass object (“particle”) is close to the horizon of the 
  supermassive black hole, thus encoding the features of the strong-field black hole spacetime 
  and of the strong-field regime of GR.

• EMRIs are expected to be relatively clean systems, with negligible perturbation from surrounding    
  matter.
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Extreme mass-ratio inspirals

Inspirals of stellar mass compact objects into supermassive black holes at galactic centers.

EMRIs are promising sources for the space-based detector LISA
(even in its ESA-led, reduced configuration).

They would allow for stringent test of GR in its strong field regime,
where possible deviations may show up:

• They emit ~105 cycles of gravitational radiation in the LISA band in the mission timescale (1-5 yrs).

• The signal is emitted when the stellar-mass object (“particle”) is close to the horizon of the 
  supermassive black hole, thus encoding the features of the strong-field black hole spacetime 
  and of the strong-field regime of GR.

• EMRIs are expected to be relatively clean systems, with negligible perturbation from surrounding    
  matter.

In (P. Pani, V. Cardoso, L. G. ’11) we have studied how EMRI signals in DCS gravity
would differ from the corresponding signals in GR, 

and which are the prospects of discriminating between these two theories
(or setting limits on DCS parameters) through detection of gravitational waves from EMRIs.
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Extreme mass-ratio inspirals

The stellar mass object can be treated as a perturbation of the supermassive black hole spacetime.
We have neglected rotation, and assumed vanishing background scalar field,

thus the perturbation equations are those discussed above, 
describing the scalar field and the gravitational perturbation with axial parity,  
together with the equation for gravitational perturbations with polar parity

(which is identical to that of GR, i.e., the Zerilli equation).
All these equations have a source describing a particle (the stellar mass object).
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SRW, SZ are standard “particle” sources in GR
(sources of Regge-Wheeler and Zerilli equations).

SS is the corresponding term
for the scalar field equation.

These terms are proportional to a delta function
on the particle worldline.

((λ = (�+ 2)(�− 1)/2 ; Λ = λ+ 3M/r)
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Extreme mass-ratio inspirals

We normalize the field such that α=1 and express the results in terms of the parameter
ξ=16π/β, or in terms of the dimensionless parameter  ζ=16π/βM4.

Current constraints from astrophysical observations (N. Yunes & F. Pretorius, ’09) imply
ξ≤1016 km4 , 

which, for supermassive black holes with M~104-107 Msun, corresponds to
values for ζ which can be as large as 1-10.
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Extreme mass-ratio inspirals

We normalize the field such that α=1 and express the results in terms of the parameter
ξ=16π/β, or in terms of the dimensionless parameter  ζ=16π/βM4.

Current constraints from astrophysical observations (N. Yunes & F. Pretorius, ’09) imply
ξ≤1016 km4 , 

which, for supermassive black holes with M~104-107 Msun, corresponds to
values for ζ which can be as large as 1-10.

We have solved the perturbation equations with source 
using an improved version of the Green function approach,

finding the amplitude of the gravitational and scalar perturbations both at infinity and at the horizon.
Then, we have computed the gravitational and scalar energy flux (at infinity and at the horizon):

Ė±
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±
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Extreme mass-ratio inspirals
We compare the total energy flux in DCS gravity with that in GR:

ĖDCS = ĖH
grav + Ė∞

grav + ĖH
scal + Ė∞

scal ĖGR = +Ė∞
grav(ζ = 0)

δĖ

ĖGR

=
ĖDCS − ĖGR

ĖGR
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Extreme mass-ratio inspirals
We compare the total energy flux in DCS gravity with that in GR:

ĖDCS = ĖH
grav + Ė∞

grav + ĖH
scal + Ė∞

scal ĖGR = +Ė∞
grav(ζ = 0)

δĖ

ĖGR

=
ĖDCS − ĖGR

ĖGR

• In DCS gravity, the total energy flux is larger than in GR (as expected: extra dissipation channel).

• The modification is negligible far from the ISCO.

•The main contribution comes from the horizon radiation (which is, instead, almost negligible in GR); 
  the correction is positive for the horizon radiation, and negative for the radiation at infinity.

• Only axial radiation is affected. Close to the ISCO, the axial flux can be as large as twice than in GR.

• However, the axial flux is a subleading contribution, so that the total flux increases at most by 
  a few percent.

