# Inverse scattering construction of dipole black rings 

Jorge V. Rocha

## CENTRA, Instituto Superior Técnico

## Black Holes Workshop IV, Universidade de Aveiro, Dec 19-20, 2011

based on:
arXiv:1108. 3527 with M. J. Rodriguez and A. Virmani (published in JHEP 11 (2011)); and ongoing work with M. J. Rodriguez and O. Varela.

## Outline

(1) Introduction

(2) Review: rod structure \& inverse scattering method

3 Inverse scattering construction of a dipole ring
(4) Conclusion
$\qquad$ $\equiv \quad \curvearrowleft Q \curvearrowright$

## Exact black hole solutions: a non-trivial pursuit

- Gravity in higher dimensions has attracted much attention in recent years.
review by [Emparan \& Reall, 2008]
- Gravity in higher dimensions is much richer:
- multiple rotations;
- non-spherical topologies;
- non-uniqueness.
- The discovery of black rings in 5D [Emparan \& Reall, 2001] brought a lot of excitement.
horizon topology:
$S^{1} \times S^{2}$
(a higher dimensional "bolo rei")
- Since then, many other exact BH solutions in 5D have been discovered.


## Known solutions

- Focus on asymptotically flat solutions. (Also stationary and bi-axisymmetric.)

Some known exact solutions in 5D vacuum gravity:


Myers-Perry

black rings

black saturn

bicycling black ring

black di-ring

- All these solutions can be (and have been) generated using the Inverse Scattering Method. [Pomeransky, 2006], [Tomizawa et al., 2006], [Tomizawa \& Nozawa, 2006], [Pomeransky \& Senkov, 2006] [Elvang \& Figueras, 2007], [Elvang \& Rodriguez, 2008], [Herdeiro et al., 2008], [Evslin \& Krishnan, 2009]

The ISM is a powerful solution-generating technique to construct new solutions by adding rotation to simpler known solutions. (More later.)

- Including gauge fields: dipole rings, charged rings, supersymmetric rings.

At present the most general regular, asymptotically flat solutions have 3 parameters. [Emparan, 2004], [Elvang et al, 2004]. [Elvang et al., 2005], [Pomeransky \& Sen'kov, 2006]

## Known solutions

- Focus on asymptotically flat solutions. (Also stationary and bi-axisymmetric.)

Some known exact solutions in 5D vacuum gravity:


Myers-Perry

black rings

black saturn

bicycling black ring

double MP

black di-ring

- All these solutions can be (and have been) generated using the Inverse Scattering Method. [Pomeransky, 2006], [Tomizawa et al., 2006], [Tomizawa \& Nozawa, 2006], [Pomeransky \& Senkov, 2006], [Elvang \& Figueras, 2007], [Elvang \& Rodriguez, 2008], [Herdeiro et al., 2008], [Evslin \& Krishnan, 2009]

The ISM is a powerful solution-generating technique to construct new solutions by adding rotation to simpler known solutions. (More later.)

- Including gauge fields: dipole rings, charged rings, supersymmetric rings.

At present the most general regular, asymptotically flat solutions have 3 parameters.

## Known solutions

- Focus on asymptotically flat solutions. (Also stationary and bi-axisymmetric.)

Some known exact solutions in 5D vacuum gravity:


Myers-Perry

black rings

black saturn

bicycling black ring

double MP

black di-ring

- All these solutions can be (and have been) generated using the Inverse Scattering Method. [Pomeransky, 2006], [Tomizawa et al., 2006], [Tomizawa \& Nozawa, 2006], [Pomeransky \& Senkov, 2006], [Elvang \& Figueras, 2007], [Elvang \& Rodriguez, 2008], [Herdeiro et al., 2008], [Evslin \& Krishnan, 2009]

The ISM is a powerful solution-generating technique to construct new solutions by adding rotation to simpler known solutions. (More later.)

- Including gauge fields: dipole rings, charged rings, supersymmetric rings...

