
CONSTRAINED HAMILTONIAN SYSTEMS SUMMARY

The purpose of this short course is to present the canonical programme developed by Dirac to
deal with the quantization of constrained systems and systems with gauge degrees of freedom. We
will, however, restrict our study to the classical formalism, and in particular its application to field
theories like Maxwell’s electromagnetism and Einstein’s General Relativity.

We start with an action integral

S =

∫

Ldt , (1)

where the Lagrangian L(q, q̇) is a function of N coordinates qn and their velocities q̇n = dqn/dt.
Extremizing the action (1) yields the Euler-Lagrange equations of motion

δS = 0 ⇒
d

dt

(

∂L

∂q̇n

)

=
∂L

∂qn

. (2)

Defining the canonical momentum variable pn by

pn =
∂L

∂q̇n

, (3)

we can write the action integral as

S =

∫

dt pnq̇n − H , (4)

where
H = pnq̇n − L (5)

is the Hamiltonian. In many cases, we assume that the momenta are independent functions of the
velocities. However, in many cases of interest, this is not true. There exist M relations connecting
the momentum variables, of the form

φm(q, p) = 0 , m = 1, · · · ,M, (6)

called the primary constraints of the Hamiltonian formalism.
Variation of the Hamiltonian (5) gives

δH = δpnq̇n + pnδq̇n −
∂L

∂qn

δqn −
∂L

∂q̇n

δq̇n (7)

= q̇nδpn −
∂L

∂qn

δqn , (8)

which means H = H(q, p) is a function of the q’s and p’s only. Eq. (8) holds for variations δq, δp
subject to the constraints (6), i.e. the q’s and the p’s cannot be varied independently. But we know
how to deal with constraints of this type. We add to the Lagrangian some linear combination of
the constraints

S =

∫

pnq̇n − H(q, p) + umφm , (9)

where um are unknown coefficients. Then δS = 0 yields

q̇n =
∂H

∂pn

+ um

∂φm

∂pn

(10)

ṗn = −
∂H

∂qn

− um

∂φm

∂qn

. (11)
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CONSTRAINED HAMILTONIAN SYSTEMS SUMMARY

These are a generalization of the usual Hamilton’s equations of motions, a set of first order differ-
ential equations describing how the variables q and p vary in time. But now they involve unknown
coefficients.

Before proceeding, we should define the Poisson bracket { , }, which acts on functions of the
canonical variables (q, p):

{f, g} =
∂f

∂qn

∂g

∂pn

−
∂f

∂pn

∂g

∂qn

. (implicit sum) (12)

You should check for yourself the following properties of the Poisson bracket:

• antisymmetry;

• linearity;

• product law (Leibniz rule);

• Jacobi identity.

For any g(q, p), we have
ġ = {g,H} + um{g, φm} . (13)

The equations of motion are all written concisely in the Poisson bracket formalism. Defined in
this way, the Poisson bracket is only applicable to functions of (q, p). Let’s extend this definition
somewhat. Suppose a Poisson bracket exists for any two quantities, and has all the above properties.
Then we may write

ġ = {g,H + umφm} = {g,H} + {g, um}φm + um{g, φm} (14)

= {g,H} + um{g, φm} . (15)

The term {g, um} is not defined, but it is multiplied by φm = 0.
It is of uttermost importance that the Poisson brackets are all worked out before making use of

the constraints, otherwise we will get a wrong result. To remind us of this rule, we will use weak
equality signs for the constraints

φm ≈ 0 . (16)

Hence
ġ ≈ {g,HT } , HT = H + umφm . (17)

Now let’s examine some consequences of these equations of motion. In the first place, there will be
some consistency conditions. The constraints must be satisfied at all times

φ̇m = {φm,H} + um′{φm, φm′} ≈ 0 . (18)

We have here a number of consistency conditions, one for each value of m. Supposing they don’t
lead to inconsistencies like 1 = 0 (which would mean the Lagrangian was ill-defined), they can be
divided into three kinds:

1. it reduces to 0 = 0, i.e. it is identically satisfied with the help of the primary constraints;

2. it reduces to an equation independent of the u’s, i.e. χ(q, p) = 0;

3. it does not reduce to any of the previous cases, hence imposes a conditions on um.
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The second kind means we have yet another constraint on the Hamiltonian variables. Such con-
straints are called secondary constraints. They differ from the primary ones in that those are a
consequence of the definition of pn, whereas secondary constraints make use of the Lagrangian
equations of motion.