From the stress-energy tensor of the scalar field, Tscal
ab ¼

!ðrða#
#rbÞ# % 1=2gabrc#rc##Þ. Inserting Eq. (A1)

and using the asymptotic behavior at infinity (3.17), the
energy flux reads

_E&
scal '

!
dEscal

dx

"
¼

X

‘m

ðm!KÞ2!j !"‘m
& j2: (4.4)

Finally, since the orbital frequency is related to the
orbital velocity v and to the semilatus rectum (which for
circular orbits is simply p ¼ !r=M) by the relations

v ¼ ðM!KÞ1=3 ¼ p%1=2; (4.5)

the energy flux _E can also be considered either as a
function of v or p. The condition for the existence of stable
circular orbits, !r > rISCO ¼ 6M, constrains the values of v
and p to p > 6 and v < 6%1=2 ( 0:408.

The method described above has been implemented in
MATHEMATICA. In our numerical approach, we have con-
sidered a series expansion at the horizon and at infinity up
to order eight for the boundary conditions (3.2) and (3.12).
Our results are summarized in Fig. 1. When # ¼ 0, our
results agree with those in general relativity [40,41] within
one part in 106 or better. Furthermore, in the small # limit,
we develop an independent method (discussed in
Appendix B) whose results are in perfect agreement with
the ones discussed here.

As expected, the CS corrections are more effective when
p( 6, i.e. close to the innermost stable circular orbit
(ISCO), where circular orbits probe the strong-curvature
region around the massive BH. Far away from the source
the CS contributions are negligible. This is clear from the
left panel of Fig. 1, where we show the relative difference
in the emitted power,

$ _E
_EGR

'
_EDCS % _EGR

_EGR

; (4.6)

where _EDCS ¼ _EH
grav þ _E1

grav þ _EH
scal þ _E1

scal; i.e. it is the
sum of the contributions coming from the gravitational and
scalar fluxes, both at infinity and at the horizon, and _EGR ¼
_EDCSð# ¼ 0Þ, i.e. the energy flux in general relativity.
Clearly, the scalar contribution to _EGR is vanishing. The
relative difference is positive, i.e. the total power emitted in
DCS gravity is larger than in general relativity. This is
consistent with the fact that in this theory there is an extra
scalar degree of freedom, which introduces further energy
dissipation channels. Although the difference in the total
flux is positive, we find that for some subdominant (‘ * 3)
mode, the energy flux may be smaller than the correspond-
ing flux in general relativity. This shows that a conversion
of scalar into gravitational energy is possible, due to the CS
coupling.
Furthermore, even if the axial flux can be as large as

twice the axial flux in general relativity (for example, when
p( 6 and for # ( 10), the correction to the total energy
flux is significantly smaller. Indeed, the leading contribu-
tion to the energy flux arises from ‘ ¼ m modes, which
have polar parity because selection rules imply that, for
even values of ‘þm, only polar perturbations are sourced
(see Appendix A for details). Therefore, since DCS cor-
rections only affect the axial sector of Schwarzschild per-
turbations, their contribution is subleading with respect to
that coming from the polar perturbations. In the most
favorable case (p( 6 and # ( 10) the total energy flux
(summing over polar and axial contributions up to ‘ ¼ 5
and %l + m + l) only differs from the general relativity
value by a few percent. Typically, the deviation is smaller,
as shown in the left panel of Fig. 1.
In the right panel of Fig. 1 we show the four contribu-

tions to the total emitted power. Remarkably, the main
contributions arise from the gravitational and scalar fluxes
at the horizon, which are positive and sensibly larger than
the contributions at infinity; see Appendix B for a discus-
sion on this behavior.
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FIG. 1 (color online). Left panel: Relative difference between the power emitted in gravitational waves in general relativity and DCS
gravity, cf. Eq. (4.6), for different values of # . The sum is truncated at ‘ ¼ 3. The contribution in DCS gravity includes both the
gravitational and the scalar fluxes, _EDCS ¼ _Egrav þ _Escal, at infinity and at the horizon. Right panel: Different contributions to

the relative difference for different values of # ¼ 0:5, 0.4, 0.3, corresponding to different colors. The main contributions arise from the
fluxes at the horizon and they are positive, whereas the difference in the gravitational flux at infinity is negative.
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v = (MωK)1/3 = p−1/2
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Extreme mass-ratio inspirals

Although the difference in the energy emission from EMRIs between DCS gravity and GR is small,
stellar mass objects can have up to ~105 cycles (many of which are near the ISCO) 

while emitting radiation in the bandwidth of LISA or of similar detectors.
Small deviations accumulate in the phase, and can yield detectable effects.

