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Hypothesis of Grand Unification

All forces and all matter become one at high energies regardless of how
different they behave at low energy (apart from gravity)
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QED

Quantum Electrodynamics (QED) is a Relativistic Quantum Field Theory describing the
electromagnetic interaction

Phenomena involving electrically charged particles interacting by photon exchange

Extremely well tested theory with a remarkable agreement with experiments (Lamb shift,
hyperfine splitting, cross sections... )

QED Lagrangian and covariant derivative

LQED = ψ
(
iγµ Dµ −m

)
ψ − 1

4
FµνFµν

= ψ
(
iγµ ∂µ −m

)
ψ − 1

4
FµνFµν − qeψγµ ψAµ︸ ︷︷ ︸

interaction term

,

Dµ = ∂µ + iqeAµ and Fµν = ∂µAν − ∂νAµ

e−

e+

Aµ

q

q

Local gauge invariance: redefinition of the fields at every point without changing the physics
LQED = L ′

QED

ψ → ψ ′ = exp(iQα(x))ψ
Aµ → A′

µ = Aµ −∂µ α(x)

Electromagnetic gauge (phase rotation α(x)) forms the abelian group U(1)Q
QED is a U(1) gauge theory
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QCD

Quantum Chromodinamics (QCD) is a Relativistic Quantum Field Theory describing the strong
interaction between quarks and gluons
Three kinds of charge (as opposed to one in QED) designated as ”colour charge”

Analogy with the three kinds of colours perceived by humans

QCD Lagrangian and covariant derivative

LQCD = ψ i

(
iγµ (Dµ

)
i j −mδi j

)
ψ j −

1
4

Fa
µνFaµν

(
Dµ
)

i j = ∂µ + ig3(T
a)i j Aa

µ

Aa
µ

qi

qj q′i

q′j

Local gauge invariance LQCD = L ′
QCD: U = exp(ig3αa(x)Ta)

U are 3×3 complex unitary matrices, −→ form a SU(3) group
[
Ta,Tb

]
= i f abcTc −→ Non-abelian or non-comutative algebra

Fa
µν = ∂µ Aa

ν −∂ν Aa
µ +g3 f abcAb

µ Ac
ν

Allows interactions between gauge fields (gluons) as opposed to QED eg: −g3 f abc∂µ Aa
ν AµbAνc

QCD is a non-abelian SU(3) gauge theory
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Weak Interactions and Electroweak Unification

Weak force responsible for radioactive decay and triggers stellar nucleosynthesis (via
β+ decay)
Phenomena involving the exchange of massive W and Z bosons
Electromagnetic and weak forces very different at ”everyday” low energy
Above ∼ 100 GeV (TUniverse > 1015 K) they merge/unify into a single electroweak force

Electroweak Lagrangian

LEW = Lscalar+
1
4

(
fµν f µν +Fk

µνFkµν
)
+Lmatter

Fk
µν = ∂µWk

ν − ∂νWk
µ +gε i jkWi

µW j
ν

fµν = ∂µBν − ∂νBµ

µ−

µ+

u

u

u

d

τ+

ντ

Z0

W+

Imposing local gauge invariance leads to a SU(2)L ⊗U(1)Y gauge theory

Left-handed fields are weakly interacting

Experiment tells us that weak bosons are massive! Is the theory actually gauge invariant?
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Electroweak Symmetry Breaking and the Higgs Mechanism

SU(2)L ⊗U(1)Y prediction of massless gauge bosons is not seen experimentally
Mass terms of the form M2

AAµAµ forbidden by gauge invariance
Explicit mass terms for fermions of the form Lmass=−m(ψLψR+ψRψL) also violate gauge
invariance

ψL and ψR transform differently under SU(2)L
Problem of mass generation solved by the presence of a scalar filed φ , the Higgs field

Expected to have a non-zero value in the vacuum state ( min energy configuration of the Universe )
Higgs particle present in the vacuum in contrast with all other fundamental particles

Lscalar = (Dµ φ)†(Dµ φ
)
−V (φ) , with φ =

(
φ+

φ0

)
SU(2)L doublet

〈φ〉0 =

(
0
v

)
(vacuum)

Radial perturbations around the vacuum, φ =

(
0

h+ v

)
, generate mass of all particles

Electroweak symmetry is broken surviving a remnant one, QED
SU(2)L ⊗U(1)Y →U(1)Q
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Evolution of Couplings with Scale

From LSM one obtains coupled non-linear equations
cannot be solved analytical

SM observables calculated using perturbation theory
Series expansion in the couplings, ga,yf , · · ·
Pictorially done with Feynman diagrams

’Loop’ diagrams −→ unobserved internal interaction with radiation and re-absorption of a particle

Loop diagrams represent integrals that depend on the energy scale Q
Different choices of Q −→ different values of the couplings
Variation described by the Renormalization Group Equations (RGE)

Evolution of a coupling

Q
dg
dQ

= β (g)

β (g)−→ β -function may depend on other
couplings, β (ga,yf , · · · )

= +

f

f

Aa
µ

+ +

φ†

φ+ higher orders

The couplings and masses of GSM ”run” with Q
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The Hierarchy Problem

Motivations for Physics Beyond the Standard Model

For many years the SM proved to be the most accurate description of
Particle Physics, however theoretical and experimental disagreements:

Neutrino oscillations require mass −→ not predicted by the SM

Flavour symmetry not explained

Incompatible with the theory of General Relativity

No dark matter candidates

Hierarchy problem
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The Hierarchy Problem

The Higgs field expected to have a non-zero value, v, in the vacuum

V(φ) = −µ2φ†φ +λ
(
φ†φ

)2
minimization→ |φ |2 = µ2

2|λ | ≡
v2

2

〈φ〉0 =
1√
2

(
0
v

)
(vacuum)

