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1. Introduction

• Solutions of Einstein’s equations and black holes

··· From Einstein’s equation (G = 1,c = 1)

Gµν = 8π τµν

need to find solutions.
··· Arbitrarily chosen spacetimesgµν usually give unphysical stress tensors,
i.e., to matter which is of no interest. Finding solutions is a nontrivial task
(Exact solutions book by Stephani et al, 2nd edition 2002).
··· Facilitates finding solutions for two regions, an interior and an exterior, and
then match through a smooth junction, a boundary surface (Israel NC 1966).
··· Can also opt for a more drastic junction between both regions where a
surface layer, i.e., a thin shell, is needed. Usually the solderings are through
timelike surfaces, as in a surface of a star. Formalism applies also to spacelike
surfaces. For a lightlike surface can extend (Barrabès and Hogan book 2003).
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··· Whenτµν = 0, vacuum solution. The Schwarzschild black hole is a vacuum
solution. Spherically symmetric, has an event horizon atrh = 2m. Represents
a wormhole, with two phases, the white hole and the black hole, harboring
singularities and connecting two asymptotically flat universes (Misner,
Thorne and Wheeler book 1973). In its amputated form, the solution
represents a black hole shielding a singularity, with one asymptotically flat
region, the black hole being formed from the collapse of a star or lump of
matter. Generalizes to the Reissner-Nordström solution when there isq, to the
Kerr solution when there isJ, to the Kerr-Newman family when there isq and
J (see also Griffiths and Podolsky book 2009).
··· The outside of a black hole is visible. Potent telescopes and detectors watch
with ease what is going on in jets and phenomena powered out by black holes.
The outside of a black hole is well known classically (Stewart and Walker
1973). Quantically, black holes still pose problems for the outside. Related to
the Hawking radiation and the Bekenstein-Hawking entropy. Although
solution not at hand, the quantum outside problems are well posed and
delineated.
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··· The inside of a black hole is another story, it is not known at all. By
definition the black hole interior is hidden, it encloses a mysterious unknown.
··· The understanding of the inside of a black hole is one of the outstanding
problems in gravitational theory.
··· The Schwarzschild solution describes the black hole inside as an ever
moving spacetime that ends on an all encompassing spacelike singularity.
··· The Reissner-Nordström solution also has an ever moving inward spacetime
that, instead, ends on a Cauchy horizon which can then be cruised into a
region where a singularity can be seen but avoided. The Kerr and the
Kerr-Newman solutions have analogous properties to the Reissner-Nordström
solution.
··· The event horizon for this class of black hole solutions harbors a singularity.
What is a singularity? The singularity theorems (Penrose PRL 1965, Penrose
1978) do not tell. Impose some precise physical conditions. Then the
theorems prove generically singularities are inevitable. But those precise
physical conditions might not be upheld in the situations they are to be used,
so the theorems are useless.
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··· The existence of a singularity, by its very definition, means spacetime ceases
to exist signaling a failure of the physical laws.
··· So, if physical laws do exist at those extreme conditions, singularities should
be substituted by some other object in a more encompassing theory. The
extreme conditions, in one form or another, that may exist at a singularity,
imply that one should resort to quantum gravity. Singularities are certainly
objects to be resolved in the realm of quantum gravity (Wheeler 1964).
··· There is no definite quantum gravity yet, so a line of work to understand the
inside of a black hole and resolve its singularity is to study classical or
semiclassical black holes, with regular, i.e., nonsingular, properties. These
type of black holes can be motivated by quantum arguments. In this way,
there has been a trend to find regular black hole solutions with special matter
cores that would substitute the true singularities of the Schwarzschild,
Reissner-Nordström, Kerr, and Kerr-Newman black holes.
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• Early considerations

··· Sakharov (JETP 1966) and Gliner (JETP 1966) proposed that singularities,
such as cosmological singularities, could be avoided by matter at superhigh
densities with an inflationary equation of state, i.e., with a de Sitter core, with
a matter equation of statep = −ρmatter, or, equivalently,Tµν takes a lambda
term or false vacuum formTµν = Λgµν , Λ the cosmological constant.
Zel’dovich (Sov. Phys. Usp. 1968) proposed that such aTµν arises naturally
as a result of vacuum polarization processes in gravitational interactions.
··· This indicates that an unlimited increase of spacetime curvature during a
collapse process can lead to the halt of the collapse if quantum fluctuations
dominate the process, putting an upper bound to the value of the curvature and
obliging the formation of a central core.
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• The Bardeen regular black hole