The number of gravitational wave cycles accumulated can be computed as:

N =

� ff

fi

f

ḟ
df with

fi = max(flow, f1 yr)

ff = min(fISCO, fup)
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Although the difference in the energy emission from EMRIs between DCS gravity and GR is small,
stellar mass objects can have up to ~105 cycles (many of which are near the ISCO) 

while emitting radiation in the bandwidth of LISA or of similar detectors.
Small deviations accumulate in the phase, and can yield detectable effects.

The number of gravitational wave cycles accumulated can be computed as:

N =

� ff

fi

f

ḟ
df with

fi = max(flow, f1 yr)

ff = min(fISCO, fup)

We compute       assuming the adiabatic approximation:
the particle is in nearly geodesic motion, thus we compute, at each time, the energy flux assuming 

a geodesic orbit; then, we update the orbital constant of motion Eorb using the flux balance equation: 

Ėorb + Ėgrav + Ėscal = 0

ḟ
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Although the difference in the energy emission from EMRIs between DCS gravity and GR is small,
stellar mass objects can have up to ~105 cycles (many of which are near the ISCO) 

while emitting radiation in the bandwidth of LISA or of similar detectors.
Small deviations accumulate in the phase, and can yield detectable effects.

The number of gravitational wave cycles accumulated can be computed as:

N =

� ff

fi

f

ḟ
df with

fi = max(flow, f1 yr)

ff = min(fISCO, fup)

We compute       assuming the adiabatic approximation:
the particle is in nearly geodesic motion, thus we compute, at each time, the energy flux assuming 

a geodesic orbit; then, we update the orbital constant of motion Eorb using the flux balance equation: 

Ėorb + Ėgrav + Ėscal = 0

ḟ

This approximation neglects the so-called “conservative part of the self-force”,
but this contribution (for non-spinning black holes) should be less than a cycle

in the entire process (few cycles at most for spinning black holes).
It has to be taken into account in the data analysis of the process, but it can be neglected

in assessing the relevance of DCS corrections to the EMRI signal.
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Extreme mass-ratio inspirals

Since ḟ = −3

2

f

r

dr

dEorb
Ėorb we have that

δḟ

ḟ
=

δĖ

ĖGR

and we can compute the correction in the number of cycles

δN
N = −

� ff
fi

ḟ
f

δĖ
ĖGR

df
� ff
fi

ḟ
f df
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Since ḟ = −3
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dEorb
Ėorb we have that

δḟ

ḟ
=

δĖ

ĖGR

and we can compute the correction in the number of cycles

δN
N = −

� ff
fi

ḟ
f

δĖ
ĖGR

df
� ff
fi

ḟ
f df

The corrections depend on m1, m2 and on the CS cou-
pling ! . This is shown in the right panel of Fig. 2 and in
Fig. 3, where we indicate the fiducial threshold "N ¼
ð2#Þ$1 cycles (i.e. "! ¼ 1 rad) with a horizontal line.
Corrections to general relativity are generally considered
significant if they exceed 1 rad over the observation time
[48].

In the right panel of Fig. 3 we show the dependence on
m2 and on ! for a central supermassive object with m1 ¼
4% 106M& (i.e., the mass of the supermassive BH at the
center of theMilkyWay [49]). Note that the dependence on
m2 appears to be very mild.

Overall, our results are well described by

"N '$26!

ffiffiffiffiffiffiffiffi
M&
m2

s
exp

"
$1:2log210

#
m1

mmax

$%
; (4.20)

where

mmax ¼ 6:6% 105M&

ffiffiffiffiffiffiffiffi
m2

M&

s
(4.21)

is the location of the maximum in the left panel of Fig. 2
and it does not depend on the CS coupling. The fit above
has been inspired by the curves in the left panel of Fig. 2. In
a semilogarithmic scale, these curves are approximately
Gaussian, y ¼ y0 exp½a0ðx$ xmÞ2), where y0, a0, and xm
are the fit parameters and the expression (4.20) is simply
written in the coordinate x ¼ log10ðm1Þ. We estimate an
error on the fit smaller than a few percent when m1 2
½105; 107)M&, m2 2 ½1; 10)M&, and ! * 1. As shown in
Fig. 4, for larger values of the CS coupling, j"N j grows
faster than linearly as a function of ! , and Eq. (4.20) would
acquire higher order in !2 contributions. For example,
when ! ' 20, the fit (4.20) is accurate within 50%.
The presence of a maximum in "N ðm1Þ (Fig. 2, right

panel) can be understood as follows: on one hand, the DCS
correction for a given value of ! ¼ 16#$2=ð%M4Þ be-
comes more significant as M ¼ m1 þm2 increases, as it
appears from Eqs. (2.9), (2.10), (2.11), (2.12), (2.13), (2.14),
(2.15), and (2.16); on the other hand, for large values of M
the total number of cycles decreases (see Fig. 2, left panel),
and thus "N decreases, too.

