Gravitational radiation from shock wave collisions in higher dimensions

Marco Sampaio
msampaio@ua.pt

Aveiro University \& i $3 n$

December 20th, 2011

IV Black Hole Workshop

In collaboration with Flávio Coelho, Carlos Herdeiro \& Carmen Rebelo

Transplanckian collisions @ speed of light: Motivation

(1) Large extra dimensions (ADD) solve the hierarchy problem. Transplanckian scattering starts @ ~ 1 TeV in ADD.

Transplanckian collisions @ speed of light: Motivation

(1) Large extra dimensions (ADD) solve the hierarchy problem. Transplanckian scattering starts @ ~ 1 TeV in ADD.

(2) Predicts Newton law dev. $1 / r^{2} \rightarrow 1 / r^{2+n}$ \& KK gravitons. Compatible with experiments if $\mathbf{n}>\mathbf{2}$ for $\mathbf{M}_{\mathbf{4}+\mathbf{n}} \gtrsim 1 \mathrm{TeV}$.

Transplanckian collisions @ speed of light: Motivation

(1) Large extra dimensions (ADD) solve the hierarchy problem. Transplanckian scattering starts @ ~ 1 TeV in ADD.

$$
\mathbf{M}_{4}^{2}=\mathcal{V}_{n} \mathbf{M}_{(4+\mathbf{n})}^{\mathbf{n}+2}=10^{32} \mathrm{TeV}^{2}
$$

N. Arkani-Hamed et al. hep-th/9803315 (ADD)
(2) Predicts Newton law dev. $1 / r^{2} \rightarrow 1 / r^{2+n}$ \& KK gravitons. Compatible with experiments if $\mathbf{n}>\mathbf{2}$ for $\mathbf{M}_{\mathbf{4 + n}} \gtrsim 1 \mathrm{TeV}$.
(3 @ short distances/high energy, grav. strongest force $\Rightarrow \mathrm{BHs}$!

Transplanckian collisions @ speed of light: Motivation

(1) Large extra dimensions (ADD) solve the hierarchy problem. Transplanckian scattering starts @ $\sim 1 \mathrm{TeV}$ in ADD.

$$
\mathbf{M}_{4}^{2}=\mathcal{V}_{n} \mathbf{M}_{(4+\mathrm{n})}^{\mathrm{n}+2}=10^{32} \mathrm{TeV}^{2}
$$

N. Arkani-Hamed et al. hep-th/9803315 (ADD)
(2) Predicts Newton law dev. $1 / r^{2} \rightarrow 1 / r^{2+n}$ \& KK gravitons. Compatible with experiments if $\mathbf{n}>\mathbf{2}$ for $\mathbf{M}_{4+\mathbf{n}} \gtrsim 1 \mathrm{TeV}$.
(3 @ short distances/high energy, grav. strongest force $\Rightarrow B H$ s!

Hoop conjecture $\Rightarrow \sigma_{\text {disk }} \sim \pi \mathbf{r}_{\mathbf{s}}^{2}, \quad \mathbf{r}_{\mathbf{s}}=\frac{C_{n}}{M_{4+n}}\left(\frac{\sqrt{s}}{M_{4+n}}\right)^{\frac{1}{n+1}}$
S. B. Giddings and S. D. Thomas, hep-ph/0106219
S. Dimopoulos and G. Landsberg, hep-ph/0106295

Transplanckian collisions @ speed of light: Motivation

(1) Large extra dimensions (ADD) solve the hierarchy problem. Transplanckian scattering starts @ $\sim 1 \mathrm{TeV}$ in ADD.

$$
\mathbf{M}_{4}^{2}=\mathcal{V}_{n} \mathbf{M}_{(4+\mathrm{n})}^{\mathrm{n}+2}=10^{32} \mathrm{TeV}^{2}
$$

N. Arkani-Hamed et al. hep-th/9803315 (ADD)
(2) Predicts Newton law dev. $1 / r^{2} \rightarrow 1 / r^{2+n}$ \& KK gravitons. Compatible with experiments if $\mathbf{n}>\mathbf{2}$ for $\mathbf{M}_{4+\mathbf{n}} \gtrsim 1 \mathrm{TeV}$.
(3 @ short distances/high energy, grav. strongest force $\Rightarrow B H$ s!