Scale of SM masses set by v

Radial perturbations around the vacuum, h(x): φ =

(
0

h+v√
2

)

V (φ)−→ 1
2

(
2µ2)h∗h

Higgs boson mass mh0 = 2µ2

Just tree level so far...
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The Hierarchy Problem

The SM is a renormalizable theory
One can extend virtual momenta in loop integrals all the way to infinity

New physics must be revealed at least at the Plank scale: Qp ∼ 1019 GeV

One-loop corrections to the Higgs mass:

∆1mh0 =
λ 2

f

8π2

(
−Λ2+3m2

f log
Λ2

m2
f

−2m2
f

)

Λ is a cut-off scale (new physics expected)

h0

f

f

Correction to the Higgs mass will be quadratically divergent: m2
h0,phy

= m2
h0 +∆1mh0︸ ︷︷ ︸

∼−Λ2

mh0,phy at the order of QEW

If new physics only at Qp −→ Remarkable cancellation needed (not natural)

Less severe if new physics at the low scale (500 GeV - few TeV)
How to eliminate quadratic divergences?
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The Hierarchy Problem

The Example of QED

Aµ

e+

e−

Aµ

e−

Vacuum Polarization

Correction to the photon mass
Gauge invariance forbids photon
mass
Divergent but only
logarithmically

Electron Self Energy

Correction to the electron mass
Chiral symmetry for fermions as
their mass goes to zero
Divergent but only
logarithmically

Gauge and Chiral symmetries remove dangerous divergences

SUSY associates...
to each fermion a scalar (sfermion) −→ Chiral supermultiplet
to each gauge boson a fermion (gaugino) −→ Gauge /vector supermultiplet
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The Hierarchy Problem

Quadratic Divergence Cancellation

Consider a 1-loop correction to the Higgs propagator due to a scalar S:

Extra correction term to the Higgs mass:

∆2mh0 =
λS

16π2

(
Λ2−m2

Slog
Λ2+m2

S

m2
S

)

∆mh0 = ∆1mh0 +∆2mh0 =
1

8π2

[(
λS

2
−λ 2

f

)
Λ2+ · · ·

] h0

S

Supersymmetry (SUSY) requires nb = nf in each supermultiplet
λS
2 = λ 2

f

Dangerous quadratic divergences cancelled −→ hierarchy stabilized

Only Logarithmic dependence −→ SUSY solves the SM hierarchy problem
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The Hierarchy Problem

Supersymmetry

SUSY is a global space time symmetry

Contains the Poincaré algebra Pµ , Mµν

If realized as a local symmetry −→ Pµ vary from point to point
Local SUSY is a theory of gravity −→ SUPERGRAVITY
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Motivations for GUTs: The Idea of Grand Unification

The Standard Model of Strong and Electroweak interactions is described
by the gauge group GSM= SU(3)C⊗SU(2)L⊗U(1)Y

The main idea is to embed GSM into a larger simple group

SU(N), SO(2N), SO(2N), SO(2N+1), Sp2N, G2, F4, E6, E7, E8

We will consider standard SU(5), SO(10) and E6 candidates
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The RG Evolution of the Gauge Couplings in the SM: GSM Charges

Matter fields spin 1
2 (3 copies)

QL = (3,2) 1
6

u†
R = (3,1)− 2

3

d†
R = (3,1) 1

3

L = (1,2)− 1
2

e†
R = (1,1)1

Higgs field spin 0 (1 copy)

Hu = (1,2) 1
2

Gauge fields spin 1

g= (8,1)0

W1,2,3 = (1,3)0

B= (1,1)0

Use these fields to study the RG evolution of the electroweak and strong gauge
couplings

At one-loop order: d
dt

(
α−1

i

)
=− bi

2π with (b1,b2,b3) = (44/10,−19/6,−7)

bN = 11
3 N− 1

3nf − 1
6ns for a generic SU(N)

b1 =− 2
3 ∑

f

X2
f −

1
3 ∑

S

X2
S for a generic U(1)X

αi =
g2

i
4π (linear running)

t = log Q
Q0

António Pestana Morais Constraining GUTs using the First and Second Generation Sfermion Masses



Outline
The Standard Model of Particle Physics

Motivations for Physics Beyond the Standard Model
Motivations for Grand Unification

SU(5), SO(10) and E6 Grand Unification
First and Second Generation Sfermion Masses

Higgs and Third Generation Sfermion Soft Masses
Conclusions

The Idea of Grand Unification
The RG Evolution of the Gauge Couplings in the SM
The MSSM RG Evolution
Some desirable properties for SUSY GUTs

5 10 15 20
Log10

Q

1GeV

10

20

30

40

50

60

Αi
-1

SUH3Lc

SUH2LL

UH1LY

Precise EW measurements dictate that gauge couplings do not meet within the
SM
Need something else to overcome this problem...
This is an other motivation to go beyond the SM
What if we include SUSY?
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The MSSM RG Evolution: GSM Charges

The minimal extension of the particle content of the SM includes:

Squarks and Sleptons
spin 0 (3 copies)

Q̃L = (3,2) 1
6

ũ∗R= (3,1)− 2
3

d̃∗
R= (3,1) 1

3

L̃ = (1,2)− 1
2

ẽ∗R = (1,1)1

An extra Higgs doublet
spin 0 (1 copy)

Hd = (1,2)− 1
2

Higgsinos fields
spin 1

2 (1 copy)