Each secondary constraint gives rise to another consistency condition of type (18), which can
be of any of the three kinds. We carry on like this until we have exhausted all the consistency
conditions. We will be left with a number of secondary constraints of type 2 and a number of
conditions on the u’s of type 3.

Secondary constraints will for many purposes be treated in the same footing as primary con-
straints. We write

φk ≈ 0 , k = M + 1, · · · ,M + K , where K is the number of secondary constraints, (19)

φj ≈ 0 , j = 1, · · · ,M + K ≡ J , the total number of constraints. (20)

The remaining equations are
{φj ,H} + um′{φj , φm} ≈ 0 . (21)

We look for a solution um = Um(q, p), which is not unique since we can add any solution of the
homogeneous equation

um{φj , φm} ≈ 0 , (22)

say Vm(q, p). Then the most general solution is

um = Um + vaVam , a = 1, · · · , A , (23)

where A is the number of solutions of (22) and the v’s are arbitrary.
The total Hamiltonian of the theory can be written as

HT = H + Umφm + vaVamφm (24)

= H ′ + vaφa , (25)

H ′ = H + Umφm , (26)

φa = Vamφm . (27)

We still have the equation of motion ġ ≈ {g,HT }.
We have satisfied all the consistency conditions of the theory and we still have arbitrary coeffi-

cients va, which can be further allowed to depend on time. These arbitrary functions of time mean
we are using a mathematical framework containing arbitrary features. The dynamical variables at
future times are not completely determined by the initial dynamical variables: the general solution
will contain arbitrary functions.

First- and second-class quantities

A dynamical variable R(q, p) is said to be first-class if it has zero Poisson bracket with all the φ’s,

{R,φj} ≈ 0 , j = 1, · · · , J . (28)

Otherwise, R is second-class. If R is first-class, it must be strongly equal to some linear combination
of φ’s, as anything that is weakly zero must be strongly equal to some linear function of the φ’s
(the φ’s are, by definition, the only quantities which are weakly zero). So

{R,φj} = rjj′φj′ . (29)
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Theorem: The Poisson bracket of two first-class quantities is also first-class.
Proof: exercise.

The division of constraints into primary/secondary is independent from the division into first-
/second-class.

Note that H ′ and φa are both first class (proof: exercise). The final situation is that the
total Hamiltonian is the sum of a first-class Hamiltonian plus a linear combination of the primary,
first-class constraints.

Gauge degrees of freedom

The number of independent arbitrary functions of time occurring in the general solution is equal
to the number of values which the suffix a takes on, which is equal to the number of independent
primary first-class constraints, since all of them are included in the sum HT = H ′ + vaφa. The
initial physical state of a system is completely specified by the q’s and p’s . We don’t need the
coefficients va.

For a general dynamical variable g with initial state g0, its value at time δt is

g(δt) = g0 + ġδt = g0 + {g,HT }δt = g0 + δt

(

{g,H ′} + va{g, φa}
)

. (30)

Since the v’s are arbitrary, we could have chosen a different set. The difference would be

∆g(δt) = δt(va − v′a){g, φa} (31)

= εa{g, φa} , εa = δt(va − v′a) is a small arbitrary number. (32)

We can change all our Hamiltonian variables according to this rule, and the new Hamiltonian
variables will describe the same state. This amounts to an infinitesimal contact transformation
with generating function εaφa.

Primary first-class constraints, as generating functions of infinitesimal contact transformations,

lead to changes in the q’s and p’s that do not affect the physical state.

If we apply a second contact transformation with generating function γa′φa′ ,

g′ = g0 + εa{g, φa} + γa′{g + εa{g, φa}, φa′} . (33)

In reverse order,
g′ = g0 + γa′{g, φa′} + εa{g + γa′{g, φa′}, φa} . (34)

Using the Jacobi identity, the difference is

∆g = εaγa′{g, {φa, φa′}} . (35)

This ∆g must also correspond to a change in the q’s and p’s that doesn’t affect the physical state.
Thus {φa, φa′} is a generating function of an infinitesimal contact transformation that still causes
no change to the physical state.