Hoop conjecture $\Rightarrow \sigma_{\text {disk }} \sim \pi \mathbf{r}_{\mathbf{S}}^{2}, \quad \mathbf{r}_{\mathbf{s}}=\frac{C_{n}}{M_{4+n}}\left(\frac{\sqrt{s}}{M_{4+n}}\right)^{\frac{1}{n+1}}$
S. B. Giddings and S. D. Thomas, hep-ph/0106219
S. Dimopoulos and G. Landsberg, hep-ph/0106295

Evidence for classical BH in transplanckian scattering

- Numerical relativity in 4 and higher dimensions
U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738 b=0
M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 b $=0$

Sperhake, Cardoso, Pretorius, Berti, Hinderer, Yunes arXiv:0907.1252 b$\neq 0$
M. Choptuik, F. Pretorius, arXiv:0908.1780 $b=0$ (solitons)

Zilhao, Witek, Sperhake, Cardoso, Gualtieri, Herdeiro, Nerozzi arXiv:1001.2302 $4+n$

- Shock wave collisions in higher dimensions
D. M. Eardley and S. B. Giddings, gr-qc/0201034
H. Yoshino and V. S. Rychkov hep-th/0503171
\Rightarrow Apparent horizon before the collision

Evidence for classical BH in transplanckian scattering

- Numerical relativity in 4 and higher dimensions
U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738 b=0
M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 b $=0$

Sperhake, Cardoso, Pretorius, Berti, Hinderer, Yunes arXiv:0907.1252 b$\neq 0$
M. Choptuik, F. Pretorius, arXiv:0908.1780 $b=0$ (solitons)

Zilhao, Witek, Sperhake, Cardoso, Gualtieri, Herdeiro, Nerozzi arXiv:1001.2302 $4+n$

- Shock wave collisions in higher dimensions
D. M. Eardley and S. B. Giddings, gr-qc/0201034
H. Yoshino and V. S. Rychkov hep-th/0503171
\Rightarrow Apparent horizon before the collision

LHC pp collisions well above 1 TeV !

The BH is assumed to decay through Hawking evaporation.
(?) As we approach $M_{4+n} \Rightarrow$ unknown quantum gravity effects!
First bound's rely on "bad" knowledge of gravitational radiation
CMS collaboration arXiv:1012.3357
ATLAS-CONF-2011-065

LHC pp collisions well above 1 TeV !

The BH is assumed to decay through Hawking evaporation.
(?) As we approach $M_{4+n} \Rightarrow$ unknown quantum gravity effects!
First bounds rely on bad knowledge of gravitational radiation
CMS collaboration arXiv:1012.3357
ATLAS-CONF-2011-065

LHC pp collisions well above 1 TeV !

The BH is assumed to decay through Hawking evaporation.
(?) As we approach $M_{4+n} \Rightarrow$ unknown quantum gravity effects!
First bounds rely on bad knowledge of gravitational radiation
CMS collaboration arXiv:1012.3357
ATLAS-CONF-2011-065

LHC pp collisions well above 1 TeV !

The BH is assumed to decay through Hawking evaporation.
(?) As we approach $M_{4+n} \Rightarrow$ unknown quantum gravity effects!
First bounds rely on bad knowledge of gravitational radiation CMS collaboration arXiv:1012.3357

ATLAS-CONF-2011-065

Outline

(1) Aichelburg-Sexl shock waves

- Definition \& Physical interpretation
- Superposition and apparent horizons
(2) Shock wave collisions in D-dimensions
- Perturbative set up to determine future development
- The first order calculation \& radiation extraction
(3) Conclusions and Outlook

Outline

(1) Aichelburg-Sexl shock waves

- Definition \& Physical interpretation
- Superposition and apparent horizons

2 Shock wave collisions in D-dimensions

- Perturbative set up to determine future development
- The first order calculation \& radiation extraction
(3) Conclusions and Outlook

The Aichelburg-Sexl ultraboost

The Aichelburg-Sexl ultraboost
Schwarzschild metric \rightarrow field of source $\mu \propto G_{D} M$ at rest.