H̃u = (1,2) 1
2

H̃d = (1,2)− 1
2

Gauginos fields
spin 1

2

g̃= (8,1)0

W̃1,2,3 = (1,3)0

B̃= (1,1)0

Use this extended particle content to study the RG flow of the
electroweak and strong gauge couplings
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Running of the gauge couplings in the MSSM

UH1LY

SUH2LL

SUH3Lc
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Αi
-1

α−1
i (t) = α−1

i (tG)+
bi

2π
(tG− t) bi =

{
(44/10,−19/6,−7) SM
(33/5,1,−3) MSSM

The gauge couplings tend to unify at a scale QGUT ∼ 1.2×1016GeV

SUSY mass thresholds in the interval QSUSY∼ 250GeVand 1TeV

Good reason towards Supersymmetric Grand Unified Theories
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Some desirable properties for SUSY GUTs

Flavor symmetry → Fermion mass hierarchy

Natural explanation for neutrino masses (See-Saw mechanism)

Charge quantization

Proton stability

Dark matter candidates (LSP)

SUSY GUTs: natural extension of the SM
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SU(5) Grand Unification —SU(5) Group Theory

SU(5) is the simplest unification picture embedding GSM

SU(5)⊃ SU(3)C⊗SU(2)L⊗U(1)Y

The SU(5) operators U are 5×5 complex matrices such that U†U = 1 and
det(U) = 1
They may be represented by U = exp(iTaωa) with Ta the generators

Gauge transformations on the fields
ψi → ψ ′

i = Uψi

Aµ → A′
µ = UAµ U−1− i

g5
∂µ UU−1

Tr (Ta) = 0, T†
a = Ta, a= 1, ...24

The generators obey the commutation relation [Ta,Tb] = i fabcTc

Choose the usual normalization Tr (TaTb) =
1
2δab
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The 24 SU(5) generators

SU(3)C : Ta3 =

(
1
2λa3 0

0 0

)
, a3 = 1, ...,8

SU(2)L : Ta2 =

(
0 0
0 1

2σa2−20

)
, a2 = 21,22,23

U(1)Y : T24 =

√
3
5




− 1
3 0 0 0 0

0 − 1
3 0 0 0

0 0 − 1
3 0 0

0 0 0 1
2 0

0 0 0 0 1
2




And 12 off-diagonal generators Ta4 with a4 = 9, ...,20

12 super-heavy gauge bosons −→ mediate proton decay
Highly suppressed by the GUT scale

The unified SU(5) covariant derivative may be written as D5
µ = ∂µ + igUTaGa

µ

gUTaGa
µ ⊃ gsTa3Ga3

µ +gTa2Wa2
µ +g′

√
5
3T24Bµ
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SU(5) embedding of GSM: The 10, 5, 5′ and 5
′
reps

The matter content of GSM is unified in a 5⊕ 10

The two Higgs SU(2) doublets are unified in a 5′ and a 5
′

Doublet-triplet splitting problem assumed to be solved by some mechanism (e.g.
orbifold compactification) [Kawamura, 0012125]

The 5 superpartners

5 → (1,2)− 1
2
⊕
(
3,1
)

1
3
= L̃⊕ d̃∗

R

The 10 superpartners

10 → (1,1)1⊕
(
3,1
)
− 2

3
⊕ (3,2) 1

6
=

ẽ∗R⊕ ũ∗R⊕ Q̃L

The 5′ Higgs

5′ → (1,2) 1
2
⊕
(
3,1
)
− 1

3
= Hu⊕ (Tu)

The 5′ Higgs

5
′ → (1,2)− 1

2
⊕
(
3,1
)

1
3
= Hd ⊕ (Td)
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SO(10) embedding of GSM: The 16 and 10 reps

Maximal subalgebra of SO(10)

SO(10)→ SU(5)⊗U(1)x

16 and 10 branching rules

10 → 52⊕ 5−2

16 → 10−1⊕ 53⊕ 1−5

From the branching rules of SU(5) down to GSM we see that:

10 contains the SU(5) Higgs doublets and the colored Higgs triplets

16 contains the full SU(5) superpartners and an extra singlet 15

Extra abelian gauge group U(1)x

Right handed sneutrino

15 → (1,1)(0, 5) = ÑR

A SO(10) GUT naturally contains a right-handed neutrino/sneutrino
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E6 embedding of GSM: The E6SSM27 representation

We consider as E6 SUSY GUTs the exceptional supersymmetric model E6SSM
[King, Moretti and Nevzorov, 0510419, 0701064] [Athron, King, Miller, Moretti and Nevzorov, 0904.2169]

Maximal subalgebra of E6

E6 → SO(10)⊗U(1)ψ

Branching rule for 27

27 → 14⊕10−2⊕161

E6SSMpredicts additional matter

Ordinary squarks and sleptons

101 → (3,2)( 1
6 , 1)⊕

(
3,1
)
(− 2

3 , 1)⊕ (1,1)(1, 1) =

QL ⊕ ũ∗R⊕ ẽ∗R

52 → (1,2)(− 1
2 , 2)⊕

(
3,1
)
( 1

3 , 2) = L⊕ d̃∗
R

10 → (1,1)(0, 0) = ÑR

Higgs and exotics

5−3 → (1,2)(− 1
2 , −3)⊕

(
3,1
)
( 1

3 , −3) = H1⊕D

5−2 → (1,2)( 1
2 , −2)⊕ (3,1)(− 1

3 , −2) = H2⊕D

15 → (1,1)(0, 5) = S
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Soft Supersymmetry Breaking

If SUSY exists it has to be an exact symmetry spontaneously broken (SSB) in a Hidden
sector [Martin, 9709356]

Many breaking scenarios proposed

Parametrize the unknown realistic scenario of SSB

Introduce terms that explicitly break supersymmetry

Couplings should be of positive mass dimensions −→ renormalizable theory , and given at the
low scale

