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Introduction

Exact black hole solutions: a non-trivial pursuit

Gravity in higher dimensions has attracted much attention in recent years.
review by [Emparan & Reall, 2008]

Gravity in higher dimensions is much richer:

– multiple rotations;
– non-spherical topologies;
– non-uniqueness.

The discovery of black rings in 5D [Emparan & Reall, 2001]

brought a lot of excitement.

horizon topology: S1 × S2

(a higher dimensional “bolo rei”)

Since then, many other exact BH solutions in 5D have been discovered.
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Introduction

Known solutions

Focus on asymptotically flat solutions. (Also stationary and bi-axisymmetric.)

Some known exact solutions in 5D vacuum gravity:

Myers-Perry black rings black saturn bicycling black ring double MP black di-ring

All these solutions can be (and have been) generated using the Inverse Scattering Method.
[Pomeransky, 2006], [Tomizawa et al., 2006], [Tomizawa & Nozawa, 2006], [Pomeransky & Senkov, 2006],

[Elvang & Figueras, 2007], [Elvang & Rodriguez, 2008], [Herdeiro et al., 2008], [Evslin & Krishnan, 2009]

The ISM is a powerful solution-generating technique to construct new solutions by adding
rotation to simpler known solutions. (More later.)

Including gauge fields: dipole rings, charged rings, supersymmetric rings. . .

At present the most general regular, asymptotically flat solutions have 3 parameters.
[Emparan, 2004], [Elvang et al, 2004], [Elvang et al., 2005], [Pomeransky & Sen’kov, 2006]
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Introduction

Goal and motivation

Motivation: a 5-parameter (mass, two angular momenta, electric charge and dipole
charge) family of black rings has been conjectured to exist. [Elvang, Emparan & Figueras, 2005]

— The original dipole black ring solution was constructed using educated guesswork.
It is not understood how to systematically generate dipole charges. [Emparan, 2004]

— There exists an algorithmic construction of a dipole black ring solution.
However, it cannot generate multiple rotations. . . [Yazadjiev, 2006]

— The ISM is sufficiently robust to deal with multiple rotations.

Goal

Construct a dipole black ring in 5D Einstein-Maxwell-dilaton (using the ISM in 6D).
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Review: rod structure & inverse scattering method

Canonical form of the metric

Consider stationary, axisymmetric solutions of Einstein eqs. in vacuum:

Rµν = 0 .

Assume D − 2 commuting Killing vector fields, ∂/∂x i .

Then metric can be written in canonical form: [Wald, 1984] [Emparan & Reall, 2002] [Harmark, 2004]

ds2 =

D−3∑
i,j=0

Gij (ρ, z)dx i dx j + e2ν(ρ,z)
[
dρ2 + dz2

]
, det G = −ρ2 ,

Metric only depends on coordinates (ρ, z) and has block diagonal form:

gµν =


Gij 0

e2ν 0
0

0 e2ν
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Review: rod structure & inverse scattering method

Canonical form of the metric

The vacuum Einstein equations divide into two groups:

gµν =


Gij 0

e2ν 0
0

0 e2ν



For Gij :

∂ρU + ∂zV = 0 ,

where U ≡ ρ(∂ρG)G−1, V ≡ ρ(∂zG)G−1 .

For ν:

∂ρν = −
1
2ρ

+
1
8ρ

Tr(U2 − V 2) ,

∂zν =
1
4ρ

Tr(UV ) .

Integrability condition ∂ρ∂zν = ∂z∂ρν is automatically satisfied → Focus on Gij .
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Review: rod structure & inverse scattering method

Static, axisymmetric solutions [Weyl, 1917] [Emparan & Reall, 2002]

Obtaining static (diagonal) solutions is straightforward. Writing

G = diag{−e2U0 , e2U1 , e2U2 , . . . } ,

the problem reduces to finding D − 2 solutions, Ui (ρ, z), of the Laplace equation in an
auxiliary (cylindrically symmetric) 3D flat space:

∇2Ui = 0 , ds2
aux = dρ2 + ρ2dθ2 + dz2 .