Bardeen (Proc. 1968) realized concretely the idea of a central matter core, by
proposing a solution of Einstein’s equation in which there is a black hole with
horizons but without a singularity, the first regular black hole. The matter field
content was a kind of magnetic matter field, yielding a modification of the
Reissner-Nordström metric. But near the center the solution tended to a de
Sitter core solution. All the subsequent regular black hole solutions are based
on Bardeen’s proposal, although there has been a tremendous development on
the implementation and on the analysis of the properties of regular black hole
solutions.
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• Other regular black holes

··· A useful way to classify the regular black hole solutions is 1. No junction:
solution is continuous throughout spacetime. 2. Two simple regions: solution
has boundary surfaces joining the two regions. 3. Two regions: more drastic,
the solution has a surface layer, i.e., thin shell, joining the two regions.
1. Solutions with continuous fields
··· Based on Gliner (1966, 1975) on how to avoid cosmological singularities,
Dymnikova (GRG 1992) proposed a black hole model in which the core is de
Sitter and gives way in a smooth manner into a Schwarzschild solution, with
Cauchy and event horizons. Several subsequent works developing this idea
followed (Dymnikova 1996, 2000, 2001, 2003, 2004, 2005, 2010, Gliner
1998).
··· Next, Ayón-Beato and Garcia (PLB 2000, GRG 2005) invoked nonlinear
fields and sources to generate from first principles the Bardeen model as a
nonlinear magnetic monopole, (also attempted regular black holes from
nonlinear electric fields (PRL 2000), criticized in Bronnikov (PRL 2000,
PRD2001), Matyjasek (PRD2004) found the extremal limit)).
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··· Bronnikov and collaborators (Fabris, Dehnen, Melnikov, Dymnikova, PRL
2006, GRG 2007, CQG 2007) produced several regular black holes inwhich
the source are fields permeating the whole spacetime, the core is an expanding
universe with de Sitter asymptotics and the exterior outer region tends to
Schwarzschild. Matyjasek, Tryniecki, and Klimek (MPLA 2008) made a
development along the same lines.
··· Regular black holes in quadratic gravity have also been discussed by Berej,
Matyjasek, Tryniecki, and Woronowicz, (GRG 206).

2.Solutions with boundary surfaces
Can construct regular black holes by filling the inner space with matter up to a
certain surface and make a smooth junction, through a boundary surface, to
the Schwarzschild solution as was done in (Mars CQG 1996, Magli RMP
1999, Elizalde and Hildebrandt PRD 2002, Conboy and Lake PRD 2005).
The junction to Schwarzschild is made through a spacelike surface, rather
than an usual timelike surface. This means the junction exists at a single
instant of time. Regular black holes in which the boundary surface is lightlike
or timelike have not been found in the literature.
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3. Solutions with boundary layers, i.e., thin shells
It is possible and of interest to make the transition from an inner de Sitter core
to an outer Schwarzschild, Reissner-Nordström, or other spacetime, through
surface layers, or thin shells. Regular black holes with thin shells of spacelike,
lightlike, and timelike character have been found.