Now note that since the φa are first class, their Poisson brackets are weakly zero, hence strongly
equal to some linear combination of the φ’s, which must be first-class by the Theorem (but can be
secondary). Hence the final result is that those transformations of the dynamical variables which
do not change the physical state are infinitesimal contact transformations in which the generating
function is a primary first-class or possibly secondary first-class constraint.
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Dirac bracket

Consider a simple example of two second-class constraints: q1 ≈ 0, p1 ≈ 0. They are second-class
because {q1, p1} = 1 6= 0. It is clear that the degree of freedom 1 is not of any importance. We can
just discard it and work with the other degrees of freedom. That means a different definition for
the Poisson bracket:

{f, g} =
∂f

∂qr

∂g

∂pr

−
∂f

∂pr

∂g

∂qr

, r = 2, · · · , N . (36)

Let’s generalize a bit. Suppose we have p1 ≈ 0, q1 = f(qr, pr). We could drop the number 1 degree
of freedom if we substitute f(qr, pr) for q1 in the Hamiltonian and all other constraints. Again we
could work with (36).

The existence of second-class constraints means that there are some degrees of freedom which
are not physically relevant. We have to set up a new Poisson bracket which picks out only those
degrees of freedom which are physically important. So let’s go back to the general theory.

We have a number of constraints φj ≈ 0, some first-class, some second-class. We try to take
linear combinations of them so has to have as many constraints as possible brought into the first-
class. Those that remain in the second-class will be denoted by

χs , s = 1, · · · , S . (37)

Consider the antisymmetric matrix
∆ss′ = {χs, χs′} . (38)

It is non-singular1 and since any antisymmetric matrix with an odd number of rows and columns
has zero determinant, we conclude that the number S of second-class constraints must be even. We
can define its inverse by

∆ss′{χs′ , χs′′} = δss′′ . (39)

We now define the Dirac bracket

{f, g}∗ = {f, g} − {f, χs}Λss′{χs′ , g} , (40)

which has the same properties of the usual Poisson bracket. Then notice that

{g,HT }
∗ = {g,HT } − {g, χs}Λss′{χs′ ,HT } ≈ {g,HT } . (41)

Hence
ġ ≈ {g,HT }

∗ . (42)

Also, for any f(q, p),

{f, χs′′}
∗ = {f, χs′′} − {f, χs}∆ss′{χs′ , χs′′} = {f, χs′′} − {f, χs}δss′′ = 0 . (43)

Thus we can put the χ’s equal to zero before working new Dirac brackets, i.e.

χs = 0 (strong equality) . (44)

1See [1] for a proof.
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Observables

For unconstrained systems, observables are defined as phase space functions which correspond
to physical quantities. For constrained systems, a measurable quantity should be a function on
the constraint surface only. But, nevertheless, we can deal with functions defined on the whole
phase space as representations of observables. We say that two such functions represent the same
observable if they are weakly equal. However, only quantities invariant under gauge transformations
are measurable. As gauge transformations are generated by first-class constraints, a function is
invariant if its Poisson brackets with all first-class constraints vanish weakly or, equivalently, if its
Dirac brackets with all constraints vanish weakly.

Functions which are constant in time are called conserved charges, and must obey

{Q,H0}
∗ ≈ 0 . (45)

They generate symmetry transformations

δF = {F,Q}∗ , (46)

which map solutions onto new solutions (using Jacobi’s identity, one can show that if q(t) is a
solution, so is q(t) + δq(t)). In this formalism, all constraints are representations of the trivial
conserved charge Q ≈ 0.

Counting Degrees of Freedom

We conclude with an observation about the number of degrees of freedom. For unconstrained
systems, it is just half the dimension of the phase space (equivalently, one usually says that a
system with N degrees of freedom has a 2N -dimensional phase space). For constrained systems,
the phase space is restricted by the primary and secondary constraints, and by the number of
gauge transformations which represent unphysical degrees of freedom. Since they are nothing but
the primary constraints,

# DoF =
1

2

(

# phase space variables −2 # 1st-class constraints − # 2nd-class constraints
)

.

(47)
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