At present the most general regular, asymptotically flat solutions have 3 parameters. [Emparan, 2004], [Elvang et al, 2004], [Elvang et al., 2005], [Pomeransky \& Sen'kov, 2006]

## Goal and motivation

- Motivation: a 5-parameter (mass, two angular momenta, electric charge and dipole charge) family of black rings has been conjectured to exist. [Elvang, Emparan \& Figueras, 2005]
- The original dipole black ring solution was constructed using educated guesswork. It is not understood how to systematically generate dipole charges.
[Emparan, 2004]
- There exists an algorithmic construction of a dipole black ring solution. However, it cannot generate multiple rotations...
[Yazadjiev, 2006]
- The ISM is sufficiently robust to deal with multiple rotations.


## Goal and motivation

- Motivation: a 5-parameter (mass, two angular momenta, electric charge and dipole charge) family of black rings has been conjectured to exist. [Elvang, Emparan \& Figueras, 2005]
- The original dipole black ring solution was constructed using educated guesswork. It is not understood how to systematically generate dipole charges.
[Emparan, 2004]
- There exists an algorithmic construction of a dipole black ring solution. However, it cannot generate multiple rotations...
[Yazadjiev, 2006]
— The ISM is sufficiently robust to deal with multiple rotations.

Construct a dipole black ring in 5D Einstein-Maxwell-dilaton (using the ISM in 6D).

## Outline

## Introduction

(2) Review: rod structure \& inverse scattering method

## 3 Inverse scattering construction of a dipole ring

## 4 Conclusion

$\qquad$

## Canonical form of the metric

- Consider stationary, axisymmetric solutions of Einstein eqs. in vacuum:

$$
R_{\mu \nu}=0 .
$$

- Assume $D-2$ commuting Killing vector fields, $\partial / \partial x^{i}$.

Then metric can be written in canonical form: [Wald, 1984] [Emparan \& Reall, 2002] [Harmark, 2004]


- Metric only depends on coordinates $(\rho, z)$ and has block diagonal form:


## Canonical form of the metric

- Consider stationary, axisymmetric solutions of Einstein eqs. in vacuum:

$$
R_{\mu \nu}=0
$$

- Assume $D-2$ commuting Killing vector fields, $\partial / \partial x^{i}$.

Then metric can be written in canonical form: [Wald, 1984] [Emparan \& Reall, 2002] [Harmark, 2004]

$$
d s^{2}=\sum_{i, j=0}^{D-3} G_{i j}(\rho, z) d x^{i} d x^{j}+e^{2 \nu(\rho, z)}\left[d \rho^{2}+d z^{2}\right], \quad \operatorname{det} G=-\rho^{2}
$$

- Metric only depends on coordinates $(\rho, z)$ and has block diagonal form:

$$
g_{\mu \nu}=\left(\begin{array}{c|cc}
G_{i j} & 0 & \\
\hline 0 & e^{2 \nu} & 0 \\
& 0 & e^{2 \nu}
\end{array}\right)
$$

## Canonical form of the metric

- The vacuum Einstein equations divide into two groups:

For $G_{i j}$ :

$$
\partial_{\rho} U+\partial_{z} V=0
$$

$g_{\mu \nu}=\left(\begin{array}{c|cc}G_{i j} & 0 & \\ \hline 0 & e^{2 \nu} & 0 \\ 0 & e^{2 \nu}\end{array}\right)$ where $\quad U \equiv \rho\left(\partial_{\rho} G\right) G^{-1}, \quad V \equiv \rho\left(\partial_{z} G\right) G^{-1}$.

- Integrability condition $\partial_{\rho} \partial_{z} \nu=\partial_{z} \partial_{\rho} \nu$ is automatically satisfied


## Canonical form of the metric

- The vacuum Einstein equations divide into two groups:

For $G_{i j}$ :

$$
\partial_{\rho} U+\partial_{z} V=0
$$



$$
\text { where } \quad U \equiv \rho\left(\partial_{\rho} G\right) G^{-1}, \quad V \equiv \rho\left(\partial_{z} G\right) G^{-1}
$$

## For $\nu$ :

$$
\begin{aligned}
\partial_{\rho} \nu & =-\frac{1}{2 \rho}+\frac{1}{8 \rho} \operatorname{Tr}\left(U^{2}-V^{2}\right) \\
\partial_{z} \nu & =\frac{1}{4 \rho} \operatorname{Tr}(U V)
\end{aligned}
$$