The Aichelburg-Sexl ultraboost

Schwarzschild metric \rightarrow field of source $\mu \propto G_{D} M$ at rest.

$$
d s^{2}=-\left(1-\frac{\mu}{r^{D-3}}\right) d t^{2}+\left(1-\frac{\mu}{r^{D-3}}\right)^{-1} d r^{2}+r^{2} d \Omega_{D-2}^{2}
$$

The Aichelburg-Sexl ultraboost

Schwarzschild metric \rightarrow field of source $\mu \propto G_{D} M$ at rest.

$$
d s^{2}=-\left(1-\frac{\mu}{r^{D-3}}\right) d t^{2}+\left(1-\frac{\mu}{r^{D-3}}\right)^{-1} d r^{2}+r^{2} d \Omega_{D-2}^{2}
$$

The Aichelburg-Sexl ultraboost

Schwarzschild metric \rightarrow field of source $\mu \propto G_{D} M$ at rest.

$$
d s^{2}=-\left(1-\frac{\mu}{r^{D-3}}\right) d t^{2}+\left(1-\frac{\mu}{r^{D-3}}\right)^{-1} d r^{2}+r^{2} d \Omega_{D-2}^{2}
$$

The Aichelburg-Sexl ultraboost

Schwarzschild metric \rightarrow field of source $\mu \propto G_{D} M$ at rest.

$$
d s^{2}=-\left(1-\frac{\mu}{r^{D-3}}\right) d t^{2}+\left(1-\frac{\mu}{r^{D-3}}\right)^{-1} d r^{2}+r^{2} d \Omega_{D-2}^{2}
$$

$$
d s^{2}=-d u d v+d \rho^{2}+\rho^{2} d \Omega_{D-3}^{2}+\kappa \Phi(\rho) \delta(u) d u^{2}
$$

$$
(u, v)=(t-z, t+z)
$$

The Aichelburg-Sexl ultraboost

Schwarzschild metric \rightarrow field of source $\mu \propto G_{D} M$ at rest.

$$
d s^{2}=-\left(1-\frac{\mu}{r^{D-3}}\right) d t^{2}+\left(1-\frac{\mu}{r^{D-3}}\right)^{-1} d r^{2}+r^{2} d \Omega_{D-2}^{2}
$$

$$
d s^{2}=-d u d v+d \rho^{2}+\rho^{2} d \Omega_{D-3}^{2}+\kappa \Phi(\rho) \delta(u) d u^{2}
$$

$$
(u, v)=(t-z, t+z)
$$

The Aichelburg-Sexl ultraboost

Schwarzschild metric \rightarrow field of source $\mu \propto G_{D} M$ at rest.

$$
d s^{2}=-\left(1-\frac{\mu}{r^{D-3}}\right) d t^{2}+\left(1-\frac{\mu}{r^{D-3}}\right)^{-1} d r^{2}+r^{2} d \Omega_{D-2}^{2}
$$

$$
d s^{2}=-d u d v+d \rho^{2}+\rho^{2} d \Omega_{D-3}^{2}+\kappa \Phi(\rho) \delta(u) d u^{2}
$$

Flat region I

$$
(u, v)=(t-z, t+z)
$$

Basic properties of a single shock wave

- Solution of Einstein's equations, point source $P^{\mu}=E n^{\mu}$

$$
T^{\mu \nu}=E \delta(u) \delta^{(D-2)}\left(x^{i}\right) n^{\mu} n^{\nu} \quad, \quad n^{\mu} n_{\mu}=0
$$

- On the shock we have a profile

- Riemann tensor singular on the shock
- Null geodesics and tangent vectors are ciscontinuous
- No difference if we smear \& quantum corrections small
S. B. Giddings and V. S. Rychkov, hep-th/0409131

Basic properties of a single shock wave

- Solution of Einstein's equations, point source $P^{\mu}=E n^{\mu}$

$$
T^{\mu \nu}=E \delta(u) \delta^{(D-2)}\left(x^{i}\right) n^{\mu} n^{\nu} \quad, \quad n^{\mu} n_{\mu}=0
$$

- On the shock we have a profile

$$
\Phi(\rho)=\left\{\begin{array}{ll}
-2 \ln (\rho), & D=4 \\
\frac{2}{(D-4) \rho^{D-4}}, & D>4
\end{array} .\right.
$$

