Introduction	Th

e Setup

DC conductivities in terms of open string metric 000000000

Applications

Summary and discussion

Holographic DC conductivities from the open string metric

Da-Wei Pang¹

¹Centro Multidisciplinar de Astrofísica (CENTRA), Departamento de Física, Instituto Superior Técnico (IST), Universidade Técnica de Lisboa Lisbon, Portugal

Based on arXiv: 1108.3791 [hep-th] with K.Y.Kim. IV Black Holes Workshop, Aveiro, 20.12.2011

Introd	uction

Outline

Introduction

- Gauge/gravity duality and condensed matter physics
- Holographic calculations of DC conductivities

The Setup

- The open string metric
- Basic ideas for DC conductivity with open string metric
- 3 DC conductivities in terms of open string metric
 - 2+1 dimensions
 - 3+1 dimensions

Applications

- Holographic models of QHE
- Light-cone AdS black hole

DC conductivities in terms of open string metric

Applications

Summary and discussion

Gauge/gravity duality and condensed matter physics

The Setup

What is Gauge/gravity duality?

- A holographic duality between a weakly-coupled theory of gravity in certain spacetime and a strongly-coupled field theory living on the boundary of that spacetime.
- A powerful new tool for investigating dynamics of strongly-coupled field theories in the dual gravity side.
- A new window towards understanding real-world physics: QCD, CMT, etc.
- Two complementary approaches: bottom-up and top-down.

DC conductivities in terms of open string met

Applications

Summary and discussion

Gauge/gravity duality and condensed matter physics

The Setup

Two complementary approaches:

Bottom-up

- Toy-models coming from simple gravity theory;
- Basic ingredients: $g_{\mu\nu}$, A_{μ} , ψ and/or dilaton ϕ ;
- Advantage(s): simplicity and universality;
- Disadvantage(s): the dual field theory is unclear.

Top-down

- Configurations originated from string/M theory;
- Exact solutions of SUGRA or Dp/Dq-branes;
- Advantage(s): good understanding on the field theory;
- Disadvantage(s): complexity.

DC conductivities in terms of open string metric

Applications

The Setup Holographic calculations of DC conductivities

Three main approaches

Retarded Green's function method(Son, Starinets '02)

- General, resulting in many transport coefficients;
- The bulk retarded Green's function encodes a retarded correlator of its dual (field theory) operator;
- Kubo's formula \Rightarrow transport coefficients.

The membrane paradigm (Iqbal, Liu '08)

- Hydrodynamic behavior of boundary field theory those at the stretched horizon of the black hole:
- Transport coefficients \Leftrightarrow quantities at the horizon;
- This elegantly explains universalities of transport coefficients.

DC conductivities in terms of open string metric

Applications

Summary and discussion

The Setup Holographic calculations of DC conductivities

Three main approaches Cont'd

The real action method (Karch, O'Bannon '07)

- DC conductivity only, not applicable to other transport coefficients:
- Probe D-brane systems only;
- Non-linear current (electric field dependent conductivity).

These properties stem from the DBI action

$$S_{\rm DBI} = -T_{
ho} \int d^{p+1} \xi \sqrt{P[G] + \mathcal{F}}$$

by requiring that the on-shell action should be real.

Introduction ○○○○●	The Setup	DC conductivities in terms of open string metric	Applications	Summary and discussion	
Holographic calculations of DC conductivities					
Using open string metric					

- The open string membrane paradigm with external electromagnetic fields, by K.Y.Kim, J.P.Shock and J.Tarrio, arXiv: 1103.4581[hep-th]
- a membrane paradigm method based on open string metric;
- DC conductivity of a D3/D7 system;
- We will see more generalizations in the current work.

- When background Kalb-Ramond fields or world-volume gauge fields on a probe D-brane are turned on, the fluctuations of open strings on the probe D-brane do not feel simply the background geometry that they are probing;
- The open string metric (OSM) describes precisely the effective geometry felt by open strings in the presence of external fields.
- We may understand the dynamics of these fluctuating fields in terms of the OSM. In some sense, the background gauge fields are *geometrized*.