- Integrability condition $\partial_{\rho} \partial_{z} \nu=\partial_{z} \partial_{\rho} \nu$ is automatically satisfied


## Canonical form of the metric

- The vacuum Einstein equations divide into two groups:


## For $G_{i j}$ :

$$
\partial_{\rho} U+\partial_{z} V=0
$$



$$
\text { where } \quad U \equiv \rho\left(\partial_{\rho} G\right) G^{-1}, \quad V \equiv \rho\left(\partial_{z} G\right) G^{-1}
$$

## For $\nu$ :

$$
\begin{aligned}
\partial_{\rho} \nu & =-\frac{1}{2 \rho}+\frac{1}{8 \rho} \operatorname{Tr}\left(U^{2}-V^{2}\right) \\
\partial_{z} \nu & =\frac{1}{4 \rho} \operatorname{Tr}(U V)
\end{aligned}
$$

- Integrability condition $\partial_{\rho} \partial_{z} \nu=\partial_{z} \partial_{\rho} \nu$ is automatically satisfied $\quad \rightarrow \quad$ Focus on $G_{i j}$.


## Static, axisymmetric solutions ${ }_{\text {wev, } 1977 \mid \text { IEmpaana R Reall } 2002]}$

- Obtaining static (diagonal) solutions is straightforward. Writing

$$
G=\operatorname{diag}\left\{-e^{2 U_{0}}, e^{2 U_{1}}, e^{2 U_{2}}, \ldots\right\},
$$

the problem reduces to finding $D-2$ solutions, $U_{i}(\rho, z)$, of the Laplace equation in an auxiliary (cylindrically symmetric) 3D flat space:

$$
\nabla^{2} U_{i}=0, \quad d s_{a u x}^{2}=d \rho^{2}+\rho^{2} d \theta^{2}+d z^{2}
$$

- Boundary conditions: zero-thickness rods act as sources for the Newtonian potentials $U_{i}$. E.g., for a finite rod:

- The potentials are entirely specified by the location of the rod endpoints, $a_{k}$ These appear in combinations known as solitons and anti-solitons:


## Static, axisymmetric solutions ${ }_{\text {wev, 1977||Empaana R Reall } 2002]}$

- Obtaining static (diagonal) solutions is straightforward. Writing

$$
G=\operatorname{diag}\left\{-e^{2 U_{0}}, e^{2 U_{1}}, e^{2 U_{2}}, \ldots\right\},
$$

the problem reduces to finding $D-2$ solutions, $U_{i}(\rho, z)$, of the Laplace equation in an auxiliary (cylindrically symmetric) 3D flat space:

$$
\nabla^{2} U_{i}=0, \quad d s_{a u x}^{2}=d \rho^{2}+\rho^{2} d \theta^{2}+d z^{2}
$$

- Boundary conditions: zero-thickness rods act as sources for the Newtonian potentials $U_{i}$. E.g., for a finite rod:
$U_{i}(\rho, z)=\frac{1}{2} \log \left(\mu_{k-1} / \mu_{k}\right)$

- The potentials are entirely specified by the location of the rod endpoints, $a_{k}$. These appear in combinations known as solitons and anti-solitons:

$$
\mu_{k}=\sqrt{\rho^{2}+\left(z-a_{k}\right)^{2}}-\left(z-a_{k}\right), \quad \overline{\mu_{k}}=-\sqrt{\rho^{2}+\left(z-a_{k}\right)^{2}}-\left(z-a_{k}\right)
$$

## Static, axisymmetric solutions

- The constraint $\operatorname{det} G=-\rho^{2} \quad$ translates into $\sum_{i} U_{i}=\log \rho$.

Meaning: sources must add up to give an infinite rod.

- Some examples:



## Static, axisymmetric solutions

- The constraint $\operatorname{det} G=-\rho^{2}$ translates into $\sum_{i} U_{i}=\log \rho$.

Meaning: sources must add up to give an infinite rod.

- Some examples:



## Conclusion

Vacuum solutions of the Einstein equations with $D-2$ orthogonal commuting KVFs are fully determined by rod-like sources, only subject to the above constraint.
[Emparan \& Reall, 2002]
Note: the class of metrics considered above can be asymptotically flat only when $D \leq 5$.
If $D>5$ there are necessarily KK directions.