SOFT TERMS

Generic soft SUSY Lagrangian

Lso f t = −
(

1
2

Maλ aλ a+
1
6

ai jkφiφ jφk+
1
2

bi j φiφ j + t iφi

)
+h.c.−

(
m2)i

j φ j∗φi
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First and Second Generation Masses: 1-Loop RGEs
[Ananthanarayan and Pandita, 0412125]

Squark and Slepton Soft Masses RGE

16π2
dm2

Q̃L
dt =− 32

3 g2
3M2

3 −6g2
2M2

2 − 2
15g2

1M2
1 +

1
5g2

1S

16π2 dm2
ũR

dt =− 32
3 g2

3M2
3 − 32

15g2
1M2

1 − 4
5g2

1S

16π2
dm2

d̃R
dt =− 32

3 g2
3M2

3 − 8
15g2

1M2
1 +

2
5g2

1S

16π2
dm2

L̃L
dt =−6g2

2M2
2 − 6

5g2
1M2

1 − 3
5g2

1S

16π2 dm2
ẽR

dt =− 24
5 g2

1M2
1 +

6
5g2

1S

No Yukawa and trilinear couplings contributions → possible to solve analytically
t ≡ log(Q/Q0), M1,2,3 running gaugino masses and g1,2,3 are de usual GSM gauge couplings

S is a D-term contribution

S≡ Tr(Ym2) = m2
Hu

−m2
Hd

+ ∑
generations

(
m2

Q̃L
−2m2

ũR
+m2

d̃R
−m2

L̃L
+m2

ẽR

)

dS
dt =

66
5

α1
4π S⇒ S(t) = S(tG)

α1(t)
α1(tG)
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Solution of the RGEs

Squark and Slepton Running Masses

m2
ũL
(t) = m2

Q̃L
(tG)+C3+C2+

1
36C1+∆uL − 1

5K

m2
d̃L
(t) = m2

Q̃L
(tG)+C3+C2+

1
36C1+∆dL − 1

5K

m2
ũR
(t) = m2

ũR
(tG)+C3+

4
9C1+∆uR+

4
5K

m2
d̃R
(t) = m2

d̃R
(tG)+C3+

1
9C1+∆dR− 2

5K

m2
ẽL
(t) = m2

L̃L
(tG)+C2+

1
4C1+∆eL +

3
5K

m2
ν̃L
(t) = m2

L̃L
(tG)+C2+

1
4C1+∆νL +

3
5K

m2
ẽR
(t) = m2

ẽR
(tG)+C1+∆eR− 6

5K

Ci(t) = M2
i (tG)

[
Ai

α2
i (tG)−α2

i (t)

α2
i (tG)

]
= M2

i (tG)ci(t), i = 1,2,3 [Ananthanarayana and Pandita, 0706.2560]

K(t) = 1
2b1

S(tG)
(

1− α1(t)
α1(tG)

)

∆φ = M2
Z(T3φ −Qφ sin2 θW)cos2β

SU(2)L ⊗U(1)Y →U(1)Q D-term
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Universal Boundary Conditions

Common scalar mass m2
Q̃L
(tG) = m2

ũR
(tG) = m2

d̃R
(tG) = m2

L̃L
(tG) = m2

ẽR
(tG) = m2

0

m2
Hu

= m2
Hd

Common gaugino mass M2
1(tG) = M2

2(tG) = M2
3(tG) = M2

1/2

Since S(tG) = 0, then S(t) is identically 0 at all scales, hence K = 0
We are left with three unknowns: m0, M1/2 and cos2β

Can be determined by measuring three sfermion masses, eg. ũL, d̃L and ẽR




M2
ũL

M2
d̃L

M2
ẽR


=




1 cũL δũL

1 cd̃L
δd̃L

1 cẽR δẽR






m2
0

M2
1/2

cos2β




∆φ ≡ δφ cos2β
cũL ≡ c3(MũL)+ c2(MũL)+

1
36c1(MũL)

cd̃L
≡ c3(Md̃L

)+ c2(Md̃L
)+ 1

36c1(Md̃L
)

cũL ≡ c1(MẽR)

Once m0, M1/2 and cos2β determined through MũL , Md̃L
and MẽR, it is possible

to obtain all the other low scale masses
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SU(5) Boundary Conditions
Common m10 for matter in a 10

m2
Q̃L
(tG) = m2

ũR
(tG) = m2

ẽR
(tG) = m2

10

Common m5 for matter in a 5

m2
L̃L
(tG) = m2

d̃R
(tG) = m2

5

Common gaugino mass M1/2

M2
1(tG) = M2

2(tG) = M2
3(tG) = M2

1/2

Higgs soft masses unrelated

m2
Hu
(tG) = m2

5′ and m2
Hd
(tG) = m2

5′

S(tG) = m2
5′ −m2

5′
⇒ K 6= 0

Five unkowns: m5, m10, M1/2, cos2β and K
Can be determined by measuring five sfermion masses, eg. ũL, d̃L, ẽR, ũR and d̃R




M2
ũL

M2
d̃L

M2
ẽR

M2
ũR

M2
d̃R




=




0 1 cũL δũL − 1
5

0 1 cd̃L
δd̃L

− 1
5

0 1 cẽR δẽR − 6
5

0 1 cũR δũR
4
5

1 0 cd̃R
δd̃R

− 2
5







m2
5

m2
10

M2
1/2

cos2β
K




cũR ≡ c3(MũR)+
4
9c1(MũR)

cd̃R
≡ c3(Md̃R

)+ 1
9c1(Md̃R

)
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SO(10) Boundary Conditions

