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Leading α′ corrections

Effective action in the Einstein frame

1

16πG

∫ √
−g

[

R− 4

d − 2
(∂µφ) ∂µφ + λ e

4

d−2
(1+w)φ

Y (R)

]

ddx,

Y (R) : scalar polynomial in the Riemann tensor with
conformal weight w.
λ : suitable power of α′, up to a numerical factor.

Field equations

Rµν + λ e
4

d−2
(1+w)φ

(

δY (R)

δgµν
+

1

d − 2
Y (R)gµν − 1

d − 2
gµνgρσ δY (R)

δgρσ

)

= 0;

∇2φ − λ

2
e

4

d−2
(1+w)φ

Y (R) = 0.
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Background black hole solution

Asymptotically flat, spherically symmetric metric in the
Einstein frame of the type

d s2 = −f(r) d t2 + g−1(r) d r2 + r2 dΩ2
d−2;

General assumption for the α′ corrected solution:

f(r) = f0(r)

(

1 +
λ

R2n
H

fc(r)

)

, g(r) = f0(r)

(

1 +
λ

R2n
H

gc(r)

)

.

Tangherlini solution: f0(r) =: fT
0 (r) = 1 −

(

RH

r

)d−3
;

The most general form we will be considering, in order
to encode string effects:

f0(r) = c(r)

(

1 −
(

RH

r

)d−3
)

.
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Scattering Theory

Classical result in EH gravity - for any spherically
symmetric black hole in arbitrary d, the absorption
cross–section of minimally–coupled massless scalar
fields equals the area of the black hole horizon in the
low–frequency limit (Das, Gibbons, Mathur, 1997):

σ = AH = 4GS.

The result is analogous for higher spin fields.

Is such result generalized with the inclusion of
higher–derivative corrections?

(Related to the α′ corrections of η
s

∣

∣

α′=0
= 1

4π .)
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A test scalar field

Let’s consider a massless minimally coupled test
scalar field H.

Without α′ corrections, it obeys the KG equation

1√−g
∂µ

[√−ggµν∂νH
]

= 0.

This field can be redefined and expanded as

Φ(t, r, θ) = k(r)H(t, r, θ) =
∑

ℓ

Φℓ(t, r)Yℓ0...0(θ).

Yℓ,ϕ1,..,ϕd−3
(θ) : spherical harmonics defined over Sd−2.

Yℓ0...0(θ) ∼ C
d−3
2

ℓ (cos θ) (Gegenbauer polynomials).

k0(r) = r
d−2
2 .
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The scalar field equation

H obeys therefore a field equation of the type

∂2
t H− F 2(r) ∂2

rH + P (r) ∂rH + Q(r) H = 0.

F (r), P (r), Q(r) are functionals of the metric and its
derivatives, namely of the functions f(r), g(r).

For pure gravity (in the absence of α′ corrections) in d
dimensions, it is not difficult to obtain such functionals:

F =
√

fg,

P = −f

[

(d − 2)
g

r
+

1

2

(

f ′ + g′
)

]

,

Q =
ℓ (ℓ + d − 3)

r2
f +

(g − f)f ′

r
.
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A field equation with a potential

Taking

k(r) =
1√
F

exp

(

−
∫

P

2F 2
dr

)

and replace ∂/∂r by ∂/∂r∗, with dr∗ = dr
F (r) , the equation for

Φ may be written as a wave equation with a potential
V [f(r), g(r)]:

∂2Φ

∂r2
∗

− ∂2Φ

∂t2
=

(

Q +
F ′2

4
− FF ′′

2
− P ′

2
+

P 2

4F 2
+

PF ′

F

)

Φ ≡ V [f(r), g(r)] Φ.

For solutions with f(r) = g(r), a potential analogous to
V [f(r), g(r)] has been obtained in d dimensions (Cardoso,
Lemos (2002)).
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The field equation close to the horizon

Close to the horizon, an incoming regular scalar field
can only depend on t and r through their nonsingular
combination, the incoming Eddington–Finkelstein
coordinate v = t + r∗ : ∂Hin

∂u

∣

∣

horizon
= 0.

Also, an outgoing regular scalar field can only depend
on t and r through their nonsingular combination, the
outgoing Eddington–Finkelstein coordinate u = t − r∗ :
∂Hout

∂v

∣

∣

horizon
= 0.