## Static, axisymmetric solutions

- Some thumb rules:
finite timelike rods $\longrightarrow$ event horizons semi-infinite spacelike rods $\longrightarrow$ axes of rotation

- Note: the static black ring is not regular. A conical singularity disk bounded by the ring provides the necessary force to balance the system.


## Static, axisymmetric solutions

- Some thumb rules:
finite timelike rods $\longrightarrow$ event horizons semi-infinite spacelike rods $\longrightarrow$ axes of rotation

- Note: the static black ring is not regular. A conical singularity disk bounded by the ring provides the necessary force to balance the system.


## Stationary, axisymmetric solutions

- This rod structure classification can be generalized to the stationary (non-diagonal) case. The main difference is that the rods acquire non-trivial 'directions':

- For a timelike rod, the components $\Omega_{\ell}$ of its direction vector yield the angular velocities of the associated horizon.


## Stationary, axisymmetric solutions

- This rod structure classification can be generalized to the stationary (non-diagonal) case. The main difference is that the rods acquire non-trivial 'directions':

- For a timelike rod, the components $\Omega_{\ell}$ of its direction vector yield the angular velocities of the associated horizon.


## The inverse scattering method [Bemsissid zankaov, 1979]

- The BZ approach consists in replacing the original (non-linear) equation for $G(\rho, z)$ by a system of linear equations (Lax pair) for a generating matrix $\Psi(\lambda, \rho, z)$, such that

$$
\Psi(\lambda=0, \rho, z)=G(\rho, z) .
$$

New solutions are obtained by dressing the generating matrix $\Psi_{0}$ of a known seed $G_{0}$.

- Issue: Generically, after a solitonic transformation $\operatorname{det} G \neq-\rho^{2}$.

The determinant of the new metric is independent of the BZ vectors.
Issue is circumvented by removing $n$ solitons with trivial BZ vectors and then re-adding the same solitons with more general BZ vectors.

## The inverse scattering method [Belingsis zaparaor, 1979]

- The BZ approach consists in replacing the original (non-linear) equation for $G(\rho, z)$ by a system of linear equations (Lax pair) for a generating matrix $\Psi(\lambda, \rho, z)$, such that

$$
\Psi(\lambda=0, \rho, z)=G(\rho, z) .
$$

New solutions are obtained by dressing the generating matrix $\Psi_{0}$ of a known seed $G_{0}$.

## The BZ algorithm

If the seed is diagonal (static) and the 'dressing' procedure is restricted to the class of solitonic transformations, then the whole scheme is purely algebraic.

Input needed: the positions of the solitons $a_{k}$ and the (constant) BZ vectors $m_{0}^{(k)}$.
Note: if the BZ vectors mix the time and spatial Killing directions, then this procedure yields a rotating version of the original static solution.

- Issue: Generically, after a solitonic transformation $\operatorname{det} G \neq-\rho^{2}$

> Solution
> The determinant of the new metric is independent of the BZ vectors.
> Issue is circumvented by removing $n$ solitons with trivial BZ vectors and then re-adding the
> same solitons with more general BZ vectors.

## The inverse scattering method [selinsisi zzaphaor, 1979]

- The BZ approach consists in replacing the original (non-linear) equation for $G(\rho, z)$ by a system of linear equations (Lax pair) for a generating matrix $\Psi(\lambda, \rho, z)$, such that

$$
\Psi(\lambda=0, \rho, z)=G(\rho, z) .
$$

New solutions are obtained by dressing the generating matrix $\Psi_{0}$ of a known seed $G_{0}$.

## The BZ algorithm

If the seed is diagonal (static) and the 'dressing' procedure is restricted to the class of solitonic transformations, then the whole scheme is purely algebraic.

Input needed: the positions of the solitons $a_{k}$ and the (constant) BZ vectors $m_{0}^{(k)}$.
Note: if the BZ vectors mix the time and spatial Killing directions, then this procedure yields a rotating version of the original static solution.

- Issue: Generically, after a solitonic transformation $\operatorname{det} G \neq-\rho^{2}$.

Solution: [Pomeransky, 2006]
The determinant of the new metric is independent of the BZ vectors.
Issue is circumvented by removing $n$ solitons with trivial BZ vectors and then re-adding the same solitons with more general BZ vectors.

