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L Motivation

Motivation

>

QFT in curved space-time is a theory wherein matter is treated
quantum-mechanically, but gravity is treated classically in
agreement with GR.

This provides a good approximate description in circumstances
where the quantum effects of gravity do not play a dominant role.

This suggests that the background classical space-time in the
Planck regime (near the singularity) has to be replaced by a
quantum background geometry.

Discrete approaches to quantum gravity lead to a breakdown of the
usual structure of space-time at around the Planck scale, with
possible violations of Lorentz symmetry.

This can have phenomenological implications, such as a deformation
of the dispersion relations for propagating particles (modes of a
matter field) on this background.
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Lorentz symmetry breaking

Phenomenological Approach to Lorentz invariance violation (LIV) issues
has been studied by Amelino-Camelia et al. [2]. Unbroken mass-shell
constraint (for massless particles) is given by:

E?—p?>=0 (1)
Breaking energy scale: Ep; ~ 1.2 x 10¥°GeV, at leading order,
E E?
2 2
_E 1+a+o<)]. 2
P |1ror 40 (5 @

where ¢ depends on the QG theory. Thinking of this as a dispersion
relation, we obtain the measured velocity is

_dE E

v=—=1—0—. 3
dp Ep (3)

This deviation from the ‘conventional’ speed of light (¢ = 1) can be
observed in GRB's or other highly energetic particles.
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QFT on LQC space-time

Attempt to define QFT on LQC spacetime has been done by Ashtekar,
Kaminski, Lewandowski [3]:

» The construction is carried out in FRW space-time.
» The analysis involves a single mode k of a massless scalar field o.

Therein, by comparing QFT on classical and semiclassical limit of the
QFT on quantum space-time an effective metric g5, is emerged.

In principle, the resulting geometry could depend on each field's mode k:
the quanta of different energy and momentum would ‘feel’ different
geometries, and hence an (apparent) Lorentz violation could be obtained:

» For FRW case, g, does not depend on E; therefore, no LIV.

» Justification can be: FRW is conformally flat, thus, the massless
particles do not feel the difference with Minkowski geometry
(B6P°P° =0 & Q%2,p°p" =0).
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The idea: QFT on anisotropic geometries

The Bianchi type | space-time metric:
3 .
guydxdx” = —dt* + 3 a2(t)(dx')2, (4)
i=1

Why Bianchi | cosmology?

» Possible idea is to consider more gravitational dof’s, such as in
anisotropic cosmological models. Therefore, it is the simplest
anisotropic models for cosmology.

> Anisotropy may lead to the Lorentz symmetry breaking.
» It is interesting from the point of view of BKL conjecture.

> LQC of Bianchi | model is available: Ashtekar and Wilson-Ewing [4].
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Classical background geometry

We consider the background space-time manifold to be topologically
M =R x T3. In terms of Ashtekar SU(2) connection variables,
AL = c'd}, and E7 = p;o7: It holds then the phase space variables, p;, of
gravity [g;:

p1 = axaz, p2=azay, p3=aia. (5)
It is convenient to work with a harmonic time function 7: N, d7T = N.dt
and N, = /|p1p2p3| = V. In terms of (7,x'), the Bl metric becomes

then
] . (6)

Indeed, Gauss and Vector constraints are already reduced, and hence, we
are left with the (homogeneous part of) scalar constraint only:

> (dx’)?
guvdx"dx” = |p1p2ps| [dﬂ + Z p?
i=1 !

1
Cor = / d*x N,Cy = *872(P1P2C1C2 + pap3cacs + p3picsc). (7)
% TGy
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L Classical theory

In LQC, the massless scalar field T and its conjugate momentum Pr
coordinatise the phase space of matter, denoted by ['+. The energy
density is pr = P2 /2V/?2: the contribution of T to the scalar constraint

reads
P2
Cr= / d*xN,Cr = - | (8)
v 2
Total scalar constraint is obtained as
Cgeo = Cgr + C.T- (9)

The 7-evolution of any phase space function
dT/dr ={T,Ceeo} = P, dP71/dT ={P7, Ceeo} =0. (10)

So that, T = Py7 : thus, T is a good relational time. Using ‘
N7dT = N.d7r: Nt = \/|p1p2ps|/Pr. Therefore, in terms of (T, x'):

dx

v dx"dx” = |p1p2ps] **dT2 T Z (11)

i=1 Pi
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L Quantum theory

The kinematical Hilbert space of Bianchi | model, Hy,, is given as:
Hgr @ Ht, where

> Hg: the Hilbert space of the gravitational sector is spanned by
pi-eigenstates |\) 1= | A1, Az, A3).