(a) Spacelike thin shells
··· Following Zel’dovich’s idea (1968), Markov (AP 1984) suggested an upper
bound for the curvature, of the order of the Planck curvature. After itis
achieved the matter turns into a de Sitter phase. The transition is made
through a spacelike thin shell. It was developed by Lake and Zannias (PLA
1989), Frolov, Markov, and Mukhanov (PRD 1990), Balbinot and E.Poisson
(PRD 1990), Balbinot (PRD 1990), Morgan (PRD 1991), Barrabes and V. P.
Frolov (PRD “How many new worlds are inside a black hole?” 1996).
··· See also Burinskii, Elizalde, Hildebrandt, and Magli (PRD 2002) for a
general discussion including the Kerr-Newman metric.
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(b) Lightlike thin shells
··· Even before Dymnikova (GRG 1992) developed her regular black hole with
smooth features, Gonzalez-Diaz (LNC 1981) took interest in finding a regular
black hole. He tried a solution by direct matching of de Sitter spacetime with
the Schwarzschild solution on the horizon, a null surface.
··· Shen and Zhu (PLA 1989) reanalyzed later this soldering of de Sitter
spacetime with the Schwarzschild solution, while Shen and Tan in 1989 (PLA
1989) generalized the Gonzalez-Diaz idea to d dimensions. Daghigh,
Kapusta, Hosotani (Arxiv 2000) argued that a Schwarzschild type matching
can also be achieved within a more general parametrization of the static
metric by two different functions due to the jump of the productgttgrr .
··· However, Gron and Soleng (LNC 1985, PLA 1989) showed that the direct
matching onto Schwarzschild at the horizon is incorrect.
··· Poisson and Israel (CQG 1988) reinforced this de Sitter spacetime cannot be
soldered directly to an exterior Schwarzschild vacuum at the horizon, since
the junction conditions would be violated. It is necessary to put a thin shell of
noninflationary material at a junction outside the event horizon.
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··· Gal’tsov and Lemos (CQG 2001) showed in a no-go theorem that the more
general tentative matching proposed in Daghigh, Kapusta, Hosotani (Arxiv
2000) is also not possible (see also Bronnikov (PRD 2001) for more on this).
··· Additional tries of the same type of matching, now extending to the
Reissner-Nordström spacetime, were performed in by Shen and Zhu (GRG
1985, NC 1985). By including charge the matching problems occurring in a
Schwarzschild matching may be avoided. Barrabès and Israel (PRD 1991)
gave an example where there is the possibility of joining correctly at a null
surface and gave interesting examples of a lightlike thin shell matching at the
Cauchy horizon (see also (Barrabès and Hogan book 2003) for nullmatching).

(c) Timelike thin shells
For regular black holes with boundary layers or thin shells, timelike matching
is not found in the literature. So it is of interest to study regular black hole
solutions in such a case. Regular black holes either with a charged (usually
magnetic) core or with a de Sitter core are known, but with electric charge and
a de Sitter core together seem to have not been explored. To study such cases
is a local motivation within the larger context.
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• General results on regular black holes

··· Results related to the topology and causality of these solutions, were put
forward by Borde in an important development (PRD 1994, PRD 1997)
··· Also energy conditions and other properties have been studied by Mars,
Martín-Prats, and Senovilla (CQG 1996) and Zaslavskii (PRD 2009, PRD
2010).
··· The quasilocal energy of regular black holes has been analyzed by Balart
(PLB 2010). Entropy and thermodynamics of regular black holes have been
studied by Myung, Kim, and Park (PLB 2010, GRG 2008).

• Reviews on regular black holes

For a general review on regular black holes, including black holes with
Gaussian sources, see (Ansoldi arXiv 2008), and for a motivation ofthese
sources as well as a review on noncommutative black holes see Nicolini
(IJMPA 2009).
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• Connections to other works

··· An issue connected to regular black holes is quasiblack holes. Quasiblack
holes are objects whose boundary is as near a horizon as one wants. For the
outside they act as black holes, the inside properties are completely different
(Lemos, Zaslavskii PRD 2000-2011). Based on a worked by Guilfoyle (GRG
1999) solutions of quasiblack holes with pressure, i.e., of relativistic charged
spheres as frozen stars, have been found (Lemos, Zanchin PRD 2011). These
solutions contain, unexpectedly, regular black holes. This is under study.
··· There are interesting investigations on the dynamics of time-dependent
bubbles, in which an outer observer describes the system as having a horizon
and a black hole, and an observer in the inner region, made of false vacuum,
sees a de Sitter universe (Blau, Guendelman, Guth PRD 1987, Berezin,
Kuzmin, Tkachev PRD 1987, Alberghi, Lowe, Trodden JHEP 1999).
··· Related to the inside of a black hole is mass inflation (Poisson and Israel,
PRD 1990). The internal Cauchy horizon is unstable and a spacelike or null
singularity emerges inside a charged Reissner-Nordström black hole.
··· Black holes, and in particular charged black holes, singular or regular,as
elementary charged particles is an issue in itself.
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• Our work

The main motivation is to have a clue of what the inside is. There are no
solutions with timelike boundary. So we explored it in two papers. Then we
resort to nonminimal theories and to stability:
··· Lemos, Zanchin (PRD 2011) - Regular black holes - Electric charged in a
thin shell.
··· Lemos, Zanchin (TBP 2012) - Regular black holes - Electric charged
Guilfoyle solutions (a plethora).
··· Balakin, Lemos, Zayats (TBP 2012) - Regular black holes - Non-minimal
Einstein–Yang-Mills theories.
··· Flachi, Lemos (TBP 2012) - Regular black holes - quasinormal modes and
stability.
I will briefly mention each work.