- Riemann tensor singular on the shock
- Null aeodesics and tangent vectors are ciscontinuous
- No difference if we smear \& quantum corrections small
S. B. Giddings and V. S. Rychkov, hep-th/0409131

Basic properties of a single shock wave

- Solution of Einstein's equations, point source $P^{\mu}=E n^{\mu}$

$$
T^{\mu \nu}=E \delta(u) \delta^{(D-2)}\left(x^{i}\right) n^{\mu} n^{\nu} \quad, \quad n^{\mu} n_{\mu}=0
$$

- On the shock we have a profile

$$
\Phi(\rho)=\left\{\begin{array}{ll}
-2 \ln (\rho), & D=4 \\
\frac{2}{(D-4) \rho^{D-4}}, & D>4
\end{array} .\right.
$$

- Riemann tensor singular on the shock
- Null geodesics and tangent vectors are discontinuous
- No difference if we smear \& quantum corrections small
S. B. Giddings and V. S. Rychkov, hep-th/0409131

Basic properties of a single shock wave

- Solution of Einstein's equations, point source $P^{\mu}=E n^{\mu}$

$$
T^{\mu \nu}=E \delta(u) \delta^{(D-2)}\left(x^{i}\right) n^{\mu} n^{\nu} \quad, \quad n^{\mu} n_{\mu}=0
$$

- On the shock we have a profile

$$
\Phi(\rho)=\left\{\begin{array}{ll}
-2 \ln (\rho), & D=4 \\
\frac{2}{(D-4) \rho^{D-4}}, & D>4
\end{array} .\right.
$$

- Riemann tensor singular on the shock
- Null geodesics and tangent vectors are discontinuous
- No difference if we smear \& quantum corrections small
S. B. Giddings and V. S. Rychkov, hep-th/0409131

Basic properties of a single shock wave

- Solution of Einstein's equations, point source $P^{\mu}=E n^{\mu}$

$$
T^{\mu \nu}=E \delta(u) \delta^{(D-2)}\left(x^{i}\right) n^{\mu} n^{\nu} \quad, \quad n^{\mu} n_{\mu}=0
$$

- On the shock we have a profile

$$
\Phi(\rho)= \begin{cases}-2 \ln (\rho), & D=4 \\ \frac{2}{(D-4) \rho^{D-4}}, & D>4\end{cases}
$$

- Riemann tensor singular on the shock
- Null geodesics and tangent vectors are discontinuous
- No difference if we smear \& quantum corrections small S. B. Giddings and V. S. Rychkov, hep-th/0409131

Outline

(9) Aichelburg-Sexl shock waves

- Definition \& Physical interpretation
- Superposition and apparent horizons

2 Shock wave collisions in D-dimensions

- Perturbative set up to determine future development
- The first order calculation \& radiation extraction
(3) Conclusions and Outlook

Superposition of two shock waves

Constraints due to the apparent horizon

- Apparent horizon area \Rightarrow lower bound on $M_{\text {trapped }}$

Frost, Gaunt, MOPS, Casals, Dolan, Parker, Webber arXiv:0904.0979
D'Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694
Cardoso, Berti and Cavaglia hep-ph/0505125
Berti, Cavaglia and Gualtieri hep-th/0309203

Constraints due to the apparent horizon

- Apparent horizon area \Rightarrow lower bound on $M_{\text {trapped }}$

Frost, Gaunt, MOPS, Casals, Dolan, Parker, Webber arXiv:0904.0979
D'Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694
Cardoso, Berti and Cavaglia hep-ph/0505125
Berti, Cavaglia and Gualtieri hep-th/0309203

- \Rightarrow Upper bound on the amount of gravitational radiation

Constraints due to the apparent horizon

- Apparent horizon area \Rightarrow lower bound on $M_{\text {trapped }}$

Frost, Gaunt, MOPS, Casals, Dolan, Parker, Webber arXiv:0904.0979
D'Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694
Cardoso, Berti and Cavaglia hep-ph/0505125
Berti, Cavaglia and Gualtieri hep-th/0309203

- \Rightarrow Upper bound on the amount of gravitational radiation
- News function result 16.3\% consistent with $14 \pm 3 \%$ NGR