Boundary conditions: zero-thickness rods act as sources for the Newtonian potentials Ui .
E.g., for a finite rod:

Ui (ρ, z) =
1
2

log(µk−1/µk )

ρ

z

θ

a    k−1 a    k

(ρ, z)

The potentials are entirely specified by the location of the rod endpoints, ak .
These appear in combinations known as solitons and anti-solitons:

µk =
√
ρ2 + (z − ak )2 − (z − ak ) , µk = −

√
ρ2 + (z − ak )2 − (z − ak ) .
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Review: rod structure & inverse scattering method

Static, axisymmetric solutions

The constraint det G = −ρ2 translates into
∑

i Ui = log ρ .

Meaning: sources must add up to give an infinite rod.

Some examples:

Ut

UΦ

a1 a2

Ut

UΦ

UΨ

a1 a2

4D Schwarzschild 5D Tangherlini

Conclusion

Vacuum solutions of the Einstein equations with D − 2 orthogonal commuting KVFs are fully
determined by rod-like sources, only subject to the above constraint. [Emparan & Reall, 2002]

Note: the class of metrics considered above can be asymptotically flat only when D ≤ 5.
If D > 5 there are necessarily KK directions.
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Review: rod structure & inverse scattering method

Static, axisymmetric solutions

Some thumb rules:

finite timelike rods −→ event horizons
semi-infinite spacelike rods −→ axes of rotation

Ut

UΦ

UΨ
a1 a2 a3

Φ

Ψ

Note: the static black ring is not regular. A conical singularity disk bounded by the ring
provides the necessary force to balance the system.
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Review: rod structure & inverse scattering method

Stationary, axisymmetric solutions

This rod structure classification can be generalized to the stationary (non-diagonal) case.
The main difference is that the rods acquire non-trivial ‘directions’: [Harmark, 2004]

Ut

UΦ

a1 a2

H1, WΦL
Ut

UΦ

UΨ

a1 a2

H1, WΦ, WΨL
Ut

UΦ

UΨ

a1 a2 a3

H1, 0, WΨL

4D Kerr 5D Myers-Perry singly rotating black ring

For a timelike rod, the components Ω` of its direction vector yield the angular velocities of
the associated horizon.
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Review: rod structure & inverse scattering method

The inverse scattering method [Belinski & Zakharov, 1979]

The BZ approach consists in replacing the original (non-linear) equation for G(ρ, z) by a
system of linear equations (Lax pair) for a generating matrix Ψ(λ, ρ, z), such that

Ψ(λ = 0, ρ, z) = G(ρ, z) .

New solutions are obtained by dressing the generating matrix Ψ0 of a known seed G0.

The BZ algorithm

If the seed is diagonal (static) and the ‘dressing’ procedure is restricted to the class of solitonic
transformations, then the whole scheme is purely algebraic.

Input needed: the positions of the solitons ak and the (constant) BZ vectors m(k)
0 .

Note: if the BZ vectors mix the time and spatial Killing directions, then this procedure yields
a rotating version of the original static solution.

Issue: Generically, after a solitonic transformation det G 6= −ρ2.

Solution: [Pomeransky, 2006]

The determinant of the new metric is independent of the BZ vectors.
Issue is circumvented by removing n solitons with trivial BZ vectors and then re-adding the
same solitons with more general BZ vectors.
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Review: rod structure & inverse scattering method

The inverse scattering method

  New solution

remove solitons
(trivial BZ vectors)Seed G0

e2ν0

G’0
re-add solitons
(general BZ vectors) G

e2ν

Known solution

Notes: – The seed solution need not be regular.
– Might need to impose some constraints to generate a regular solution.
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Inverse scattering construction of a dipole ring

The set-up

Consider 5D Einstein-Maxwell-dilaton theory, governed by the action

S =
1

16πGN

∫
d5x

√
−g
(

R −
1
2
∂µφ∂

µφ−
1
4

e−aφFµνFµν
)
, with a =

2
√

2
√

3
.

The five-dimensional theory naturally supports
magnetic one-branes and dipole black rings.

Can define a local charge by Q = 1
4π

∫
S2 F .

from [Emparan, 2004]

This action can also be obtained from 6D vacuum gravity by performing a Kaluza-Klein
reduction on S1 using the ansatz

ds2
6 = e

φ√
6 ds2

5 + e
−

√
3φ√
2 (dw + A)2.