2. Regular black holes with electric charge in
Einstein-Maxwell theory

Lemos, Zanchin (PRD 2011)

• The set up

··· The idea: a de Sitter core, an electric coat (thin-shell), a Reissner-Nordström
spacetime outside. Implies: if there are horizons, the matter is inside the
Cauchy horizon, boundary is timelike (like in a star).
··· The configurations.
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2. Regular black holes with a thin electric charge in
Einstein-Maxwell theory

• Carter-Penrose diagrams
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2. Regular black holes with a thin electric charge in
Einstein-Maxwell theory

• Several features
··· (i) For a range of parameters, the solutions are thus regular electrically
charged black hole solutions. They are built from false vacuum up to, but not
at, r0. The metric forr < r0 is the de Sitter metric, where the isotropic
pressure is constant (p(r) = −ρm(r) = 3/8πR2), and goes to zero atr0.
Furthermore, since the charge densityρe(r) is a Dirac delta function centered
in r = r0, the total chargeq is distributed uniformly on the surfacer = r0. At
r0 there is thus a thin electrical layer of an energyless field, and exterior to it is
pure Reissner-Nordström, with two horizons atr− andr+.
··· (ii) The limit of zero charge of these solutions is a Minkowski spacetime,
rather than a Schwarzschild spacetime.
··· (iii) These regular charged black hole solutions have boundaries which are
either timelike or, in one instance, lightlike.
··· (iv) If the chargeq is the elementary charge, i.e., the electron chargee, then
the radiusr0 of the particle is of the order of the Planck radius and the massm
is of the order of the Planck mass. The solution could then be a model for a
heavy elementary charged particle.



3. Regular black holes in Einstein-Maxwell with matter
theory: Guilfoyle’s solution

Lemos, Zanchin (TBP 2012)

• The solutions

The cold charged pressure fluid is bounded by a spherical surface of radius
r = r0, and in the electrovacuum region, forr > r0, the metric and the electric
potentials are given by extremal Reissner-Nordström solution.
For the inside: ds2 = −B(r)dt2 +A(r)dr2 + r2dΩ .
Gauge field is:

Aµ = −φ(r)δ 0
µ , Uµ = −

√

B(r) δ 0
µ .

Try,
B(r) = a[−ε φ(r)+b]2 ,

8π ρm(r)+
Q2(r)

r4 =
3
R2 ,

A(r) =

(

1− r2

R2

)−1

,

whereR is a constant to be determined by the junction conditions of the
metric at the surfacer = r0.



3. Regular black holes in Einstein-Maxwell with matter
theory: Guilfoyle’s solution

Joining
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8πρm(r) =
3
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a
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0 r2
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ε
√
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k0 r3
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+
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3. Regular black holes in Einstein-Maxwell with matter
theory: Guilfoyle’s solution

wherek0 is an integration constant, andF(r) andQ(r) are defined
respectively by

F(r) = k0R2

√

1− r2

R2 −k1 ,

Q(r) = 4π
∫ r

0
ρe(r)

r2dr
√

1− r2

R2

=
r2

√

B(r)

√

1− r2

R2

dφ(r)
dr

,

with k1 being another integration constant. The integration constantsk0 andk1

are determined by using the continuity of the metric potentialsA(r) andB(r)
and the first derivative ofB(r) with respect tor at the boundaryr = r0. The
result is

k0 =
|q|a2/a

r3
0

(

m
q
− q

r0

)1−2/a

,

k1 =

√

1− r2
0

R2

[

k0R2− a1+1/a

2−a

(

1− r2
0

R2

)−1/a
]

.



3. Regular black holes in Einstein-Maxwell with matter
theory: Guilfoyle’s solution

• The plethora of solutions diplayed
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3. Regular black holes in Einstein-Maxwell with matter
theory: Guilfoyle’s solution
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4. Regular black holes in non-minimal Einstein–Yang-Mills
theories

Balakin, Lemos, Zayats (TBP 2012).