Introduction	The Setup ○●○○○	DC conductivities in terms of open string metric	Applications	Summary and discussion	
The open string metric					
The definitions					

DBI+WZ

$$\mathcal{L} = \sqrt{-\mathrm{det} \mathcal{P}[\mathcal{G}] + \mathcal{F}} + \mathcal{P}[\mathcal{C}] \wedge \mathcal{F},$$

P[]-pull-back, $\mathcal{F} = \tilde{F} + \tilde{f}$, *f*-fluctuations. Quantities with tildes-those multiplied by $2\pi\alpha'$.

Define the OSM as follows

$$\gamma_{mn} \equiv P[G] + \tilde{F},$$

$$\gamma^{mn} = (\gamma_{mn})^{-1} = s^{mn} + \theta^{mn},$$
(1)

Introduction	The Setup oo●oo	DC conductivities in terms of open string metric	Applications	Summary and discussion
The open string	metric			
The defi	nitions	Cont'd		

- s^{mn} -the symmetric part, θ^{mn} -the anti-symmetric part.
- The OSM *s_{mn}* is defined as

$$s_{mn} = g_{mn} - (\tilde{F}g^{-1}\tilde{F})_{mn}, \qquad (2)$$

• Notice that $s_{mn}s^{np} = \delta_m^p$.

Introduction	The Setup ○○○●○	DC conductivities in terms of open string metric	Applications	Summary and discussion	
Basic ideas for DC conductivity with open string metric					
Black hole embedding					

Steps to compute non-linear DC conductivity:

- compute the linear conductivity using OSM and membrane paradigm;
- compute the singular shell position r_s from ξ(r_s) = 0 with finite *E*;
- apply the same formula obtained in step 1 at $r = r_s$.

Introduction	The Setup ○○○○●	DC conductivities in terms of open string metric	Applications	Summary and discussion	
Basic ideas for DC conductivity with open string metric					
Minkowski embedding					

- We cannot apply the real-action method since there is no singular shell on the world volume;
- From the OSM point of view, the geometry is regular everywhere and there seems to be no reason to introduce the current;
- We still require regularity on the gauge field configuration;
- This was proposed in arXiv: 1003.4965[hep-th] (Bergman, Jokela, Lifshytz and Lippert).

 Consider probe Dq-branes sharing t, x, y field theory space. The induced metric and gauge field

$$ds^{2} = g_{tt}dt^{2} + \sum_{i=1}^{2} g_{ii}dx_{i}^{2} + g_{rr}dr^{2} + ds_{(l)}^{2},$$

$$2\pi\alpha'A = \tilde{A}_{t}dt + \tilde{B}xdy + 2\pi\alpha'a,$$
(3)

 $ds_{(I)}^2$ -the metric of the internal space, I = q - 3.

• There may be nontrivial background RR fields and fluxes through the internal space in concrete examples.

Assume the matrix γ = g + F̃ is a direct sum of the submatrix in the bulk spacetime m = t, 1, 2, r and the internal space α = 4, · · · , g + 1. detγ = detγ_{ab}detγ_{αβ}, where

det
$$\gamma_{\alpha\beta} \sim \Theta(\mathbf{r}) \times$$
 a function of ξ^{α} .

The DBI action becomes

$$S_{\text{DBI}} = -N_f T_{Dq} V_{(l)} \int dt d\vec{x} dr e^{-\phi} \sqrt{\Theta} \sqrt{-\det \gamma_{mn}},$$

$$\equiv \mathcal{N} \int dt d\vec{x} dr \mathcal{L}_{\text{DBI}}$$
(4)

Introduction	The Setup	DC conductivities in terms of open string metric	Applications	Summary and discussion	
2+1 dimensions					
the DBI term Cont'd					

The normalization constant

$$\mathcal{N} = N_f T_{Dq} V_{(l)}, \quad \mathcal{N}' \equiv (2\pi\alpha')^2 \mathcal{N}, \tag{5}$$

 $\ensuremath{\mathcal{N}}'$ is defined for later convenience.