## The inverse scattering method



- Notes: - The seed solution need not be regular.
- Might need to impose some constraints to generate a regular solution.


## Outline

## Introduction

(2) Review: rod structure \& inverse scattering method
(3) Inverse scattering construction of a dipole ring

## (4) Conclusion

## The set-up

- Consider 5D Einstein-Maxwell-dilaton theory, governed by the action

$$
S=\frac{1}{16 \pi G_{N}} \int d^{5} x \sqrt{-g}\left(R-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{4} e^{-a \phi} F_{\mu \nu} F^{\mu \nu}\right), \quad \text { with } \quad a=\frac{2 \sqrt{2}}{\sqrt{3}} .
$$

- The five-dimensional theory naturally supports magnetic one-branes and dipole black rings.

Can define a local charge by $\quad \mathcal{Q}=\frac{1}{4 \pi} \int_{S^{2}} F$.

from [Emparan, 2004]

- This action can also be obtained from 6D vacuum gravity by performing a Kaluza-Klein reduction on $S^{1}$ using the ansatz

The sixth dimension is parametrized by $w$ and $F=d A$.

- Strategy: Construct the dipole ring solution of this theory by applying the ISM in 6D and then reducing to 5D.


## The set-up

- Consider 5D Einstein-Maxwell-dilaton theory, governed by the action

$$
S=\frac{1}{16 \pi G_{N}} \int d^{5} x \sqrt{-g}\left(R-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{4} e^{-a \phi} F_{\mu \nu} F^{\mu \nu}\right), \quad \text { with } \quad a=\frac{2 \sqrt{2}}{\sqrt{3}} .
$$

- The five-dimensional theory naturally supports magnetic one-branes and dipole black rings.

Can define a local charge by $\quad \mathcal{Q}=\frac{1}{4 \pi} \int_{S^{2}} F$.

from [Emparan, 2004]

- This action can also be obtained from 6D vacuum gravity by performing a Kaluza-Klein reduction on $S^{1}$ using the ansatz

$$
d s_{6}^{2}=e^{\frac{\phi}{\sqrt{6}}} d s_{5}^{2}+e^{-\frac{\sqrt{3} \phi}{\sqrt{2}}}(d w+A)^{2}
$$

The sixth dimension is parametrized by $w$ and $F=d A$.

- Strategy: Construct the dipole ring solution of this theory by applying the ISM in 6D and then reducing to 5D.


## Seed metric

The seed is taken to be the following static (diagonal) metric:


## Seed metríc [JvR, Rodriguez \& Virmani, 2011]

The seed is taken to be the following static (diagonal) metric:


- This solution is singular and not of direct physical interest, but satisfies det $G_{0}=-\rho^{2}$.
- The negative density (dashed) rod is included to facilitate adding the $S^{1}$ angular momentum to the ring.
[Elvang \& Figueras, 2007]
- Novel ingredient: the finite rod along the KK direction allows the addition of dipole charge.


## Soliton transformations ivve, faditiverez vimani, 2011]



We generate the 6D uplift of the dipole ring solution by a 2-soliton transformation:
(1) Perform two 1-soliton transformations on the seed $G_{0}$ to obtain $G_{0}^{\prime}$ :

- remove an anti-soliton at $z=a_{0}$ with trivial BZ vector ( $1,0,0,0$ );
- remove a soliton at $z=a_{4}$ with trivial $B Z$ vector $(0,0,0,1)$.
(2) Perform now a 2-soliton transformation on $G_{0}^{\prime}$ to obtain $G$ :
- add an anti-soliton at $z=a_{0}$ with $B Z$ vector ( $1,0, c_{1}, 0$ );
- add a soliton at $z=a_{4}$ with $B Z$ vector $\left(0, c_{2}, 0,1\right)$
(3) Construct $e^{2 \nu}$. The result $\left(G, e^{2 \nu}\right)$ is the 6D solution we want.

Appropriately tuning $c_{1}$ and $c_{2}$ and KK reducing along the $w$ direction we obtain the smooth 5D
dipole black ring solution of the theory under consideration.

