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Objectives and Previous Results
• Construct exact solutions of radiating collapse in 5D

– Prove existence and stability of matched solutions

– Analyse gravitational wave emission

• Previous results in 4D with cylindrical symmetry

– Spatially homogeneous collapsing spacetimes matched to
Einstein-Rosen waves (Mena, Tod, PRD 2004)

• Previous results in higher dim with no radiation

– Dust, Perfect fluids inhomogeneous collapse to BH and NS
(Ghosh, Beecham, PRD 2001, Goswami, Joshi, PRD 2004)

– Generalised FLRW and LTB with Λ != 0 matched to Kottler
(Mena, Natário, Tod, AHP 2010)



Matching Problem

• To find a surface σ which is the matching boundary between
two spacetimes (M+, g+) and (M−, g−)

• Matching Conditions between (M±, g±)

– Equality of first and second fundamental forms on surface σ
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where "eα are generators of σ.

– If matching fluids with vacuum then p vanishes at boundary

– If dust fluid then boundary is ruled by geodesics



Radiating Collapse: the exterior

Bizoń-Chmaj-Schmidt metric (PRL, 2005)
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where A, δ and B are functions of t and r. The one-forms σi are

σ1 = cosψdθ + sin θ sinψdφ

σ2 = sinψdθ − sin θ cosψdφ

σ3 = dψ + cos θdφ

where θ, ψ, φ are Euler angles on S3.

• For B = 0 ones gets the 5D Schwarzschild solution.

• For B != 0 pure gravitational waves with radial symmetry



Radiating Collapse: the exterior

• The (4 + 1)-dimensional vacuum EFEs give
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• Together with the quasi-linear wave equation for B
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• Needs appropriate data at matching boundary σ



Numerical and Analytical Stability
(Bizon et al, PRL, 2005; Dafermos, Holzegel, ATMP, 2006)

Linearise around 5D Sch to get linear wave eqn for perturbation δB
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where A0 = 1 − 1/r2.

• Use tortoise coord and δB = u(x)e−ikt to get Schrödinger eqn

• Study quasinormal modes, plot least damped dominating mode

• Show local convergence to the Schwarschild solution

Nonlinear stability of 5D Sch: Let (hij , Kij) be data evolving to 5D
Sch. Then, for smooth triaxial Bianchi IX data sufficiently close to
(hij , Kij) in a suitable norm, the solution will stay close to 5D Sch.



Radiating Collapse: the interior

Eguchi-Hanson metric (PLB, 1978)
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with a constant. Metric is self-dual to the Euclidean EFEs.

The generalised FLRW metric built on this is

ds2− = −dt2 + R2(t)hEH

with the Einstein equations for a dust source reducing to

µR4 = µ0, Ṙ2 =
κµ0

6R2

• We show that this metric is matched to exterior radiating metric.



The Matching
• Match surfaces parametrized by σ+ : {t = t(τ), r = r(τ)}

σ− : {T = τ, ρ = ρ0}

• The matching conditions give t(τ), r(τ) and A, B,∇nB in terms
of the interior data at σ, e.g.
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• Data close to 5D Schwarzschild for small B and ∇nB
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• Can control ∇nB by controlling R through µ0 in the Friedman eq



The Matching
Theorem: Interior gives consistent data for exterior at comoving
TL surface. Local existence of radiating exterior is then guaranteed.
Boundary data can be chosen close to data for 5D Schwarzschild.
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Figure 1: Diagram for radiating collapse to a black hole in 5D.



Conclusions and the Future

• We have proved local existence of classes of exact models of
radiating gravitational collapse to BHs in 5D.

• Study the emission of gravitational radiation.

• Analyse global existence of solutions.

• Attempt at models of collapse to 5D rotating BHs?



Superenergy Tensor and Radiation
(Bel, 1958; Senovilla, CGQ, 2000; Garcia-Parrado, CGQ, 2008)

• Bel-Robinson tensor T abcd: analog of EMG energy-tensor

• Dimensions: square of energy density, also called superenergy
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where Caedf is the Weyl tensor. T abcd in 5D is totally
symmetric but not trace-free.

• Superenergy density seen by observer with ua (uaua = −1)
is ε = T abcduaubucud and the corresponding Poynting vector is

P a = −(δa
b + uaub)T bcdeucudue.



Superenergy jump across boundary
(with A. Garcia-Parrado and J. Senovilla, in progress)

• Jump of superenergy through matching boundary σ:
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• Superenergy of jump: Time variations in the discontinuity
of Weyl tensor caused by gravitational radiation through σ

T{C+ − C−}abcd

• To calculate this one needs second derivatives of metric at σ

• Work in progress!


