C-++ Exercises Mini Workshop

May 16, 2012

Abstract

This is the set of practical exercises we will cover in the Mini Workshop of the week 14th of May to the 18th
of May. Please file appropriately each exercise solution in a folder for each exercise, and comment your code
extensively, so that you can reuse it in the future. Being organised can save you a lot of time when you are
working on multiple projects and need to repeat similar computing tasks.

1 Review exercises

The aim of this section is to cover a representative set of small exercises so that you can review most of the basic
data types, control structures etc...

1.1 Input/Output, built in data types and control structures

1. .
Here is part of a program that begins by having the user input three integers:
#include <iostream>
using namespace std;
int mainQ)
{
int a, b, c, sum;
cout << "Enter three integers: ";
Complete the program so that when the user executes it and types in 2, 3, and 7, this
is what appears on the screen:
Enter three integers: 2 3 7
Twice the sum of your integers plus 7 is 31 - bye!
2.

The purpose of this exercise is to help you become familiar with some of the error
messages produced by your compiler. You can expect some error messages to be
helpful and others to be less so. Correct each syntax error.

// Full of syntax mistakes.

#include <iostreem>
using namespace st;

int main()

{
int a=1, b=2, c =3,
cout << a+b *<<" =a+b";
cout <<"\nc = " << cC;

Write a program that finds the maximum and minimum integer value of a sequence
of inputted integers. The program should first prompt the user for how many values
will be entered. The program should print this value out and ask the user to confirm
this value. If the user fails to confirm the value, she must enter a new value.

Short-circuit evaluation is an important feature. The following code illustrates its
importance in a typical situation:

w -

// Compute the roots of: a * x * x + b * x + C

cin »>> a >> b >> c;

assert(a != @);

discr=b *b - 4 % a * c;

if (discr == @)
rootl = root2 = -b / (2 * a);

else if ((discr > Q) && (sqrt_discr = sqrt(discr))) {
rootl = (-b + sqrt_discr) / (2 * a);
root2 = (-b - sqrt_discr) / (2 * a);

else if (discr < 0) { // complex roots

The sqrt () function would fail on negative values, and short-circuit evaluation pro-
tects the program from this error. Complete this program by having it compute
roots and print them out for the following values:

a=10, b=4.0, c=3.0
a=10,b=2.0,c=1.0
a=10,b=10, c=1.0

Use the complex library to provide the C++ complex number type, and rewrite the
preceding root-finding program to print out roots as complex numbers when appro-
priate. use #include <complex>.

In the main program, declare such variables as

complex<double> rootl, root2; // template type

Use sizeof to determine the number of bytes each of the following requires on your
local system: bool, char, short, int, Tong, float, double, and Tong double. Also
do this for the enumerated types

enum bounds { 1b = -1, ub = 511 };
enum suit { clubs, diamonds, hearts, spades };

Write a program to convert from Celsius to Fahrenheit. The program should use
integer values and print integer values that are rounded. Recall that zero Celsius is
32 degrees Fahrenheit and that each degree Celsius is 1.8 degrees Fahrenheit.

' .'Write a program that accepts either Celsius or Fahrenheit and produces the other
value as output. For example, input 0C, output 32F; input 212F, output 100C.

9.

10.

11.

12.

13.

Silnphfy the following code:

for (sum =i =@, j =2, k=14+j; 1 <10 || k < 15;
++i, ++3j, ++k)
sum += (i < j)? k : 1;
Remember that comma expressions are sequences of left-to-right evaluations, with
each comma-separated subexpression evaluated in strict order.

.The following code prints 100 random numbers:

int main()

{
int how_many = 100;

cout << "Print " << how_many

n n

<< random integers." << endl;
for (int i = @; i < how_many; ++1i)
cout << rand() << '"\t';
cout << endl;

}

Add code that determines average, maximum, and minimum values generated. Note
that the rand() function is found in <cstdlib>

Alter the previous program to ask the user how many numbers should be generated.
Have this be an outer loop. Exit this program when the user answers with zero or a
negative number.

The constant RAND_MAX is the largest integer that rand () generates. Use RAND_MAX/
2 to decide whether a random number is to be heads or tails. Generate 1,000 ran-
domly generated heads and tails. Print out the ratio of heads to tails. Is this a rea-
sonable test to see whether rand () works correctly? Print out the size of the longest
series of heads thrown in a row.