The leading order Lagrangian

$$\mathcal{L}_{\rm DBI}^{(0)} = -e^{-\phi}\sqrt{\Theta\kappa}\sqrt{-g_{tt}g_{rr} - \tilde{A}_t^{\prime 2}},\tag{6}$$

$$\kappa \equiv \det \gamma_{ij} = \tilde{B}^2 + g_{xx}g_{yy}, \quad i, j = 1, 2.$$
(7)

the DBI term Cont'd					
	2+1 dimensions				
	Introduction 00000	The Setup	DC conductivities in terms of open string metric	Applications	Summary and discussion

• The conserved quantity

$$\hat{J}_{t} \equiv \frac{\partial \mathcal{L}}{\partial \tilde{A}'_{t}} = \frac{e^{-\phi} \tilde{A}'_{t} \Theta \kappa}{\sqrt{-(g_{tt}g_{rr} + \tilde{A}'^{2}_{t})\Theta \kappa}},$$

$$\tilde{A}'_{t} = \sqrt{-\frac{\hat{J}^{2}_{t}g_{tt}g_{rr}}{\hat{J}^{2}_{t} + e^{-2\phi}\Theta \kappa}},$$
(8)

• The sub-leading action

$$S_{\rm DBI}^{(2)} = -\mathcal{N}' \int dt d\vec{x} dr \left[\frac{\sqrt{-s}}{4g_4^2} s^{mp} s^{nq} f_{mn} f_{pq} + \frac{1}{8} \epsilon^{mnpq} f_{mn} f_{pq} Q \right],$$
(10)

the DBI term Cont'd					
	2+1 dimensions				
	Introduction	The Setup	DC conductivities in terms of open string metric	Applications	Summary and discussion

The effective coupling

$$g_4^2 = rac{\sqrt{-s}}{e^{-\phi}\sqrt{-{
m det}\gamma_{mn}}\sqrt{\Theta}}.$$

• The non-vanishing components of θ

$$\theta^{tr} = -\frac{\mathbf{e}^{\phi}\hat{J}_t}{\sqrt{-\det\gamma_{mn}}\sqrt{\Theta}}, \quad \theta^{xy} = -\frac{\tilde{B}}{\kappa},$$
(11)

• The OSM (recall (2))

$$s_{mn}dx^m dx^n = g_{tt}\mathcal{G}^2 dt^2 + g_{rr}\mathcal{G}^2 dr^2 + \frac{\kappa}{g_{yy}}dx^2 + \frac{\kappa}{g_{xx}}dy^2$$
, (12)

the DBI t	erm Co	nťd		
2+1 dimensions				
Introduction	The Setup	DC conductivities in terms of open string metric	Applications	Summary and discussion

21-

$$\begin{aligned} \mathcal{G}^2 &= \frac{e^{-2\phi}\Theta_{\kappa}}{\hat{J}_t^2 + e^{-2\phi}\Theta_{\kappa}},\\ Q &= -\frac{1}{8}e^{-\phi}\sqrt{-\text{det}\gamma_{mn}}\sqrt{\Theta}\epsilon_{mnpq}\theta^{mn}\theta^{pq} = -\frac{\tilde{B}\hat{J}_t}{\kappa},\\ \text{with }\epsilon_{txyr} = 1. \end{aligned}$$

The effects of density Ĵ_t and magnetic field B̃ are geometrized through G and κ.

Introduction	The Setup	DC conductivities in terms of open string metric	Applications	Summary and discussion
2+1 dimensions				
The con	ductivity	/		

The conductivity can be obtained following lqbal, Liu '08

• For a black hole embedding

$$\sigma^{ij} = \mathcal{N}' \left[\frac{1}{g_4^2} \sqrt{\frac{s}{s_{tt} s_{rr}}} s^{ij} - Q \epsilon^{ij} - C_{q-3} \epsilon^{ij} \right], \quad (13)$$

This is a conductivity which is electric field independent (a linear conductivity).

• For the nonlinear conductivity, we first determine the position of the singular shell *r*_s,

$$\det \gamma_{\mu\nu}(r_s) = [\tilde{B}^2 g_{tt} + \tilde{E_x}^2 g_{yy} + \tilde{E_y}^2 g_{xx} + g_{tt} g_{xx} g_{yy}]_{r \to r_s} = 0,$$
(14)

then we evaluate (13) at $r = r_s$.