Outline

Aichelburg-Sexl shock waves

- Definition \& Physical interpretation
- Superposition and apparent horizons
(2) Shock wave collisions in D-dimensions
- Perturbative set up to determine future development
- The first order calculation \& radiation extraction
(3) Conclusions and Outlook

Strong shock vs weak shock

D'Eath and Payne found a trick \Rightarrow perturbative approach
(ㄱ) Perform a large boost along $+z$ with velocity $\beta \equiv \tanh \alpha$
(2) Energy parameter of right/left moving shock $\kappa \rightarrow e^{ \pm \alpha} \kappa$
a Evact boundary conditions on $u=0^{+}$(strong shock ψ)

Strong shock vs weak shock

D'Eath and Payne found a trick \Rightarrow perturbative approach
(1) Perform a large boost along $+z$ with velocity $\beta \equiv \tanh \alpha$
(2) Energy parameter of right/left moving shock $\kappa \rightarrow e^{ \pm \alpha} \kappa$
(3) Exact boundary conditions on $u=0^{+}$(strong shock ν)

Strong shock vs weak shock

D'Eath and Payne found a trick \Rightarrow perturbative approach
(1) Perform a large boost along $+z$ with velocity $\beta \equiv \tanh \alpha$
(2) Energy parameter of right/left moving shock $\kappa \rightarrow e^{ \pm \alpha} \kappa$
(3) Exact boundary conditions on $u=0^{+}$(strong shock ν)

Strong shock vs weak shock

D'Eath and Payne found a trick \Rightarrow perturbative approach
(1) Perform a large boost along $+z$ with velocity $\beta \equiv \tanh \alpha$
(2) Energy parameter of right/left moving shock $\kappa \rightarrow e^{ \pm \alpha} \kappa$
(3) Exact boundary conditions on $u=0^{+}$(strong shock ν)

$$
g_{\mu \nu}=\nu^{\frac{2}{D-3}}\left[\eta_{\mu \nu}+\frac{\lambda}{\nu} h_{\mu \nu}^{(1)}+\left(\frac{\lambda}{\nu}\right)^{2} h_{\mu \nu}^{(2)}\right]
$$

Validity \& Physical interpretation

Note: $h_{\mu \nu}^{(i)} \sim\left[\frac{1}{\rho^{0-2}}(\sqrt{2} v-\Phi) \theta(\sqrt{2} v-\Phi)\right]^{i}$

Future light cone of the collision

$$
u=0, \quad v=\frac{\Phi(\rho)}{\sqrt{2}}
$$

Future light cone of the collision

$$
u=0, \quad v=\frac{\Phi(\rho)}{\sqrt{2}}
$$

Future light cone of the collision

$$
u=0, \quad v=\frac{\Phi(\rho)}{\sqrt{2}}
$$

Perturbative expansion

- Assume perturbative ansatz

$$
g_{\mu \nu}=\nu^{\frac{2}{D-3}}\left[\eta_{\mu \nu}+\sum_{i=1}^{\infty}\left(\frac{\lambda}{\nu}\right)^{i} h_{\mu \nu}^{(i)}\right]
$$

- Fix gauge order by order (de Donder)
- Obtain decoupled sets of wave equations with source

Note: The source is zero for $i=1$!

Perturbative expansion

- Assume perturbative ansatz

$$
g_{\mu \nu}=\nu^{\frac{2}{D-3}}\left[\eta_{\mu \nu}+\sum_{i=1}^{\infty}\left(\frac{\lambda}{\nu}\right)^{i} h_{\mu \nu}^{(i)}\right]
$$

- Fix gauge order by order (de Donder)

$$
x^{\mu} \rightarrow x^{N \mu}=x^{\mu}+\sum_{i=1}^{\infty}\left(\frac{\lambda}{\nu}\right)^{i} \xi^{(i) \mu}
$$

- Obtain decoupled sets of wave equations with source

Note: The source is zero for $i=1$!