Write a program which generates 2D random numbers uniformly on a square of unit length. Use a variable
to hold the frequency number of points at the n_th try that hit the inside of the unit circle of same radius
(what’s the most efficient way of doing this?). Define a const variable in your code and input the value of
m with 10 digits of precision. Compare the result of the frequency obtained above with the value of 7 by
printing out. Attempt to change the value of the const that holds the value of 7 and try to understand the
error message.

Write a program which reads integers and returns their inverse. Include a continue statement which prints
a warning whenever zero is entered and avoids evaluation. Test also what happens if you do not out the
continue statement. Does your program crash? Try entering a number close to 0 in scientific notation with
powers increasingly more negative. What happens now?

Create a header file .h. In this file, declare a group of functions by varying the argument list and return values
from among the following: void, char, int, float. Now create a .cpp file that includes your header file
and creates definitions for all of these functions. Each definition should simply print out the function name,
argument list and return type so you know it’s been called. Create a second .cpp file including the header
and defines the int main() function and contains calls to all of the functions. Compile and run.

Library types

1. Write a program which reads a text of words into a vector of strings ignoring punctuation, computes histograms

with the relative frequency of word lengths and outputs the results in a two column format. Download texts
in different languages and use the program to create data files with the statistics for different languages. Plot
the results.

. Repeat the last exercise to produce frequency of vowels per word.

. Repeat exercise 1 and compute the average size of subsequent groups of words in groups from 2 to 10. Plot

the results.

1.3

1.

Arrays and pointers

Write a program which reads an n by n matrix. You should use dynamically memory allocation for the matrix.
Dynamically allocate and create all submatrices from the top right corner, and compute their traces. Return

the results.

. Write a program where you enter by hand an array of doubles. Then write code which creates a vector of
vectors, where each vector holds all possibe sub-vectors from the first element of the array.

Functions

Write the function double maximum(double a[], int n). This is a function that
finds the maximum of the elements of an array of double of size n.

.The problem with using void* is that it cannot be dereferenced. Thus, to perform
useful work on a generic pointer, one must cast it to a standard working type, such
as a char¥*. Write and test

void* memcpy(void* sl, const void* s2, unsigned n)

{

char® from = s2, *to = sl; // uses char type

(Uwe F. Mayer) Rewrite

void order(int& p, int& q)

{
int temp = p;
if (p>a) {
p =4;
q = temp;
}
¥

to make it more efficient. This can be done by reordering some of the operations.
This can be important in an application that calls this simple routine repeatedly.

Write a function

double findmin(double fcn(double),

double x0, // initial point
double x1, // terminal point
double dincr, // increment

double& xmin)

that returns the value fcn (xmin), where f(xmin) is the minimum value of fcn(x)
in the interval (x@, x1), evaluated at increments of incr, and xmin is an argument
producing that minimum. Rewrite the function findmin() so that the range (0, 1.0)
and the increment 0.00001 are used by default, unless explicitly passed in. Note that
to do this, the preceding function arguments should be used but in a different order.
Why?

Write a function

double plot(double y[], double fcn(double),
double x@ = 0.0, double x1 = 1.0,
double incr = 0.001)

that computes y[i] = fcn(x3), where x4 is in the interval (x@, x1), evaluated at
increments of incr. Use the defaults (0, 1.0) and an increment of 0.001, with y
expected to have 1,000 elements.

Redo the previous exercise to use vector<double> vy.

6. .
Write a function findzero() that finds xzero, the value of x for which the function
fcn(x) is closest to zero in a specified interval. The function findzero() should

have the same arguments as findmin(). Again write it to have standard default val-
ues for its parameters.

Using the functions written in the previous exercise, simulate a gambler making
1,000 bets of one dollar at odds of 35 to 1. Notice that the real odds should be 36 to
1. This favors the casino running the roulette wheel and is why casinos are so profit-
able. The gambler starts with 1,000 dollars. Print out how much the gambler has at
the end of her 1,000 bets. Consider this one trial. Now do this 1,000 times and see
what the average bankroll is after each 1,000 bets. Does this conform with what you
expected?