Breaking SO(10)→ SU(5)⊗U(1)x → GSM the rank is reduced from 5 to 4
D-term contributions from the additional U(1)x of the form ∆m2

a =−∑
k

Qkag2
kDk

[Kolda and Martin, 9503445]

Consider that the Higgs are embedded in a 10 of SO(10)

Common sfermion mass m16

m2
Q̃L
(tG) = m2

ũR
(tG) = m2

ẽR
(tG) = m2

16 +g2
10D

m2
L̃L
(tG) = m2

d̃R
(tG) = m2

16 −3g2
10D

m2
Ñe
(tG) = m2

16 +5g2
10D

Common Higgs mass m10

m2
H̃u
(tG) = m2

10 −2g2
10D

m2
H̃d
(tG) = m2

10 +2g2
10D

S(tG) =−4g2
10D

Five unknowns: m16, g2
10D, M1/2, cos2β and K

Can be determined by measuring five sfermion masses, eg. ũL, d̃L, ẽR, ũR and d̃R
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


M2
ũL

M2
d̃L

M2
ẽR

M2
ũR

M2
d̃R




=




1 1 cũL δũL − 1
5

1 1 cd̃L
δd̃L

− 1
5

1 1 cẽR δẽR − 6
5

1 1 cũR δũR
4
5

1 −3 cd̃R
δd̃R

− 2
5







m2
16

g2
10D

M2
1/2

cos2β
K




K(t) =
−4g2

10D
2b1

(
1− α1(t)

α1(tG)

)

Masses are further constrained throught this relation

More explicitly and given that X5 = cd̃L
− cẽR + cũL − cũR

K =
1

6X5(sin2 θW −1)

[
3cũR(M

2
d̃L
−2M2

ẽR
+M2

ũL
)+3(cd̃L

+ cũL) (M
2
ẽR
−M2

ũR
)

−3cẽR(M
2
d̃L
+M2

ũL
−2M2

ũR
)+2

(
cũR(M

2
d̃L
+3M2

ẽR
−4M2

ũL
)− cd̃L

(4M2
ẽR
−5M2

ũL
+M2

ũR
)

+cũL(−5M2
d̃L
+M2

ẽR
+4M2

ũR
)+ cẽR(4M2

d̃L
−M2

ũL
−3M2

ũR
)
)

sin2 θW

]

g2
10D =

1
20X5

[
−cũR(2M2

d̃L
−5M2

d̃R
+M2

ẽR
+2M2

ũL
)− cẽR(−3M2

d̃L
+5M2

d̃R
−3M2

ũL
+M2

ũR
)

+(cd̃L
+ cũL)(5M2

d̃R
−3M2

ẽR
−2M2

ũR
)+5cd̃R

(M2
d̃L
−M2

ẽR
+M2

ũL
−M2

ũR
)
]

This was obtained for a particular choice of the Higgs in a 10-plet
If Higgs in a 120, 126 or combinations? Different constraints?
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E6SSMFirst and Second Generation Sfermion Masses

Extended GSM⊗U(1)N at the low scale
RGEs with an extra S′ D-term contribution, additional fields contributing to the loops and
a D-term from U(1)N breaking

Solution of the E6SSM1-Loop RGEs

m2
ũL
(t)=m2

Q̃L
(tG)+CE6

3 +CE6
2 + 1

36CE6
1 + 1

4C′
1+∆uL − 1

5K− 1
20K′−g′21 D

m2
d̃L
(t)=m2

Q̃L
(tG)+CE6

3 +CE6
2 + 1

36CE6
1 + 1

4C′
1+∆dL − 1

5K− 1
20K′−g′21 D

m2
ũR
(t) = m2

ũR
(tG)+CE6

3 + 4
9CE6

1 + 1
4C′

1+∆uR+
4
5K− 1

20K′−g′21 D

m2
d̃R
(t) = m2

d̃R
(tG)+CE6

3 + 1
9CE6

1 +C′
1+∆dR− 2

5K− 1
10K′−2g′21 D

m2
ẽL
(t) = m2

L̃L
(tG)+CE6

2 + 1
4CE6

1 C′
1+∆eL +

3
5K − 1

10K′−2g′21 D

m2
ν̃L
(t) = m2

L̃L
(tG)+CE6

2 + 1
4CE6

1 C′
1+∆νL +

3
5K− 1

10K′−2g′21 D

m2
ẽR
(t) = m2

ẽR
(tG)+CE6

1 +C′
1+∆eR− 6

5K− 1
20K′−g′21 D
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CE6
i (t) = M2

i (tG)
[
AE6

i
α2

i (tG)−α2
i (t)

α2
i (tG)

]
= M2

i (tG)c
E6
i (t)

DN = 1
20K′+g′21 D

Common scalar mass m2
Q̃L
(tG) = m2

ũR
(tG) = m2

d̃R
(tG) = m2

L̃L
(tG) = m2

ẽR
(tG) = m2

27

Five unknowns: m27, DN, M1/2, cos2β and K
Can be determined by measuring five sfermion masses, eg. ũL, d̃L, ẽR, ũR and d̃R




M2
ũL

M2
d̃L

M2
ẽR

M2
ũR

M2
d̃R




=




1 cũL δũL − 1
5 −1

1 cd̃L
δd̃L

− 1
5 −1

1 cẽR δẽR − 6
5 −1

1 cũR δũR
4
5 −1

1 cd̃R
δd̃R

− 2
5 −2







m2
27

M2
1/2

cos2β
K

DN




Note that D =
(
QN

d v2
d +QN

u v2
u+QN

s s2
)