• The action and equations

The action is

SNMEYM =
∫

d4x
√−g

{

R+2Λ
8π

+
1
2

F(a)
ik Fik

(a) +
1
2
R

ikmnF(a)
ik F(a) mn

}

.

The nonminimal susceptibility tensorR ikmn is

R
ikmn≡ q1

2
R(gimgkn−gingkm)+

q2

2
(Rimgkn−Ringkm+Rkngim−

Rkmgin)+q3Rikmn.

We consider a Yang-Mills field taking values in the Lie algebra of the gauge
groupSU(2)

Am = −i t(a)A
(a)
m , Fmn = −i t(a)F

(a)
mn .

Heret(a) are the Hermitian traceless generators ofSU(2) group.



4. Regular black holes in non-minimal Einstein–Yang-Mills
theories

Static spherically symmetric space-time with the metric

ds2 = σ2Ndt2− dr2

N
− r2(

dθ 2 +sin2 θdϕ2) .

The gauge field has the special ansatz

A0 = Ar = 0, Aθ = itϕ , Aϕ = −iν sinθ tθ .

The parameterν is a non-vanishing integer. The field strength tensor has only
one non-vanishing component:

Fθϕ = iν sinθ tr .

Clearly, it is a magnetic type solution. The solution has arbitraryΛ, q1, q2 and
q3.



4. Regular black holes in non-minimal Einstein–Yang-Mills
theories

• Solutions
N
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5. Regular black holes, quasinormal modes and stability

Flachi and Lemos (TBP 2012).

• The action and solutions

S=
1

16π

∫

d4x
√

g(R−L (F)) ,

whereR is the scalar curvature andL (F) is a nonlinear function of the
electromagnetic field strength withF = FµνFµν/4. In most examplesL
reproduces Maxwell’s theory in the weak field limit.
Regular black hole solutions are presented in the form of spherically
symmetric geometries,

ds2 = −f (r)dt2 + f−1(r)dr2 + r2dΩ2
2 ,

where the lapse functionf ≡ f (r) depends on the specific form ofL and on
the parameters of the nonlinear electrodynamics. For example, the regular
solution of Ayon-Beato and Garcia (PLB 1998) hasf given by

f = 1− 2mr2

(r 2 +q2)3/2
+

q2r 2

(r 2 +q2)2 .
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This is obtained by introducing a nonlinear electrodynamics with Lagrangian
density,

L =
X2

−2q2

1−8X−3X2

(1−X)4 − 3m
2q3

X5/2(3−2X)

(1−X)7/2
,

whereX =
√

−2q2F, andmandq are associated to mass and charge. All the
solutions considered in this paper are summarized in the Table.

Lapse function Ref.

f = 1− 2mr2

r3+2α2 (Hayward, PRL 2006)

f = 1− 2mr2

(r2+q2)3/2 + q2r2

(r2+q2)2 (Ayon-Beato-Garcia, PRL 1998)

f = 1− 2mr2

(r2+q2)3/2 (Ayon-Beato-Garcia, PLB 2000)

f = 1− 4m
πr

(

tan−1 r
r0
− rr0

r2+r2
0

)

(Dymnikova CQG 2004)

f = 1− 2m
r

(

1− tanhr0
r

)

(Bronnikov PRD 2001,
Matyjasek et al GRG 2006)

f = 1+ cr2

b2 + ρ0r2

b3

(

b
√

r2−b2

r2 + tan−1
√

r2−b2

b

)

(Bronnikov, Fabris PRL 2006)



5. Regular black holes, quasinormal modes and stability

• The modes

Perturb the solution with a charged scalar field,qperturbation.
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The figure illustrates the behavior of the Imaginary part of the QNF forl = 3
andn = 0 in the RN case and in the regular black hole case (Ayon-Beato).
The symbols refer to:qperturbation= 0(+), 0.1(♯), 0.3(∗) for the regular case,
andqperturbation= 0(♭), 0.1(♮), 0.3(∆) for the RN case.
The regular black hole is stable against perturbations.



6. Conclusions

··· We have shown that we can make some progress in some understanding of
the black hole interior.
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