Combining the two possible solutions, ∂
∂u

∂
∂vH

∣

∣

horizon
= 0.

This statement is independent of the action: it always
gives us close to the horizon a second order field
equation for the massless scalar (Paulos (2010)).

Absorption of scalars byd–dimensional string correctedblack holes – p. 8/29



The λ–corrected scalar field equation

At infinity, curvature corrections vanish and we also
have a second order field equation for the massless
scalar.

This way H still obeys

∂2
t H− F 2(r) ∂2

rH + P (r) ∂rH + Q(r) H = 0.

F (r), P (r), Q(r) are functionals of the metric and its
derivatives with explicit λ corrections:

F = F0 + λF1, P = P0 + λP1, Q = Q0 + λQ1,

which give a λ–corrected potential. Also
H = H0 + λH1, k(r) = k0(r) + λk1(r).
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Example of aλ–corrected potential

At order λ = 0, the potential in d–dimensons found by
Cardoso and Lemos is the same that governs tensor
type metric perturbations (Ishibashi, Kodama (2003)).
That does not need to be the case in the presence of λ
corrections.

We get for the tensor perturbations

F =
√

fg

(

1 + α′ f
′ − g′

4r

)

,

P = −f

[

(d − 2)
g

r
+

1

2

(

f ′ + g′
)

+
α′

4r2

(

4(d − 4)
g(1 − g)

r
+ rg′

(

f ′ − g′
)

− 4gg′ + 2(d − 2)gf ′

)]

Q =
ℓ (ℓ + d − 3)

r2
f +

(g − f)f ′

r

+
α′

2r2

[

ℓ (ℓ + d − 3)

r
f

(

2
1 − g

r
+ f ′

)

+ (g − f)f ′2

]

.
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The string-corrected tensor potential

VT[f(r), g(r)] =
1

16r2fg

[

(16ℓ(ℓ + d − 3)f2g + r2f2f ′2 + 3r2g2f ′2 − 2r2f(f + g)f ′g′

− 4r2fg(g − f)f ′′ + 16rfg2f ′ + 4r(d − 6)f2gf ′

+ 4(d − 2)rf2gg′ + 4(d − 4)(d − 2)f2g2
]

+
α′

32r4fg

[

32ℓ(ℓ + d − 3)f2(1 − g)g + 16ℓ(d + ℓ − 3)f2gf ′r

+ 3r3g2f ′2
(

f ′ − g′
)

− r3f2f ′2
(

f ′ − g′
)

− 2r3fgf ′
(

f ′ − g′
)

g′

+ 2r3fg2
(

−3f ′f ′′ + 2g′f ′′ + f ′g′′
)

− 4r3f2gf ′
(

f ′′ − g′′
)

− 2r3f2gg′
(

f ′′ − g′′
)

− 4r3f2g2
(

f(3) − g(3)
)

+ 18r2fg2f ′2 − 12r2f2gf ′2 − 10r2f2gg′2 − 2r2fg2f ′g′

+ 2r2(4d − 13)f2gf ′g′ + 8r2f2g2f ′′ + 8(d − 5)r2f2g2g′′

+ 4r(d − 4)2f2g2(f ′ + g′) + 8rf2g2(g′ − f ′)

+ 8(d − 4)rf2g(f ′ + g′ − 4gg′) + 16(d − 5)(d − 4)f2g2(1 − g)
]

.
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Scattering of scalars by black holes

We work in the low-frequency regime, RHω ≪ 1.

This allows us to use the technique of matching
solutions near the event horizon to solutions at
asymptotic infinity (Unruh (1976); Moura, Schiappa
(2006); Halmark, Natário, Schiappa (2007)).

Only contribution to the cross section at low frequency:
s–wave, with ℓ = 0. This way we only consider H0 =: H.

Solutions of the form H(r, t) = eiωtH(r).
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Near-horizon solution (I)

The potential V [f(r), g(r)] vanishes.

The master equation reduces to a simple free–field
equation

(

d2

dr2∗
+ ω2

)

(

k(r)H(r)
)

= 0

whose solutions are purely incoming plane–waves in
the tortoise coordinate:

H(r∗) = Aneare
iωr∗.