• For the Minkowski embedding, the regularity of the gauge fields at r_0 requires $f_{rt}(r_0) = \tilde{A}'_t(r_0) = 0$, therefore

$$\sigma^{ij} = -\mathcal{N}' C_{q-3}(r_0) \epsilon^{ij} = \mathcal{N}' \frac{\hat{J}_t}{\tilde{B}} \epsilon^{ij}, \qquad (15)$$

Introduction	The Setup	DC conductivities in terms of open string metric	Applications	Summary and discussion	
3+1 dimensions					
General assumptions					

- The logic of 3+1 dimensions is the same as that of 2+1 dimensions.
- The induced metric and gauge fields

$$ds^{2} = g_{tt}dt^{2} + \sum_{i=1}^{3} g_{ii}dx_{i}^{2} + g_{rr}dr^{2} + ds_{(l)}^{2},$$

$$\tilde{A} = \tilde{A}_{t}(r)dt + \tilde{B}_{y}zdx + \tilde{B}_{z}xdy + \tilde{B}_{x}ydz + \tilde{a}, (16)$$

where the field theory directions are t, x, y, z and l = q - 4.

We keep all the components of the magnetic field for generality.

The conductivity						
3+1 dimensions						
Introduction 00000	The Setup	DC conductivities in terms of open string metric	Applications	Summary and discussion		

The conductivity

$$\sigma^{ii} = \frac{\mathcal{N}'}{g_5^2} \sqrt{\frac{s}{s_{tt} s_{rr}}} \frac{1}{s_{ii}} \Big|_{r \to r_s},$$

$$\sigma^{ij} = -\mathcal{N}' Q_k \epsilon^{kij} \Big|_{r \to r_s},$$
 (17)

where

$$g_{5}^{2} = \frac{\sqrt{-s}}{e^{-\phi}\sqrt{-\det\gamma_{mn}}\sqrt{\Theta}}, \quad \epsilon_{txyzr} = 1$$
$$Q_{I} = -\frac{1}{8}e^{-\phi}\sqrt{-\det\gamma_{mn}}\sqrt{\Theta}\epsilon_{mnpqI}\theta^{mn}\theta^{pq} = \frac{\tilde{B}_{I}g_{II}\hat{J}_{t}}{\kappa}. \quad (18)$$

Introduction	The Setup	DC conductivities in terms of open string metric	Applications	Summary and discussion
Holographic mo	odels of QHE			
D3-D7' r	nodel			

- The model was proposed in arXiv:1003.4965[hep-th] (Bergman, Jokela, Lifshytz and Lippert).
- The configuration

• The configuration is non-supersymmetric and unstable.

• To ensure the stability, we assume that D7-brane wraps $S^2 \times S^2$ inside S^5 and we introduce the following magnetic fluxes through S^2 's

$$\tilde{F} = \frac{1}{2} (f_1 d\Omega_2^{(1)} + f_2 d\Omega_2^{(2)}), \quad f_i = 2\pi \alpha' n_i, \quad (19)$$

 $d\Omega_2^{(i)} = \sin \theta_i \wedge d\phi_i, n_i \text{ are integers.}$

• The gauge field

$$\tilde{A} = \tilde{A}_t dt + \tilde{B} x dy,$$

 Assuming that the scalars z(= x₃) and ψ(= x₉) are functions of r only,

the induced metric and the RR 4-form

$$ds_{D7}^{2} = r^{2}(-f(r)dt^{2} + dx^{2} + dy^{2}) + (\frac{1}{r^{2}f(r)} + r^{2}z'^{2}(r) + \psi'^{2}(r))dr^{2} + \cos^{2}\psi(d\Omega_{2}^{(1)})^{2} + \sin^{2}\psi(d\Omega_{2}^{(2)})^{2},$$

$$C_{4} = r^{4}dt \wedge dx \wedge dy \wedge dr + \frac{1}{2}c(r)d\Omega_{2}^{(1)} \wedge d\Omega_{2}^{(2)}, \quad (20)$$

where $f(r) = 1 - r_{H}^{4}/r^{4}$ and

$$c(r) = \frac{1}{8\pi^2} \int_{S^2 \times S^2} C_4 = \psi(r) - \frac{1}{4} \sin 4\psi(r) - \psi(\infty) + \frac{1}{4} \sin 4\psi(\infty).$$
(21)

For black hole embedding, the conductivity reads

$$\sigma^{xx} = \frac{\mathcal{N}' r_s^2}{\tilde{B}^2 + r_s^4} \times \sqrt{\bar{J}_t^2 + \left(\cos^4\psi + \frac{1}{4}f_1^2\right)\left(\sin^4\psi + \frac{1}{4}f_2^2\right)(\tilde{B}^2 + r_s^4)},$$

$$\sigma^{xy} = -\mathcal{N}'\left(\frac{\tilde{B}\bar{J}_t(r_s)}{\tilde{B}^2 + r_s^4} + \frac{c(r_s)}{2}\right), \qquad (22)$$

where $\bar{J}_t = \hat{J}_t + c(\psi)/2 \times \tilde{B}$. For Minkowski embedding,

