
C++ Exercises Mini Workshop

May 16, 2012

Abstract

This is the set of practical exercises we will cover in the Mini Workshop of the week 14th of May to the 18th

of May. Please �le appropriately each exercise solution in a folder for each exercise, and comment your code

extensively, so that you can reuse it in the future. Being organised can save you a lot of time when you are

working on multiple projects and need to repeat similar computing tasks.

1 Review exercises

The aim of this section is to cover a representative set of small exercises so that you can review most of the basic
data types, control structures etc...

1.1 Input/Output, built in data types and control structures

1. .

2. .

1



3. .

4. .

5. .

6. .

7. .

8. .

2



9. .

10. .

11. Write a program which generates 2D random numbers uniformly on a square of unit length. Use a variable
to hold the frequency number of points at the n_th try that hit the inside of the unit circle of same radius
(what's the most e�cient way of doing this?). De�ne a const variable in your code and input the value of
π with 10 digits of precision. Compare the result of the frequency obtained above with the value of π by
printing out. Attempt to change the value of the const that holds the value of π and try to understand the
error message.

12. Write a program which reads integers and returns their inverse. Include a continue statement which prints
a warning whenever zero is entered and avoids evaluation. Test also what happens if you do not out the
continue statement. Does your program crash? Try entering a number close to 0 in scienti�c notation with
powers increasingly more negative. What happens now?

13. Create a header �le .h. In this �le, declare a group of functions by varying the argument list and return values
from among the following: void, char, int, float. Now create a .cpp �le that includes your header �le
and creates de�nitions for all of these functions. Each de�nition should simply print out the function name,
argument list and return type so you know it's been called. Create a second .cpp �le including the header
and de�nes the int main() function and contains calls to all of the functions. Compile and run.

1.2 Library types

1. Write a program which reads a text of words into a vector of strings ignoring punctuation, computes histograms
with the relative frequency of word lengths and outputs the results in a two column format. Download texts
in di�erent languages and use the program to create data �les with the statistics for di�erent languages. Plot
the results.

2. Repeat the last exercise to produce frequency of vowels per word.

3. Repeat exercise 1 and compute the average size of subsequent groups of words in groups from 2 to 10. Plot
the results.

3



1.3 Arrays and pointers

1. Write a program which reads an n by n matrix. You should use dynamically memory allocation for the matrix.
Dynamically allocate and create all submatrices from the top right corner, and compute their traces. Return
the results.

2. Write a program where you enter by hand an array of doubles. Then write code which creates a vector of
vectors, where each vector holds all possibe sub-vectors from the �rst element of the array.

1.4 Functions

1. .

2. .

3. .

4. .

5. .

4



6. .

7. .

8. .

9. .

10. Write a recursive function which takes as argument a reference to a dynamically allocated matrix with di-
mension N, dynamically allocates N matrices with dimension N-1 and call itself to compute the determinant
using the laplacian development.

2 Mini-projects

The aim of this section is to cover some mini-projects which are more elaborate and require gluing together various
of the examples above.

5



2.1 Functions applications: passing by reference, default arguments.

Write a function which takes as argument a 1D range and a pointer to a 1D function with a double argument and
a pointer to void to hold parameters. Such function will attempt to �nd a root of the function in the interval by
bracketing up to a minimum bracketing width or until a given accuracy is achieved. You should also include a
warning if the bracketing interval is invalid. Use:

• 1 source �le for de�ning the algorithm,

• 1 source �le to de�ne test functions, another source �le for the main function and tests.

• You should also de�ne header �les and include them where appropriate.

2.2 Monte Carlo Integration

Monte Carlo integration is a powerful method which allows for fast evaluation of multi-dimensional integrals, when
traditional quadrature methods may be slow. It is based on the following very simple approximation:

I =

ˆ
Σ

dny F (y) '
N∑
i=1

VΣ

N
F (yi)

where Σ is an arbitrarily de�ned region of integration, F (y) is a function of the higher dimensional space point. This
version of the approximation consists on randomly generating N points uniformly in a hypercubic-region containing
the region of integration, and summing up the values of the function at the points that are accepted, with weight 1
and the ones that are rejected with weigh 0. Then we multiply by the volume of the hypercubic region and divide
by the total number of points generated.

1. Write a general purpose MC integrator based on this rule, which takes as argument a pointer to the function
F , a pointer to a function which returns 1 inside the region of integration, and zero outside, the hypercubic
region, and the number of points to generate.

2. Write a program to test your integrator for several functions. In particular, choose examples where the
regions of integration cannot be solved for explicitely. This is another advantage of the MC method, besides
its superior speed in high dimensionality spaces.

2.3 RK4 integration

The Runge-Kutta method of numerically advancing set on n ordinary di�erential equations for the functions yi(t),

dyi
dt

= fi(t, yj)

uses the approximation that given yi(tn) ≡ y(n)
i , and a step δt ≡ h, then

y(tn + h) ≡ y(n+1)
i = y

(n)
i +

1

6
k1
i +

1

3
k2
i +

1

2
k3
i +

1

6
k4
i +O(h6)

with

k1
i ≡ hfi(tn, y

(n)
j )

k2
i ≡ hfi(tn +

1

2
h, y

(n)
j +

1

2
k1
j )

k3
i ≡ hfi(tn +

1

2
h, y

(n)
j +

1

2
k2
j )

k2
i ≡ hfi(tn + h, y

(n)
j + k3

j )

1. Write a generic routine to step the solution given as arguments the initial condition y
(n)
i , the function which

computes fi and the stepsize, and which returns the new point y
(n+1)
i .

2. Write a program which applies your previous program to some simple cases for which you know the exact
solution (1 dimensional and 2 dimensional examples). Think of a way to estimating errors and return the
solution with an error estimate.

6



2.4 Rewrite previous projects with GSL.

7