## Soliton transformations



We generate the 6D uplift of the dipole ring solution by a 2-soliton transformation:
(1) Perform two 1-soliton transformations on the seed $G_{0}$ to obtain $G_{0}^{\prime}$ :

- remove an anti-soliton at $z=a_{0}$ with trivial BZ vector ( $1,0,0,0$ );
- remove a soliton at $z=a_{4}$ with trivial BZ vector $(0,0,0,1)$.
(2) Perform now a 2-soliton transformation on $G_{0}^{\prime}$ to obtain $G$ :
- add an anti-soliton at $z=a_{0}$ with $B Z$ vector ( $1,0, c_{1}, 0$ );
- add a soliton at $z=a_{4}$ with $B Z$ vector $\left(0, c_{2}, 0,1\right)$
(3) Construct $e^{2 \nu}$. The result $\left(G, e^{2 \nu}\right)$ is the $6 D$ solution we want.

Appropriately tuning $c_{1}$ and $c_{2}$ and $K K$ reducing along the $w$ direction we obtain the smooth 5 D
dipole black ring solution of the theory under consideration.

## Soliton transformations



We generate the 6D uplift of the dipole ring solution by a 2-soliton transformation:
(1) Perform two 1-soliton transformations on the seed $G_{0}$ to obtain $G_{0}^{\prime}$ :

- remove an anti-soliton at $z=a_{0}$ with trivial BZ vector ( $1,0,0,0$ );
- remove a soliton at $z=a_{4}$ with trivial BZ vector $(0,0,0,1)$.
(2) Perform now a 2-soliton transformation on $G_{0}^{\prime}$ to obtain $G$ :
- add an anti-soliton at $z=a_{0}$ with $B Z$ vector ( $1,0, c_{1}, 0$ );
- add a soliton at $z=a_{4}$ with $B Z$ vector $\left(0, c_{2}, 0,1\right)$
(3) Construct $e^{2 \nu}$. The result $\left(G, e^{2 \nu}\right)$ is the 6 D solution we want.

Appropriately tuning $c_{1}$ and $c_{2}$ and KK reducing along the $w$ direction we obtain the smooth 5 D dipole black ring solution of the theory under consideration

## Soliton transformations



We generate the 6D uplift of the dipole ring solution by a 2-soliton transformation:
(1) Perform two 1-soliton transformations on the seed $G_{0}$ to obtain $G_{0}^{\prime}$ :

- remove an anti-soliton at $z=a_{0}$ with trivial BZ vector ( $1,0,0,0$ );
- remove a soliton at $z=a_{4}$ with trivial $B Z$ vector $(0,0,0,1)$.
(2) Perform now a 2-soliton transformation on $G_{0}^{\prime}$ to obtain $G$ :
- add an anti-soliton at $z=a_{0}$ with $B Z$ vector $\left(1,0, c_{1}, 0\right)$;
- add a soliton at $z=a_{4}$ with $B Z$ vector $\left(0, c_{2}, 0,1\right)$
(3) Construct $e^{2 \nu}$. The result $\left(G, e^{2 \nu}\right)$ is the 6D solution we want.

Appropriately tuning $c_{1}$ and $c_{2}$ and KK reducing along the $w$ direction we obtain the smooth 5D dipole black ring solution of the theory under consideration.

## Dipole black ring uplifted to 6D

We arrive at a metric described by the following rod diagram:
w
$a_{1} \quad a_{2} \quad a_{3}$

$$
\begin{aligned}
& \Omega_{\psi}=\sqrt{\frac{\left(a_{1}-a_{0}\right)}{2\left(a_{2}-a_{0}\right)\left(a_{3}-a_{0}\right)}} \\
& \Omega_{w}=\sqrt{\frac{2\left(a_{4}-a_{2}\right)\left(a_{4}-a_{1}\right)}{\left(a_{3}-a_{4}\right)}}
\end{aligned}
$$

- The parameter $c_{1}$ must be fixed to avoid a divergence as $z \rightarrow a_{0}$ along the $\operatorname{rod}\left(-\infty, a_{1}\right]$. Equally, $c_{2}$ must be fixed so that the rod along $w$ merges with the finite rod along $\phi$.
- The general solution has a conical deficit, but the balanced solution is regular.
- Parameter counting:


These 3 parameters encode the mass, one angular momentum and the dipole charge.