The sixth dimension is parametrized by w and F = dA.

Strategy: Construct the dipole ring solution of this theory by applying the ISM in 6D
and then reducing to 5D.
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Inverse scattering construction of a dipole ring

Seed metric [JVR, Rodriguez & Virmani, 2011]

The seed is taken to be the following static (diagonal) metric:

t

Φ

Ψ

w

a0 a1 a2 a4 a3

ds2
6 = (G0)ij dx i dx j + e2ν0 (dρ2 + dz2) , G0 = diag

{
−
µ0

µ2
,
ρ2µ4

µ1µ3
,
µ1µ3

µ0
,
µ2

µ4

}
.

This solution is singular and not of direct physical interest, but satisfies det G0 = −ρ2.

The negative density (dashed) rod is included to facilitate adding the S1 angular
momentum to the ring. [Elvang & Figueras, 2007]

Novel ingredient: the finite rod along the KK direction allows the addition of dipole charge.
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Inverse scattering construction of a dipole ring

Soliton transformations [JVR, Rodriguez & Virmani, 2011]

t

Φ

Ψ

w

a0 a1 a2 a4 a3

We generate the 6D uplift of the dipole ring solution by a 2-soliton transformation:

1 Perform two 1-soliton transformations on the seed G0 to obtain G′0:
— remove an anti-soliton at z = a0 with trivial BZ vector (1, 0, 0, 0);
— remove a soliton at z = a4 with trivial BZ vector (0, 0, 0, 1).

2 Perform now a 2-soliton transformation on G′0 to obtain G:
— add an anti-soliton at z = a0 with BZ vector (1, 0, c1, 0);
— add a soliton at z = a4 with BZ vector (0, c2, 0, 1)

3 Construct e2ν . The result (G, e2ν) is the 6D solution we want.

Appropriately tuning c1 and c2 and KK reducing along the w direction we obtain the smooth 5D
dipole black ring solution of the theory under consideration.
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Inverse scattering construction of a dipole ring

Dipole black ring uplifted to 6D [JVR, Rodriguez & Virmani, 2011]

We arrive at a metric described by the following rod diagram:

t

Φ

Ψ

w

a1 a2 a3

H0,1,0,0L

H1,0,WΨ,0L

H0,1,0,WwL

H0,0,1,0L

Ωψ =

√
(a1 − a0)

2(a2 − a0)(a3 − a0)
,

Ωw =

√
2(a4 − a2)(a4 − a1)

(a3 − a4)
.

The parameter c1 must be fixed to avoid a divergence as z → a0 along the rod (−∞, a1].
Equally, c2 must be fixed so that the rod along w merges with the finite rod along φ.

The general solution has a conical deficit, but the balanced solution is regular.

Parameter counting:

#ai︸︷︷︸
5

+ #cj︸︷︷︸
2

− (translational invariance in z)︸ ︷︷ ︸
1

− (regularity conditions)︸ ︷︷ ︸
2

− (balance condition)︸ ︷︷ ︸
1

= 3

These 3 parameters encode the mass, one angular momentum and the dipole charge.
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Inverse scattering construction of a dipole ring

Dipole black ring solution [JVR, Rodriguez & Virmani, 2011]

To confirm we have indeed reproduced the dipole ring solution we have to:

1 Convert from Weyl canonical coordinates (ρ, z) to ring coordinates (x , y);

2 Perform the dimensional reduction on S1 down to 5D.

Result

We obtain precise agreement with the 5D line element ds2
5 , the vector potential A and

the dilaton φ of [Emparan, 2004].

The correct bounds on the parameters are also recovered.
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Conclusion

Conclusion and Outlook

Summary: We have re-derived the dipole ring solution of 5D Einstein-Maxwell-dilaton
theory (with a specific coupling constant).

Take-home message: The ISM can be used to generate dipole charge.

Possible extensions: generating more general black rings in the above mentioned theory.

E.g., adding an independent rotation or multi-horizon solutions. (Work in progress.)

— Start with same seed but perform a 4-soliton transformation to generate dipole charge,
rotation on the S1 and rotation on the S2.

t

Φ

Ψ

w

a0 a1 a2 a4 a3

— “The going gets though”. . . All (kilo)metric components are non-vanishing.
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