When a gambler persists at a game that favors the casino, it is likely that the gam-
bler will lose his shirt—this is called gambler’s ruin. Give your gambler 100 dollars.
Let him keep betting until he runs out of money. Count how many bets this took.
Notice that if you are very unlucky, this might take only 100 bets. Store this number
in an array, call it ruinLength[]. Do this for 1,000 trials and see what the mini-
mum, maximum, and average length to ruin was. Notice that by using a structured
programming approach, you should be able to easily design your program and com-
plete this exercise.

Pointers to char strings are by convention terminated with the value 0. The follow-
ing function implements a string-equality test. Note its use of pointer arithmetic.
The construct *s1++ means “dereference the pointer s1, and after using this value
in the expression, add sizeof(char) to its pointer value.” Here is streq () from
Section 3.22, Core Language ADT: char® String, on page 117:

bool streq(const char® sl, const char#® s2)

while (*sl1l != 0 && *s2 != Q)
if (*sl++ = *s2+4)
return false;
return (*sl == *s2);

}

Write and test a function

bool streq_n(const char* sl, const char* s2, int n);

that returns true if the first n characters of the two strings are the same and that
otherwise returns false. It should also return true if the strings are shorter than n
characters and equal.

When testing this code, use a technique called boundary condition testing. For each
control structure in the code, such as an if statement or a while loop, test right at
these boundaries that the code works properly. For example, on a small piece of
data the loop should execute the correct number of times. It easiest to check on an
empty or length 1 string in this example. It is observed in practice that most mis-
takes are made at these boundaries.

Reimplement the preceding functions using array notation, both in the header and
the body of the code. So the header for streq() is

bool streq(char s1[], char s2[]);

10. Write a recursive function which takes as argument a reference to a dynamically allocated matrix with di-
mension N, dynamically allocates N matrices with dimension N-1 and call itself to compute the determinant
using the laplacian development.

2 Mini-projects

The aim of this section is to cover some mini-projects which are more elaborate and require gluing together various
of the examples above.

2.1 Functions applications: passing by reference, default arguments.

Write a function which takes as argument a 1D range and a pointer to a 1D function with a double argument and
a pointer to void to hold parameters. Such function will attempt to find a root of the function in the interval by
bracketing up to a minimum bracketing width or until a given accuracy is achieved. You should also include a
warning if the bracketing interval is invalid. Use:

e 1 source file for defining the algorithm,
e 1 source file to define test functions, another source file for the main function and tests.

e You should also define header files and include them where appropriate.

2.2 Monte Carlo Integration

Monte Carlo integration is a powerful method which allows for fast evaluation of multi-dimensional integrals, when
traditional quadrature methods may be slow. It is based on the following very simple approximation:

Al 7
n 5
Iz/dyF(y)’i WF(‘%)

x i=1

where ¥ is an arbitrarily defined region of integration, F'(y) is a function of the higher dimensional space point. This
version of the approximation consists on randomly generating N points uniformly in a hypercubic-region containing
the region of integration, and summing up the values of the function at the points that are accepted, with weight 1
and the ones that are rejected with weigh 0. Then we multiply by the volume of the hypercubic region and divide
by the total number of points generated.

1. Write a general purpose MC integrator based on this rule, which takes as argument a pointer to the function
F, a pointer to a function which returns 1 inside the region of integration, and zero outside, the hypercubic
region, and the number of points to generate.

2. Write a program to test your integrator for several functions. In particular, choose examples where the
regions of integration cannot be solved for explicitely. This is another advantage of the MC method, besides
its superior speed in high dimensionality spaces.

2.3 RK4 integration
The Runge-Kutta method of numerically advancing set on n ordinary differential equations for the functions y;(t),

dy;
dt

= f’L (ta y])
uses the approximation that given y;(t,) = yf"), and a step 6t = h, then

B o1 1 1 1
Y(t, +h) =y =y)+6k}+§k$+§kf+6k;‘+0(h6)

with
ki = hfi(tn’yj(-n))
k2 = hfi(t, + %hyj(") + %k})
o= hfi(te + %h ™ %kf—)
K2 = hfilta + byl + kD)

1. Write a generic routine to step the solution given as arguments the initial condition y("), the function which

i
computes f; and the stepsize, and which returns the new point yZ("H).

2. Write a program which applies your previous program to some simple cases for which you know the exact
solution (1 dimensional and 2 dimensional examples). Think of a way to estimating errors and return the
solution with an error estimate.

2.4 Rewrite previous projects with GSL.