Perturbative expansion

- Assume perturbative ansatz

$$
g_{\mu \nu}=\nu^{\frac{2}{D-3}}\left[\eta_{\mu \nu}+\sum_{i=1}^{\infty}\left(\frac{\lambda}{\nu}\right)^{i} h_{\mu \nu}^{(i)}\right]
$$

- Fix gauge order by order (de Donder)

$$
x^{\mu} \rightarrow x^{N \mu}=x^{\mu}+\sum_{i=1}^{\infty}\left(\frac{\lambda}{\nu}\right)^{i} \xi^{(i) \mu}
$$

- Obtain decoupled sets of wave equations with source

$$
\square h_{\mu \nu}^{(i) N}=T_{\mu \nu}^{(i-1)} .
$$

Note: The source is zero for $i=1$!

Perturbative expansion

- Assume perturbative ansatz

$$
g_{\mu \nu}=\nu^{\frac{2}{D-3}}\left[\eta_{\mu \nu}+\sum_{i=1}^{\infty}\left(\frac{\lambda}{\nu}\right)^{i} h_{\mu \nu}^{(i)}\right]
$$

- Fix gauge order by order (de Donder)

$$
x^{\mu} \rightarrow x^{N \mu}=x^{\mu}+\sum_{i=1}^{\infty}\left(\frac{\lambda}{\nu}\right)^{i} \xi^{(i) \mu}
$$

- Obtain decoupled sets of wave equations with source

$$
\square h_{\mu \nu}^{(i) N}=T_{\mu \nu}^{(i-1)} .
$$

Note: The source is zero for $i=1$!

Causal structure of the background \& formal solution

Outline

Aichelburg-Sexl shock waves

- Definition \& Physical interpretation
- Superposition and apparent horizons
(2) Shock wave collisions in D-dimensions
- Perturbative set up to determine future development
- The first order calculation \& radiation extraction
(3) Conclusions and Outlook

Integration limits and ray analysis 1

Note: Point at the axis is a blind spot \leftarrow destructive interference

Integration limits and ray analysis 1

Note: Point at the axis is a blind spot \leftarrow destructive interference

Ray analysis off axis

The first order result - radiation extraction

- Radiative components $h_{i j}=\delta_{i j} D(u, v, \rho)+\Delta_{i j}(x) E(u, v, \rho)$
- At first order ($i=1$) only $E(u, v, \rho)$
- In our paper \rightarrow Landau-Lifshitz pseudo-tensor

Yoshino and Shibata, arXiv:0907.2760

- Recently shown equivalent to news function in higher D Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

The first order result - radiation extraction

- Radiative components $h_{i j}=\delta_{i j} D(u, v, \rho)+\Delta_{i j}(x) E(u, v, \rho)$
- At first order $(i=1)$ only $E(u, v, \rho)$
- In our paper \rightarrow Landau-Lifshitz pseudo-tensor

Yoshino and Shibata, arXiv:0907.2760

- Recently shown equivalent to news function in higher D Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

The first order result - radiation extraction

- Radiative components $h_{i j}=\delta_{i j} D(u, v, \rho)+\Delta_{i j}(x) E(u, v, \rho)$
- At first order $(i=1)$ only $E(u, v, \rho)$
- In our paper \rightarrow Landau-Lifshitz pseudo-tensor Yoshino and Shibata, arXiv:0907.2760
- Recently shown equivalent to news function in higher D Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

lim

The first order result - radiation extraction

- Radiative components $h_{i j}=\delta_{i j} D(u, v, \rho)+\Delta_{i j}(x) E(u, v, \rho)$
- At first order $(i=1)$ only $E(u, v, \rho)$
- In our paper \rightarrow Landau-Lifshitz pseudo-tensor Yoshino and Shibata, arXiv:0907.2760
- Recently shown equivalent to news function in higher D Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

The first order result - radiation extraction

- Radiative components $h_{i j}=\delta_{i j} D(u, v, \rho)+\Delta_{i j}(x) E(u, v, \rho)$
- At first order $(i=1)$ only $E(u, v, \rho)$
- In our paper \rightarrow Landau-Lifshitz pseudo-tensor Yoshino and Shibata, arXiv:0907.2760
- Recently shown equivalent to news function in higher D Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

$$
\begin{aligned}
E_{\text {radiated }} & =\int d t \int_{S^{D-2}} \frac{d E n e r g y}{d S d t} \\
& \simeq \frac{\Omega_{D-3}}{32 \pi G_{D}} \lim _{\hat{\theta} \rightarrow 0, r \rightarrow \infty}\left(r^{2} \rho^{D-4} \int h^{i j}{ }_{, v} h_{i j, v} d t\right) \\
\frac{E_{\text {radiated }}}{E_{C M}} & \rightarrow \frac{1}{8} \frac{D-2}{D-3} \lim _{\hat{\theta} \rightarrow 0, r \rightarrow \infty}\left(\int\left(r \rho^{\frac{D-4}{2}} E_{, v}\right)^{2} d t\right)
\end{aligned}
$$