Absorption of scalars byd–dimensional string correctedblack holes – p. 13/29



Near-horizon solution (II)

Very close to the event horizon, r ≃ RH , one has

r∗(r) =

∫

1

f0(r)

(

1 − λ

R2n
H

fc(r) + gc(r)

2

)

d r

≃:
RH

(d − 3)c(RH)

(

1 − λ

R2n
H

fc(RH) + gc(RH)

2

)

log

(

r − RH

RH

)

+ O (r − RH)

and then

H(r) ≃ Anear

(

1 + i
RHω

(d − 3)c(RH)

(

1 − λ

R2n
H

fc(RH) + gc(RH)

2

)

log

(

r − RH

RH

)

)

.

Absorption of scalars byd–dimensional string correctedblack holes – p. 14/29



Asymptotic infinity solution (I)

We consider asymptotically flat black holes.

At asymptotic infinity, again V [f(r), g(r)] vanishes.

The master equation reduces to a free–field equation
whose solutions are incoming or outgoing plane–waves
in the tortoise coordinate.

In the original radial coordinate,

H(r) = (rω)(3−d)/2 [AJ(d−3)/2 (rω) + B N(d−3)/2 (rω)
]

.
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Asymptotic infinity solution (II)

At low–frequencies, with rω ≪ 1, such solution
becomes

H(r) ≃ Aasymp
1

2
d−3
2 Γ

(

d−1
2

)
+Basymp

2
d−3
2 Γ

(

d−3
2

)

π (rω)d−3
+O (rω) .

In order to compute the absorption cross–section, one
now needs to relate Anear, Aasymp and Basymp.
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Intermediate region solution (I)

V (r) ≫ ω2, rω ≪ 1 (low–frequency constraint),
r−RH

RH
≫ (RHω)2.

To order zero in λ,
[

−f0
d

dr

(

f0
d

dr

)

+ f0

(

(d − 2)(d − 4)f0

4r2
+

(d − 2)f ′
0

2r

)]

(

k0H0

)

= 0,

where, for any f(r),

k0(r) = 1√
f

exp
(

∫

(

d−2
2r + f ′

2f

)

dr
)

= r
d−2
2 .

This equation may be written as

d

dr

(

rd−2f0(r)
d

dr
H0(r)

)

= 0.
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Intermediate region solution (II)

The equation for H0(r) can be written as:

H ′′
0 − P0

F 2
0

H ′
0 −

Q0

F 2
0

H0 = 0.

Equation for H1(r):

H ′′
1 − P0

F 2
0

H ′
1 −

Q0

F 2
0

H1 = R(r),

R(r) = −
(

F1

F0

)2

H ′′
0 +

P1

F 2
0

H ′
0 +

Q1

F 2
0

H0.

This is a non-homogeneous version of the (linear )
equation for H0(r).
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Intermediate region solution (III)

General solution for H0(r) :

H0(r) = A0
inter + B0

inter

∫

d r

rd−2f0(r)
.

General solution for H1(r) (and for H(r)):

H1(r) = A1
inter(r) + B1

inter(r)

∫

d r

rd−2f0(r)
.

(variation of constants ).

Two independent solutions for H0(r) :

h1(r) = 1, h2(r) =

∫

d r

rd−2f0(r)
.
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Intermediate region solution (IV)

The wronskian matrix is

W (r) =

[

h1(r) h2(r)

h′
1(r) h′

2(r)

]

=

[

1
∫

d r
rd−2f0(r)

0 1
rd−2f0(r)

]

.

A particular solution given by

Hpart
1 (r) = v1(r)h1(r) + v2(r)h2(r),

with
[

v1(r)

v2(r)

]

=

∫

R(r) W−1(r)

[

0

1

]

d r.
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Intermediate region solution (V)

The most general solution: add to Hpart
1 (r) the most

general solution to the homogeneous equation,
including the contributions H0, H1 as H = H0 + λH1 :

H(r) = Ainter + Binter

∫

d r

rd−2f0(r)
+ λHpart

1 (r).

It can be shown that the function Hpart
1 (r) is well defined,

namely the indefinite integrals

v1(r) = −
∫

R(r)rd−2f0(r)h2(r) d r,

v2(r) =

∫

R(r)rd−2f0(r) d r.
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Intermediate region solution (VI)

The function Hpart
1 (r) has been explicitly checked to be

finite and subleading when compared to H0(r).