Introduction	The Setup	DC conductivities in terms of open string metric	Applications	Summary and discussion	
Holographic models of QHE					

D3-D7' model Cont'd

$$\sigma^{xx} = 0, \quad \sigma^{xy} = -\frac{1}{2}\mathcal{N}'c(r_0) = \mathcal{N}'\frac{\hat{J}_t}{\tilde{B}}, \quad (23)$$

- The results obtained by OSM method agree to arXiv: 1003.4965, where the real-action method was used.
- Black hole embedding-metal phase, Minkowski embedding-fractional QHE phase.

Introduction 00000	The Setup	DC conductivities in terms of open string metric	Applications	Summary and discussion	
Light-cone AdS	black hole				
Motivations					

Properties of "strange" metals (obtained from experiments):

- the resistivity $\rho \sim T$,
- the AC conductivity $\sigma(\omega) \sim \omega^{-0.65}$,

• the Hall angle
$$\frac{\sigma^{XY}}{\sigma^{XX}} \sim \frac{1}{T^2}$$

Point 1 can be realized in many holographic models while point 3 cannot be realized without introducing spatial anisotopic symmetry.

1 and 3 can be realized simultaneously by considering probe D7-branes in light-cone Schwarzschild-AdS(Kim, Kiritsis and Panagopoulos'10).

Introduction	The Setup	DC conductivities in terms of open string metric	Applications	Summary and discussion
			00000000	

Light-cone AdS black hole

AdS space in light-cone frame

Such a metric can be obtained by the transformation $x^+ = b(t+x), x^- = 1/(2b)(t-x).$

$$ds^{2} = g_{++}dx^{+2} + 2g_{+-}dx^{+}dx^{-} + g_{--}dx^{-2} + g_{yy}dy^{2} + g_{zz}dz^{2} + g_{rr}dr^{2} + R^{2}\cos^{2}\theta d\Omega_{3}^{2} + R^{2}\sin^{2}\theta d\phi^{2}, \qquad (24)$$

$$g_{++} = \frac{(1-f(r))r^2}{4b^2R^2}, \ g_{+-} = -\frac{1+f(r)r^2}{2R^2}, \ g_{--} = \frac{(1-f(r))b^2r^2}{R^2}, g_{yy} = g_{zz} = \frac{r^2}{R^2}, \ g_{rr} = \frac{R^2}{r^2f(r)}, \ f(r) = 1 - \frac{r_H^4}{r^4},$$
(25)

where R is AdS_5 radius and b is the parameter related to the rapidity.

Applications

Light-cone AdS black hole

The conductivity from OSM

The Setup

Here the OSM is off-diagonal

$$ds^{2} = s_{tt}dt^{2} + s_{rr}dr^{2} + s_{xx}dx^{2} + 2s_{tx}dtdx + s_{yy}dy^{2} + s_{zz}dz^{2},$$

The conductivity (Kim, Shock and Tarrio, '11)

$$\sigma^{ii} = \frac{\mathcal{N}'}{g_5^2} \frac{\sqrt{-s}}{\sqrt{s_{rr}}\sqrt{-s_{tt}s_{xx} + s_{tx}^2}} \frac{\sqrt{s_{xx}}}{s_{ii}} \Big|_{r \to r_s},$$

$$\sigma^{ij} = -\mathcal{N}' Q_k \epsilon^{kij} \Big|_{r \to r_s}, \qquad (26)$$

which reproduces the results in Kim, Kiritsis and Panagopoulos'10.

DC conductivities in terms of open string metric

Applications

Summary and discussion

Summary and discussion

The Setup

- We studied the holographic DC conductivities of various systems using the OSM method.
- We proposed a new method to compute the DC conductivity based on OSM. We showed that all results obtained by the OSM method agreed to the results obtained by the real-action method.
- OSM can be used to study other transport coefficients and effective temperature induced by the effective world volume horizon, contrary to the real-action method.

The Setup

DC conductivities in terms of open string metric

Applications

Summary and discussion

Thank you for your attention!