The first order result - radiation extraction

- Radiative components $h_{i j}=\delta_{i j} D(u, v, \rho)+\Delta_{i j}(x) E(u, v, \rho)$
- At first order $(i=1)$ only $E(u, v, \rho)$
- In our paper \rightarrow Landau-Lifshitz pseudo-tensor Yoshino and Shibata, arXiv:0907.2760
- Recently shown equivalent to news function in higher D Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

$$
\begin{aligned}
E_{\text {radiated }} & =\int d t \int_{S^{D-2}} \frac{d E n e r g y}{d S d t} \\
& \simeq \frac{\Omega_{D-3}}{32 \pi G_{D}} \lim _{\hat{\theta} \rightarrow 0, r \rightarrow \infty}\left(r^{2} \rho^{D-4} \int h^{i j}{ }_{, v} h_{i j, v} d t\right) \\
\frac{E_{\text {radiated }}}{E_{C M}} & \rightarrow \frac{1}{8} \frac{D-2}{D-3} \lim _{\hat{\theta} \rightarrow 0, r \rightarrow \infty}\left(\int\left(r \rho^{\frac{D-4}{2}} E_{, v}\right)^{2} d t\right)
\end{aligned}
$$

Reduced Wave forms

Extracting the axis limit

D	4	5	6	7	8	9	10
AH bound (\%)	29.3	33.5	36.1	37.9	39.3	40.4	41.2
First order(\%)	25.0	-	33.3	-	37.5	-	40.0

(1) Aichelburg-Sexl shock waves

- Definition \& Physical interpretation
- Superposition and apparent horizons
(2) Shock wave collisions in D-dimensions
- Perturbative set up to determine future development
- The first order calculation \& radiation extraction
(3) Conclusions and Outlook

Conclusions

(1) Transplanckian collision in $D>4$ are important for Black Holes at the LHC.
(2) We have generalised the D'Eath \& Payne calculation and found a first order estimate that indicates a smaller emission of gravitational radiation than AH bounds.
(3) However same tendency of increase with D!

4 Second order calculation (which gives good results in 4D) on the way.
The main challenges are:
i) computational (numerically more intensive)
ii) extracting the first angular correction from numerics

Conclusions

(1) Transplanckian collision in $D>4$ are important for Black Holes at the LHC.
(2) We have generalised the D'Eath \& Payne calculation and found a first order estimate that indicates a smaller emission of gravitational radiation than AH bounds.
(3) However same tendency of increase with D!

4 Second order calculation (which gives good results in 4D) on the way.
The main challenges are:
i) computational (numerically more intensive)
ii) extracting the first angular correction from numerics

Conclusions

(1) Transplanckian collision in $D>4$ are important for Black Holes at the LHC.
(2) We have generalised the D'Eath \& Payne calculation and found a first order estimate that indicates a smaller emission of gravitational radiation than AH bounds.
(8) However same tendency of increase with D!

4 Second order calculation (which gives good results in 4D) on the way.
The main challenges are:
i) computational (numerically more intensive)
ii) extracting the first angular correction from numerics

Conclusions

(1) Transplanckian collision in $D>4$ are important for Black Holes at the LHC.
(2) We have generalised the D'Eath \& Payne calculation and found a first order estimate that indicates a smaller emission of gravitational radiation than AH bounds.
(3) However same tendency of increase with D!

4 Second order calculation (which gives good results in 4D) on the way. The main challenges are: i) computational (numerically more intensive) ii) extracting the first angular correction from numerics

Conclusions

(1) Transplanckian collision in $D>4$ are important for Black Holes at the LHC.
(2) We have generalised the D'Eath \& Payne calculation and found a first order estimate that indicates a smaller emission of gravitational radiation than AH bounds.
(3) However same tendency of increase with D!