Near the horizon,

H(r) ≃ Ainter +
Binter

(d − 3)Rd−3
H c (RH)

log

(

r − RH

RH

)

+ · · ·

At asymptotic infinity, one finds

H(r) ≃ Ainter −
Binter

d − 3

1

rd−3
+ · · ·
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Calculation of the fluxes

Matching coefficients:

Aas = 2
d−3

2 Γ

(

d − 1

2

)

Ainter = 2
d−3

2 Γ

(

d − 1

2

)

Anear,

Bas = − πωd−3

2
d−3

2 (d − 3)Γ
(

d−3
2

)Binter

= − iπ (RHω)d−2

2
d−1

2 Γ
(

d−1
2

)

(

1 − λ

R2n
H

fc(RH) + gc(RH)

2

)

Anear.

Near the black hole horizon the flux per unit area is

Jnear =
1

2i

(

H†(r∗)
dH

dr∗
− H(r∗)

dH†

dr∗

)

= ω |Anear|2 .

At infinity, the flux per unit area is

Jas =
1

2i

(

H†(r)
dH

dr
− H(r)

dH†

dr

)

=
2

π
r2−dω3−d |AasBas| .
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The absorption cross–section

General formula:

σ =
∫

rd−2JasympdΩd−2

Jnear
= 2

πω2−d |AasympBasymp|
|Anear|2

Ωd−2.

In our case,

σ = AH

(

1 − λ

R2n
H

fc(RH) + gc(RH)

2

)

.

σ is still given in terms of information at the horizon;

is it related to the α′–corrected black hole entropy?
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Thermodynamics: temperature

Wick–rotate to Euclidean time t = iτ ; the resulting
manifold has no conical singularities as long as τ is a
periodic variable, with a period β = 1

T .

Smoothness condition: 2π = limr→RH

β

g− 1
2 (r)

df
1
2 (r)
dr , or

T = lim
r→RH

√
g

2π

d
√

f

d r
.

In our case,

T =
f ′
0(RH)

4π

(

1 +
λ

R2n
H

fc(RH) + gc(RH)

2

)

.

The α′ correction to T is the same we obtained to σ, but
with opposite sign.
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Thermodynamics: entropy

Wald entropy: S = −2πG
∫

Σ
∂L

∂Rµνρσ
εµνερσ

√
h dΩd−2;

εtr =
√

f
g ;

For Y (R) = RµνρσRµνρσ,

8πG ∂L
∂Rµνρσ εµνερσ =

(

−f
g + e

4
d−2

φ α′

4 f ′′
)

g
f ;

At order λ = 0, Rtrtr = 1
2f ′′ = − 1

2R2
H

(d − 3)(d − 2), φ = 0,

f = g = f0;

One gets S = AH

4

(

1 + (d − 3)(d − 2) α′

4R2
H

)

;

α′–corrections increase S for every value of d.

This is a general result for solutions which are
α′–corrections to the Tangherlini black hole.
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The Callan-Myers-Perry black hole

For Y (R) = RµνρσRµνρσ;

The only free parameter is the horizon radius RH

(secondary hair), which is not changed;

f0(r) =: fT
0 (r) = 1 −

(

RH

r

)d−3
;

fc(r) = gc(r) = fCMP
c (r) := − (d−3)(d−4)

2

(

RH

r

)d−3 1−
(

RH

r

)

d−1

1−
(

RH

r

)

d−3
.

α′–corrected cross section:

σ = AH

(

1 +
(d − 1)(d − 4)

2

α′

4R2
H

)

.

One finds σ 6= 4GS.
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Some questions

Cornalba et. al. (2006) found out that σ = 4GS, to all
orders in α′, for fundamental strings in the (small) black
hole phase (BPS states of heterotic strings
compactified on S1 × T 5).

Recently, Kuperstein/Murthy (2010) also found such
agreement, to first order in α′, for 1/4 BPS N = 4
supersymmetric black holes in d = 4, 5.

Open questions: does that result only hold for
supersymmetric black holes? What could be the
minimal amount of supersymmetry for it to eventually
hold? Does it hold for generic dimensions?
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Things to do

Take the near–extremal limit and apply the formula for
supersymmetric black holes;

Verify the agreement with the shear viscosity obtained
by the "pole method" (Paulos (2010)).

Maybe derive a general solution for d–dimensional
spherically symmetric α′–corrected black holes to all
orders?

See you next meeting!
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