> Ht = Lo(R,dT): the Hilbert space of scalar field is quantized
according to Schroedinger picture.

The scalar constraint operator @eo is well-defined on Hyjn:
~ 1, 5.5 1
Cgeo:*E(FL 3T®H)75(H®@) (12)

Physical states W, (T, X) € Hyin are those lying in the kernel of 6geo,
which turn out to be the (positive frequency) solutions to

—fhaT\Uo(TaX):\/@w( %)
=: HoWo(T, ) . (13)
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Classical field on classical background
The classical background M = R x T3, equipped with (xo, x):

guvdxtdx” = —N2 (x0)dxg + Z (14)

where x/ € T3, with xo € R being a generic time coordinate.
Matter: A real (inhomogeneous) scalar field ¢(xg, X) on this background
space-time, whose Lagrangian is

Ly= %(gwaﬂqsam — m?$?). (15)

For the pair (¢, 74), the classical solutions of the equation of motion can
be expanded in:

$(x0,X) = 3/2 3 dplx)e )eik %,

kec

7T¢(X0,X = 3/2 Z?‘I’k XO k;, (16)
kel
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For the pair (¢, m4), Poisson bracket reads,
{¢Ea 77/;‘/} - 6/;’7;/- (17)

Notice that, (ki, k2, k3) € (27Z)* span a 3-dimensional lattice L.
Considering a mode decomposition:

_ (1) | -4(2)
o = 5 (o +ie®),
w =5 (wg)ﬂwg")). (18)

Since the reality conditions are satisfied: op = E and 7 = 7_g, thus,
not all variables in Eq. (18) are independent.
Since there exist relations between the “positive” and “negative” modes
Kk and ,E' the lattice £ can be splitted into:

L. ={Kk:ks>0}U{k:ks=0,ky >0 U{k: ks = ky = 0, k; > 0},
L_={k:ks <O U{k:ks=0,ky <0} U{k: ks =hp =0,k <O0}.
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Let us define the following real variables for all values of ker:

o0 ifkeL, W ifker,
9 = ;P = (19)
o ifker 2 ifker
K - K -

Therefore, we can obtain the Hamiltonian of the test fields as a collection
of decoupled harmonic oscillators:

= 3 Hylow) = 5
= 2\/[p1p2ps|
3
S <Z(p,~k,-)2+p1p2p3|m2> q’;i], (20)

kec i=1

one of them for each k. In order to pass to quantum theory, we will
henceforth fucus on a single mode gj.
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Quantum field on classical background
In order to pass to quantum theory, for each mode k:

> the Hilbert space of the matter is H; = L>(R, dgi);

» the dynamical variables become operators:
qv(ap) = apd(ap),  Ppv(ag) = —ihd/0qiy(qy). (21)

> time xp-evolution is generated by the time-dependent Hamiltonian
operator H(xo) via Schroedinger equation:

NXO(XO)
2\/|P1(X0)P2(X0)P3(Xo)|

3
Pet (2:(13//0)2 + |P1P2P3|m2> Z’I\%] ¥(xo0, qg)

i=1

ihaxoi/J(Xm qE)

X

=: ITI;(xo)w(xo, qr) (22)
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Dispersion relation of the test field
A prediction of many approaches to quantum gravity comes from the
study of in vacuo “dispersion relation” (i.e., the relation between the
frequency w and the wave-vector k of a mode of a field).
For each mode k € £, the xp-evolution of each pair of variables (g, pr):

qu N

k= {qr Hp} = ——2_p.

dxo R Ippaps] ¢

dp; N, >

—— ={ppHz} = ——F———=x (piki)® + |p1p2ps|m® | qz. (23)
dxo ok V/1p1p2ps| ;

Let us define:

d N
L L 24
A dxo n( |P1P2P3|> ()
N2 3
<§ ? + |p1p2ps|m > : (25)

wp =
|P1P2P3 ‘1
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Then, Hamilton equations give:

d?
qk +ﬂ— +wqu 0. (26)

We can write this equation of motion in a normal form as

PO,
dx3

+0Q29; =0, (27)

where Q7 and le? are

0= azerw (3 [ o)) (28)
02 — <w%_6_2_1ﬂ> (29)
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For choice of harmonic time xo = 7, 8 = 0 (since N,, = \/|p1p2ps3]), and
for a massless scalar field ¢, Eq. (27) reduces to

qu
dr2

with wi; = Z?Zl(p,-k,-)z.