If able to measure s2 one can determine K′

S(tG) =−m2
H ′ +m2

H
′

S′(tG) = 4m2
H ′ −4m2

H
′
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Sum Rules
From the solution of the 1-loop RGEs, we obtain the following sum rules:

Sum rules for SU(5) and SO(10)

M2
ũL
+M2

d̃L
−M2

ũR
−M2

ẽR
=C3+2C2− 25

18C1 = 5.0M2
1/2 (GeV)2

1
2

(
M2

ũL
+M2

d̃L

)
+M2

d̃R
−M2

ẽR
− 1

2

(
M2

ẽL
+M2

ν̃L

)
= 2C3− 10

9 C1 = 8.1M2
1/2 (GeV)2

Sum rules for the E6SSM

M2
ũL
+M2

d̃L
−M2

ũR
−M2

ẽR
=CE6

3 +2CE6
2 − 25

18C
E6
1 − 3

4C′
1 = 2.8M2

1/2 (GeV)2

1
2

(
M2

ũL
+M2

d̃L

)
+M2

d̃R
−M2

ẽR
− 1

2

(
M2

ẽL
+M2

ν̃L

)
= 2CE6

3 − 10
9 CE6

1 − 3
4C′

1 = 4.4M2
1/2 (GeV)2

Values for Q= 1 TeV

António Pestana Morais Constraining GUTs using the First and Second Generation Sfermion Masses



Outline
The Standard Model of Particle Physics

Motivations for Physics Beyond the Standard Model
Motivations for Grand Unification

SU(5), SO(10) and E6 Grand Unification
First and Second Generation Sfermion Masses

Higgs and Third Generation Sfermion Soft Masses
Conclusions

1-Loop RGE
SU(5) Constraints
SO(10) Constraints
Physical Mass Predictions

Higgs and Third Generation Sfermion Soft Masses: 1-Loop RGE

Third Generation and Higgs Soft Masses RGE

16π2
dm2

Q̃3
dt = Xt +Xb− 32

3 g2
3M2

3 −6g2
2M2

2 − 2
15g2

1M2
1 +

1
5g2

1S

16π2 dm2
t̃R

dt = 2Xt − 32
3 g2

3M2
3 − 32

15g2
1M2

1 − 4
5g2

1S

16π2
dm2

b̃R
dt = 2Xb− 32

3 g2
3M2

3 − 8
15g2

1M2
1 +

2
5g2

1S

16π2
dm2

L̃3
dt = Xτ −6g2

2M2
2 − 6

5g2
1M2

1 − 3
5g2

1S

16π2 dm2
τ̃R

dt = 2Xτ − 24
5 g2

1M2
1 +

6
5g2

1S

16π2
dm2

Ñ3
dt = 2Xν

16π2 dm2
Hd

dt = 3Xb+Xτ −6g2
2M2

2 − 6
5g2

1M2
1 − 3

5g2
1S

16π2 dm2
Hu

dt = 3Xt +Xτ −6g2
2M2

2 − 6
5g2

1M2
1 +

3
5g2

1S

Xt = 2y2
t

(
m2

Hu
+m2

Q̃3
+m2

t̃R
+A2

t

)

Xb = 2y2
b

(
m2

Hd
+m2

Q̃3
+m2

b̃R
+A2

b

)
Xτ = 2y2

τ

(
m2

Hd
+m2

L̃3
+m2

τ̃R
+A2

τ

)

Xν = 2y2
ν

(
m2

Hu
+m2

L̃3
+m2

Ñ3
+A2

ν

)
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m2
ϕ depend on the trilinear Ai and Yukawa yi couplings

Not possible to solve analytically

Use the first and second generation inputs to reduce the param eter space

Scan over different regions of the parameter space by choosing an ”illustrative” set of
measurable masses (GeV)

Slepton Mass Set 1 Set 2 Set 3
MũL 1550.210 1951.322 3550.2
Md̃L

1552.080 1952.868 3551.0
MẽR 700.0 1430.0 2700.0
MũR 1500.0 1898.0 3500.0
Md̃R

1550.0 1600.0 3600.0

Scan over the parameter space

Ensure vacuum stability

Charge and Colour Breaking Minima and Unbounded from below conditions [Casas, Lleyda
and Munoz, 9507294]
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SU(5) Constraints

From the first two generations:

Input Parameter Set 1 Set 2 Set 3
m5 (GeV) 781.7 893.7 2856.6
m10 (GeV) 654.8 1385.0 2690.5
M1/2 (GeV) 655.8 647.3 1129.3

tanβ 6.1 8.0 4.6
K (GeV)2 3.413 ×103 -52.679 ×103 113.83 ×103

MẽL (GeV) 915.3 967.2 2819.6
Mν̃L

(GeV) 912.0 964.0 2818.5

All ingredients for Yukawa couplings

Recall K(t) = 1
2b1

S(tG)
(

1− α1(t)
α1(tG)

)

S(tG) = m2
5′ −m2

5′

Consider universal trilinear couplings at tG, A0

Two unknowns left, A0 and one Higgs mass, say m5′
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(
A0,m5

′
)

-Plane Scan

Scan over the
(

A0,m5
′
)

-plane

−1000GeV≤ A0 ≤ 1000GeV
10GeV≤ m

5
′ ≤ 5000GeV

Apply CCB, UFB and EW constraints

-1000 -500 0 500 1000
A0HGeVL0

500

1000

1500

2000

2500

3000

m5'HGeVL

(a) Set 1

-1000 -500 0 500 1000
A0HGeVL0

500

1000

1500

2000

2500

3000

m5'HGeVL

(b) Set 2

-1000 -500 0 500 1000
A0HGeVL0

500

1000

1500

2000

2500

3000

m5'HGeVL

(c) Set 3

A significant region of the parameter space is excluded
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SO(10) Constraints
Recall the consistency relation K(t) =