V. CONCLUSIONS

We have studied the gravitational-wave emission by a
small object on a quasicircular geodesic around a static,
spherically symmetric, massive BH, in the context of dy-
namical Chern-Simons gravity. This process can describe,
for instance, the inspiralling of a neutron star or stellar-
mass BH into a supermassive BH, and is thought to occur
frequently in the Universe. In fact, EMRIs are one of the
main preferred sources of gravitational waves for the
space-based detector LISA. We have shown that, because
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FIG. 3 (color online). Correction to the number of
gravitational-wave cycles accumulated during the inspiral of a
small object around a supermassive BH of mass m1 ¼
4% 106M& in 1 yr observation time before coalescence, as a
function of the mass m2 of the small object and different values
of ! (same legend as in Fig. 1).
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FIG. 4 (color online). Correction to the number of gravitational-wave cycles accumulated during the inspiral of a small object around
a supermassive BH of mass m1 in 1 yr observation time before coalescence. Left panel: "N as a function of ! for some values of m1

and m2 ¼ 1:4M&. Right panel: Same as left panel, but with m2 ¼ 10M&. The corrections are linear in ! .
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Fig. 3, where we indicate the fiducial threshold "N ¼
ð2#Þ$1 cycles (i.e. "! ¼ 1 rad) with a horizontal line.
Corrections to general relativity are generally considered
significant if they exceed 1 rad over the observation time
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a semilogarithmic scale, these curves are approximately
Gaussian, y ¼ y0 exp½a0ðx$ xmÞ2), where y0, a0, and xm
are the fit parameters and the expression (4.20) is simply
written in the coordinate x ¼ log10ðm1Þ. We estimate an
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½105; 107)M&, m2 2 ½1; 10)M&, and ! * 1. As shown in
Fig. 4, for larger values of the CS coupling, j"N j grows
faster than linearly as a function of ! , and Eq. (4.20) would
acquire higher order in !2 contributions. For example,
when ! ' 20, the fit (4.20) is accurate within 50%.
The presence of a maximum in "N ðm1Þ (Fig. 2, right

panel) can be understood as follows: on one hand, the DCS
correction for a given value of ! ¼ 16#$2=ð%M4Þ be-
comes more significant as M ¼ m1 þm2 increases, as it
appears from Eqs. (2.9), (2.10), (2.11), (2.12), (2.13), (2.14),
(2.15), and (2.16); on the other hand, for large values of M
the total number of cycles decreases (see Fig. 2, left panel),
and thus "N decreases, too.

V. CONCLUSIONS

We have studied the gravitational-wave emission by a
small object on a quasicircular geodesic around a static,
spherically symmetric, massive BH, in the context of dy-
namical Chern-Simons gravity. This process can describe,
for instance, the inspiralling of a neutron star or stellar-
mass BH into a supermassive BH, and is thought to occur
frequently in the Universe. In fact, EMRIs are one of the
main preferred sources of gravitational waves for the
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Corrections of GR are generally considered significant if they exceed 1 rad over the observation time.

Corrections from DCS gravity could be of several cycles, and this could be detected very well 
by LISA or a similar space-based gravitational detector!



IV  Workshop on Black Holes                                                     Aveiro, Portugal, December 2011           

Conclusions

• Detection of gravitational waves will enable us to study the strong field limit of gravity, 
   where possible deviations from GR may show up.

• DCS gravity is a very promising theory, since it has a characteristic observational signature,
   and it is grounded on (possible) more fundamental theories.

• Studies of processes involving black holes show that upcoming gravitational experiments 
   will be able to discriminate GR from DCS gravity (in a large part of its parameter space).

• Quasi-normal modes of black holes, which should be detected in the last phase of black hole 
   binary coalescence, have the imprint of the strong field gravitational theory, and thus are a 
   promising tool to discriminate between theories of gravity. In DCS gravity, a detection with 
   a signal-to-noise ratio as low 6 could be sufficient to this aim.

• Extreme mass-ratio inspirals, which should be detected by LISA or a similar space-based detector,
   are very sensitive to DCS gravity, since the stellar mass object spends many cycles in the
   detector bandwidth,  and the small effect of the DCS coupling “piles up”, giving rise to 
   effects which could be measurable.

•  It would be very important to extend these studies to (fastly) rotating black holes and to
    other spacetimes with non-vanishing background  scalar fields.