## Dipole black ring uplifted to 6D

We arrive at a metric described by the following rod diagram:


$$
\begin{aligned}
& \Omega_{\psi}=\sqrt{\frac{\left(a_{1}-a_{0}\right)}{2\left(a_{2}-a_{0}\right)\left(a_{3}-a_{0}\right)}} \\
& \Omega_{w}=\sqrt{\frac{2\left(a_{4}-a_{2}\right)\left(a_{4}-a_{1}\right)}{\left(a_{3}-a_{4}\right)}}
\end{aligned}
$$

- The parameter $c_{1}$ must be fixed to avoid a divergence as $z \rightarrow a_{0}$ along the $\operatorname{rod}\left(-\infty, a_{1}\right]$. Equally, $c_{2}$ must be fixed so that the rod along $w$ merges with the finite rod along $\phi$.
- The general solution has a conical deficit, but the balanced solution is regular.
- Parameter counting:


These 3 parameters encode the mass, one angular momentum and the dipole charge.

## Dipole black ring uplifted to 6D

We arrive at a metric described by the following rod diagram:


$$
\begin{aligned}
& \Omega_{\psi}=\sqrt{\frac{\left(a_{1}-a_{0}\right)}{2\left(a_{2}-a_{0}\right)\left(a_{3}-a_{0}\right)}}, \\
& \Omega_{w}=\sqrt{\frac{2\left(a_{4}-a_{2}\right)\left(a_{4}-a_{1}\right)}{\left(a_{3}-a_{4}\right)}} .
\end{aligned}
$$

- The parameter $c_{1}$ must be fixed to avoid a divergence as $z \rightarrow a_{0}$ along the $\operatorname{rod}\left(-\infty, a_{1}\right]$. Equally, $c_{2}$ must be fixed so that the rod along $w$ merges with the finite rod along $\phi$.
- The general solution has a conical deficit, but the balanced solution is regular.
- Parameter counting:


These 3 parameters encode the mass, one angular momentum and the dipole charge.

## Dipole black ring solution [ve. Faditiverez vimani: 2011$]$

To confirm we have indeed reproduced the dipole ring solution we have to:
(1) Convert from Weyl canonical coordinates $(\rho, z)$ to ring coordinates $(x, y)$;
(2) Perform the dimensional reduction on $S^{1}$ down to 5D.

## Dipole black ring solution [ve. Faditiverez vimani: 2011$]$

To confirm we have indeed reproduced the dipole ring solution we have to:
(1) Convert from Weyl canonical coordinates $(\rho, z)$ to ring coordinates $(x, y)$;
(2) Perform the dimensional reduction on $S^{1}$ down to 5D.

```
Result
We obtain precise agreement with the 5D line element ds 2, the vector potential A and
the dilaton \phi of [Emparan, 2004].
The correct bounds on the parameters are also recovered.
```


## Outline

Introduction

2 Review: rod structure \& inverse scattering method

3 Inverse scattering construction of a dipole ring
(4) Conclusion
$\qquad$

## Conclusion and Outlook

- Summary: We have re-derived the dipole ring solution of 5D Einstein-Maxwell-dilaton theory (with a specific coupling constant).
- Take-home message: The ISM can be used to generate dipole charge.
- Possible extensions: generating more general black rings in the above mentioned theory.
E.g., adding an independent rotation or multi-horizon solutions. (Work in progress.)
- Start with same seed but perform a 4-soliton transformation to generate dipole charge, rotation on the $S^{1}$ and rotation on the $S^{2}$.

- "The going gets though"
. All (kilo)metric components are non-vanishing.


## Conclusion and Outlook

- Summary: We have re-derived the dipole ring solution of 5D Einstein-Maxwell-dilaton theory (with a specific coupling constant).
- Take-home message: The ISM can be used to generate dipole charge.
- Possible extensions: generating more general black rings in the above mentioned theory.
E.g., adding an independent rotation or multi-horizon solutions. (Work in progress.)
- Start with same seed but perform a 4-soliton transformation to generate dipole charge, rotation on the $S^{1}$ and rotation on the $S^{2}$.

- "The going gets though". . . All (kilo)metric components are non-vanishing.


## Merry Christmas