−4g2
10D

2b1

(
1− α1(t)

α1(tG)

)

Results in a constraint on the d̃R mass

Input Parameter Set 1 Set 2 Set 3
Md̃R

SU(5) 1550.0 1600.0 3600.0
Md̃R

SO(10) 1518.0 1565.5 3830.2

Input Parameter Set 1 Set 2 Set 3
m16 (GeV) 669.9 1268.9 2811.6

g2
10D (GeV)2 -19.971 ×103 308.263 ×103 -666.100 ×103

mÑ3
(tG) (GeV) 590.6 1775.2 2138.8

MẽL (GeV) 860.0 909.0 3108.1
Mν̃L (GeV) 856.3 905.5 3107.2

m2
Ñ3
(tG) = m2

16+5g2
10D

M1/2, tanβ and K remain the same as for SU(5)
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(A0,m10)-Plane Scan

We are left with two unknowns, A0 and the common Higgs mass m10

same procedure as for SU(5)

-1000 -500 0 500 1000
A0HGeVL0

500

1000

1500

2000

2500

3000

m10HGeVL

(a) Set 1

-1000 -500 0 500 1000
A0HGeVL0

500

1000

1500

2000

2500

3000

m10HGeVL

(b) Set 2

-1000 -500 0 500 1000
A0HGeVL0

500

1000

1500

2000

2500

3000

m10HGeVL

(c) Set 3

RH sneutrinos in the running from Q∼ 1012 GeV to QGUT :
m10 scale slightly different than m5

′ for SU(5)
Mainly due to the influence of Md̃R
Contribution of MÑ3

is very tiny
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Physical Mass Predictions
As a consequence of the Goldstone Theorem , when spontaneous symmetry breaking occurs:

nphy Higgs= nreal DOF−nGoldstones

SU(2)L ⊗U(1)Y →U(1)Q

3 Goldstones

SM 1 Higgs doublet → 4 real DOF
4−3= 1 physical Higgs mass eigenstate

2 Higgs doublet models → 8 real DOF
8−3= 5 physical Higgs mass eigenstates:

h0, H0, H±, A0

m2
A0 =

2b
sin2β

, m2
H± = m2

W +m2
A0

m2
h0, H0 =

1
2

{
m2

Z +m2
A0 ∓

[(
m2

Z +m2
A0

)2−4m2
A0m

2
Z cos2 2β

] 1
2
}

∆m2
h0 =

3
4π2

m4
t

v2

[
log

m2
t̃

m2
t
+

(At − µ cotβ )2

m2
t̃

(
1− (At − µ cotβ )2

12m2
t̃

)]

m2
t̃1, t̃2

=
1
2

[(
m2

Q̃3
+m2

t̃R
+2m2

t +∆uL +∆uR

)
∓
√(

m2
Q̃3

−m2
t̃R
+∆uL −∆uR

)2
+4m2

t (At − µ cotβ )2

]

António Pestana Morais Constraining GUTs using the First and Second Generation Sfermion Masses



Outline
The Standard Model of Particle Physics

Motivations for Physics Beyond the Standard Model
Motivations for Grand Unification

SU(5), SO(10) and E6 Grand Unification
First and Second Generation Sfermion Masses

Higgs and Third Generation Sfermion Soft Masses
Conclusions

1-Loop RGE
SU(5) Constraints
SO(10) Constraints
Physical Mass Predictions

mh0 vs A0
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Figure: SU(5)
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Figure: SO(10)
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Figure: (a) and (b) −→ SU(5). (c) and (d) −→ SO(10)
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Figure: (a) and (b) −→ SU(5). (c) and (d) −→ SO(10)
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Figure: (a) and (b) −→ SU(5). (c) and (d) −→ SO(10)
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mτ̃1 vs mτ̃2
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Figure: (a) and (b) −→ SU(5). (c) and (d) −→ SO(10)
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Figure: Set 2 SO(10)
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Conclusions

Overview of the SM interactions

Discussed motivations for BSM physics

Motivations for Grand Unification

Overview of standard GUT representations

Studied the first and second generation sfermion mass spectrum with
GUT constraints

Third generation analysis constrained by the first and second
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E6 embedding of GSM

QCD BACKUP

Local gauge invariance LQCD = L ′
QCD: define Aµ = TaAa

µ and U = exp(ig3αa(x)Ta)

ψi → ψ ′
i = Uψi

Aµ → A′
µ = UAµ U−1− i

g3
∂µ UU−1

U are 3×3 complex unitary matrices, UU† = 1, and det(U) = 1−→ form a SU(3) group
Ta are the SU(3)C generators and quarks placed in SU(3)C triplets whereas leptons are
singlets
Generic SU(N) group has N2−1 generators −→ SU(3)C has 32−1= 8 generators −→ 8
gluons[
Ta,Tb

]
= i f abcTc −→ Non-abelian or non-comutative algebra

Fa
µν = ∂µ Aa

ν −∂ν Aa
µ +g3 f abcAb

µ Ac
ν

Allows interactions between gauge fields (gluons) as opposed to QED eg:
−g3 f abc∂µ Aa

ν AµbAνc

QCD is a non-abelian SU(3) gauge theory
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E6 embedding of GSM