For the wave 4-vector k, = (w_p, k) of the quantum field, a cosmological

+ wT 29z =0, (30)

observer (with 4-velocity u* = (1/—gg 1.0,0,0)) measures a frequency

y Wok
QT,E = ulk, = —— . (31)

A% \P1P2P3|

The observed 3-velocity of the mode is then

V,‘ _ dQ‘r,E 1 klp,2

ki \/Ip1paps]

(32)



QFT on quantum Bianchi | space-time
LQFT on quantum Bianchi | space-time
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Then, the norm of this vector reads

2
1 [ kip}
VIP=> S |=~) =1 (33)

2 -
i p; o")‘r,k

The velocity of quanta of massless scalar field, measured by cosmological
observers, is precisely the velocity of light, ¢ = 1; this confirm the local
Lorentz symmetry on the classical Bl space-time.

Is the issue of local Lorentz symmetry held on the quantum Bl geometry?
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QFT on quantum BI background

For a single mode E the kinematical Hilbert space becomes
The scalar constraint:

~ ~ ~ h2
CT,E = Cgeo + H‘r,/: = _?(8%— ® ng ® ]Il?)

1 ~
— 5(HT®@®HE)+(HT®HT7,‘(‘). (34)

where

o1
Hoi=51|P

3
(Z pik? + |prpaps|m > ~] ; (35)

i=1
Physical states, W(T, X, qgy) on H;(Rs = Ker (Q %), being the space of

“positive frequency” solutions to

~ 1/2 N
—ihdrW(T, X, ) = [H2 — 2 } W(T, X, qz)- (36)
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Considering ﬁT i as a (mode-dependent) perturbation to ﬁg we can use
the operator identity:

(A+ B)Y/2 = A/ <1 + %A*l/zBAfl/2 + ) AVA, (37)

for A= I?Ig and B = 72:‘1 o to obtain:

— ~ ~_1 ~ ~_1
—ihdr (T, X, ) = [Ho — A, *A_:H, } W(T, X, qz)
_ [Ho — HW} W(T, X, qz) (38)

Here we have used the test field approximation where the backreaction of
the scalar field on geometry was disregarded.
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Effective Bl geometry
e QFT on classical Bl geometry:

NXU(XO)
2y/1p1(x0) p2(x0) P3(x0)]

3
P2 + (Z(p, ki)? + |pLp2ps|m ) 5%] (%o, qg).

i=1

ihdx¥(x0, qp) =

e QFT on quantum Bl geometry:
—ihdr (T, X, ) = {/—/ —Hy A ;ﬁ;é] W(T, X, qz).

To compare, we need to take the classical limit for the geometrical dof’s:

> Pass to the interaction picture (geometrical dof’s described in
Heisenberg picture);

> Using the Born-Oppenheimer approximation (assuming the
geometrical dof’s as ‘heavy’).
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Interaction picture
The physical state of the system:

V(T X, qp) = Vo(T, X) @ (T, qp), (39)
where the geometry evolves through ﬁo, i.e., —ihoTV, = ﬁowo:
W, (T, X) = e TRe/my (0, X). (40)

Then, the Sheroedinger for QFT on quantum geometry becomes:

> | (A 182+ (Ao %(z

+Hpu(T)B2(T)Bs(T)|m?) Hy

) k} W(Toq), (41)

where </,4\( T)) denotes the expectation value on the quantum state of
geometry W,(0, \) of gravitational operator

A(T) = e THe/ AgiTHa/M (42)
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By setting xo = T, the Shroedinger equation becomes:

) N (T
ihoTy(T, qz) = 2\/%

for an effective Bl metric g,,, of the form:

3
P+ (Z(ﬁiki)z + |;315253|m2> 5%] (T, ag),

i=1

. > (dx')?
B dxtdx” = —N?(T)dT? + | py o3| Z Fal (43)
i=1 !
where N and p; satisfy,

N(T) = (Hy )/ 15152psl, (44)

N(T) _ 1 ~_ 1
NI g (T, (45)

| 1723

N(T)m2 _ m2<H0 | 1(T)p2(T)p3(T)|H0 > ) (46)

/| P1P2p3]
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There is a unique solution for m = 0:

N(T) = (H;1)/4 <f[ Hy 'p2(T)H, >>4, (47)

i=1

pi =

(Ho '*B(T)H ‘”%] 48
o . (48)

Therefore, the effective Bl space-time is emerged in terms of expectation
values of the gravitational operators on the quantum geometry state W,
whose components do not depend on modes k.
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Lorentz symmetry on the effective geometry
The wave equation on the effective geometry (for m = 0):

d?9;
7 5% =0 (49)
where Q,? denotes the modified modes qi:
Qpi= —k (50)
(Ho™)

and Q2T (T) is the (modified) dispersion relation of the test field on the
effective geometry:

2 _
QT,E(T) -

1 <d|n<ﬁo—1>>2 . 1dn(AzY) | (51)



QFT on quantum Bianchi | space-time
LEfFective geometry & Lorentz symmetry

LLorentz symmetry on the effective geometry

Since (ﬁ(;l) is independent of the time T, thus
~ Sl ~_1
@ {(T) = (H) DK (He *pH(T)HS ). (52)

Finally, the 3-velocity of modes propagating on the effective geometry
can be obtained as

- d .
8ii s
Vi =3 2 ()

800

~1. (53)

This equation confirms our expectation that, no Lorentz-violation is
presented in our model herein.
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Born-Oppenheimer approximation: Is Lorentz Invariance held in the
presence of the next order correction?

In standard quantum mechanics: —i9,V = AV = (I-Aln + /:/e)lll,
> Heavy degrees of freedom: nucleus n,
> Light degrees of freedom: electron e.

On the (Coulomb) background, solve the eigenequation for He:

N

Hexi(e) = €i(n)xi(e)

Substitute back, and solve the eigenequation for A:

¢a = Z(pi,a(n)Xi(e)v {Fln + 6,‘(!7)] 501'7(1(") = Ea<p,-7a(n).

1

Then, the “corrected” state of the system reads

Yy = Z ca\Ug = V= Z caVapiaXi.

(55)

(56)
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In our model, consider the Hamiltonian of the system:

. 1. &
—ihdFW = [29 - HT,,;] v,

» Heavy degrees of freedom: geometry (X)

> Light degrees of freedom: matter (q;).

On the background W, solve the eigenequation for ﬁT o

o~

H_ zxi(ag) = ei(p)xi(az)

Substitute back, and solve the eigenequation for H:

. 1 _ . .
o, = Z@i,a()\)X:’(QEL [2@ - HT,/?} @i.a(A) = Eapia(N).

1

Then, the “corrected” state of the system becomes

Yy = Z Cawg = V= Z Cawa@i,oin-

(57)
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The state of the system:

W(T—7)\a qE) = wo(?7>‘) ®’l/’(i qf{) +5\U(7—,A, qE)? (61)

SV = fi00 @ i o k. (62)

i
Therefore, the effective geometry is extended as
B dxdx” = —(1+ Eklp)2(B2)3/2d T2 4+ \/(p?) d52. (63)
Then, the dispersion relation for mode k on the background g,,,, gives
IVI =1+ Sker (64)

Lorentz violation occurs at around E ~ Ep; (GRB bound ~ 1072Ep).
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Conclusion and discussion

What we have seen:

» We have developed, the first steps of the QFT on Bianchi LQC
space-time.

> We discussed the concept of the “effective geometry” (different
than the effective scenario of LQC) felt by quanta of matter.

» We showed that, no Lorentz-violation in Bianchi | space-time exists
at Oth order (test field approximation).

> There exists possible Lorentz-violation when the backreaction is
taken into account.

Further investigation:
» Try to include the massive fields,

> Refine the QFT part: consider an infinite number of modes.
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