Electroweak Unification BACKUP

Electroweak Lagrangian

LEW = Lscalar+
1
4

(
fµν f µν +Fk

µνFkµν
)
+Lmatter

Fk
µν = ∂µWk

ν − ∂νWk
µ +gε i jkWi

µW j
ν

fµν = ∂µBν − ∂νBµ

i, j,k = 1, ...,3

µ−

µ+

u

u

u

d

τ+

ντ

Z0

W+

Imposing local gauge invariance leads to a SU(2)L ⊗U(1)Y gauge theory
Left-handed quarks and leptons placed in SU(2)L doublets −→ weakly interacting
Right-handed are SU(2)L singlets −→ non weakly interacting
1 U(1)Y generator designated as weak hypercharge Y −→ 1 gauge boson Bµ

22−1= 3 SU(2)L generators σ1, σ2,σ3 ( Pauli matrices) −→ 3 gauge bosons W1,2,3
µ

Experiment tells us that weak bosons are massive! Is the theory actually gauge invariant?
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E6 embedding of GSM

Electroweak Symmetry Breaking and the Higgs Mechanism

SU(2)L ⊗U(1)Y prediction of massless gauge bosons is not seen experimentally
Mass terms of the form M2

AAµAν forbidden by gauge invariance
Explicit mass terms for fermions of the form Lmass=−m(ψLψR+ψRψL) also violate gauge
invariance

ψL and ψR transform differently under SU(2)L
Problem of mass generation solved by the presence of a scalar filed φ , the Higgs field

Expected to have a non-zero value in the vacuum state ( min energy configuration of the Universe )
Higgs particle present in the vacuum in contrast with all other fundamental particles

Lscalar = (Dµ φ)†(Dµ φ
)
−V (φ) , with φ =

(
φ+

φ0

)
SU(2)L doublet

Dµ = ∂µ +
ig′

2
BµY+

ig
2

σkWk
µ

V(φ) = −µ2φ†φ +λ
(
φ†φ

)2
minimization→ |φ |2 = µ2

2|λ | ≡
v2

2

〈φ〉0 =
1√
2

(
0
v

)
(vacuum)

Y and σk don’t leave the vacuum invariant
Linear combination Q= 1

2

(
σ3+Y

)
does −→ Electric Charge

Electroweak symmetry is broken surviving a remnant one, QED
SU(2)L ⊗U(1)Y →U(1)Q
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E6 embedding of GSM

Mass generation:

Consider radial perturbations around the vacuum, h(x), and redefine it: φ =

(
0

h+v√
2

)

Plug it in LEW and look for quadratic terms

(Dµφ)†(Dµφ
)
−→ 1

4
(gv)2

(
W1

µW1µ +W2
µW2µ)+ 1

4
v2(gW3

µ −g′Bµ
)2

1st term gives the mass of the W+ and W− bosons, MW = 1
2gv∼ 81 GeV

2nd term need to be diagonalized

Eigenvalues M1 = 0 and M2 = 1
2v
√

g2+g′2

M1 is the mass(less) of the photon and M2 = MZ ∼ 91GeV

V (φ) −→ 1
2

(
2µ2)h∗h

Identify the Higgs boson mass mh0 = 2µ2

Lmatter−→ yeLLφeR+ · · ·+Lint = − 1√
2
(yev)

︸ ︷︷ ︸
electron mass

eLeR+ · · ·

Identify the Fermion masses mf = yf
v√
2

yf −→ Yukawa couplings: strength of interaction with the Higgs field
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E6 embedding of GSM

E6 embedding of GSM: The E6SSM27 representation

We consider as E6 SUSY GUTs the exceptional supersymmetric model E6SSM
[King, Moretti and Nevzorov, 0510419, 0701064] [Athron, King, Miller, Moretti and Nevzorov, 0904.2169]

Extended GSM⊗U(1)N at the low scale
The extra U(1)N breaks close to the EW scale by the vev of an Higgs type singlet

Maximal subalgebra of E6

E6 → SO(10)⊗U(1)ψ

Branching rule for 27

27 →
(

1; 4
2
√

6

)
⊕
(

10; −2
2
√

6

)
⊕
(

16; 1
2
√

6

)

SO(10)→ SU(5)⊗U(1)χ

1 →
(

1; 1
2
√

10

)

10 →
(

5; 2
2
√

10

)
⊕
(

5; −2
2
√

10

)

16→
(

10; −1
2
√

10

)
⊕
(

5; 3
2
√

10

)
⊕
(

1; −5
2
√

10

)

Branching of a 27-plet with normalized
√

40QN

27 → 101⊕ 52⊕ 5−3⊕ 5−2⊕ 15⊕ 10

To preserve unification needs two extra SU(2) doublets H ′ and H ′ from
incomplete 27′ and 27′

New doublet-25-plet splitting
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E6 embedding of GSM

E6 −→ SU(5)⊗U(1)N −→ GSM⊗U(1)N
We can then identify the E6SSMmatter as

Ordinary squarks and sleptons

101 → (3,2)( 1
6 , 1)⊕

(
3,1
)
(− 2

3 , 1)⊕ (1,1)(1, 1) =

QL ⊕ ũ∗R⊕ ẽ∗R

52 → (1,2)(− 1
2 , 2)⊕

(
3,1
)
( 1

3 , 2) = L⊕ d̃∗
R

10 → (1,1)(0, 0) = ÑR

Higgs and exotics

5−3 → (1,2)(− 1
2 , −3)⊕

(
3,1
)
( 1

3 , −3) = H1⊕D

5−2 → (1,2)( 1
2 , −2)⊕ (3,1)(− 1

3 , −2) = H2⊕D

15 → (1,1)(0, 5) = S

Extra U(1)N predicts a Z′ boson by its breaking at the soft SUSY scale
ÑR does not participate in gauge interactions =⇒ gain mass at some intermediate high scale
(1011−14 GeV)
Predicts exotic quarks D and D
Unify ordinary matter, exotic matter and Higgs in a spinor representation
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