4 Second order calculation (which gives good results in 4D) on the way.
The main challenges are:
i) computational (numerically more intensive)
ii) extracting the first angular correction from numerics

Open questions in progress

- How to solve odd D ? (non-itegrable tails)
- Do we have same problem at second order?
- How to justify extrapolation off axis (maybe some symmetry argument?)
- How to justify good agreement with NGR in 4D? (will the same hold for $D>4$?)

Open questions in progress

- How to solve odd D ? (non-itegrable tails)
- Do we have same problem at second order?
- How to justify extrapolation off axis (maybe some symmetry argument?)
- How to justify good agreement with NGR in 4D? (will the same hold for $D>4$?)

Open questions in progress

- How to solve odd D ? (non-itegrable tails)
- Do we have same problem at second order?
- How to justify extrapolation off axis (maybe some symmetry argument?)
- How to justify good agreement with NGR in 4D? (will the same hold for $D>4$?)

Open questions in progress

- How to solve odd D ? (non-itegrable tails)
- Do we have same problem at second order?
- How to justify extrapolation off axis (maybe some symmetry argument?)
- How to justify good agreement with NGR in 4D? (will the same hold for $D>4$?)

Open questions in progress

- How to solve odd D ? (non-itegrable tails)
- Do we have same problem at second order?
- How to justify extrapolation off axis (maybe some symmetry argument?)
- How to justify good agreement with NGR in 4D? (will the same hold for $D>4$?)

Thanks for your attention! Questions?

BACKUP

The Standard Model - Particle content

The Standard Model - Particle content

"Low" energy degrees of freedom (after symmetry breaking):

- 1 Higgs particle $(s=0)$,
- 3 families of leptons and 3 of quarks
- 1 non-abelian SU(3) c gluon field, 3 massive vector bosons, 1 neutral $U(1)$ Maxwell field

The Standard Model - Particle content

"Low" energy degrees of freedom (after symmetry breaking):

$$
\mathcal{L}_{S M}=\frac{1}{2} \partial^{\mu} h \partial_{\mu} h-\frac{m_{h}^{2}}{2} h^{2}
$$

- 1 Higgs particle $(s=0)$,
- 3 families of leptons and 3 of quarks
- 1 non-abelian $S U(3)_{c}$ gluon field, 3 massive vector bosons, 1 neutral $U(1)$ Maxwell field (

The Standard Model - Particle content

"Low" energy degrees of freedom (after symmetry breaking):

$$
\begin{aligned}
\mathcal{L}_{S M} & =\frac{1}{2} \partial^{\mu} h \partial_{\mu} h-\frac{m_{h}^{2}}{2} h^{2}+\bar{e}^{a}\left(i \not \partial-m_{e_{a}}\right) e^{a}+\bar{\nu}^{a} i \not \partial \nu^{a}+\bar{u}^{a}\left(i \not \partial-m_{u_{a}}\right) u^{a}+ \\
& +\bar{d}^{a}\left(i \not \partial-m_{d_{a}}\right) d^{a}
\end{aligned}
$$

- 1 Higgs particle $(s=0)$,
- 3 families of leptons and 3 of quarks ($s=1 / 2$),
- 1 non-abelian SU(3) c gluon field, 3 massive vector bosons, 1 neutral $U(1)$ Maxwell field

The Standard Model - Particle content

"Low" energy degrees of freedom (after symmetry breaking):

$$
\begin{gathered}
\mathcal{L}_{S M}=\frac{1}{2} \partial^{\mu} h \partial_{\mu} h-\frac{m_{h}^{2}}{2} h^{2}+\bar{e}^{a}\left(i \not \partial-m_{e_{a}}\right) e^{a}+\bar{\nu}^{a} i \not \partial \nu^{a}+\bar{u}^{a}\left(i \not \partial-m_{u_{a}}\right) u^{a}+ \\
+\bar{d}^{a}\left(i \not \partial-m_{d_{a}}\right) d^{a}-\frac{1}{4} \mathbf{G}_{\mu \nu} \cdot \mathbf{G}^{\mu \nu}-\frac{1}{2} W_{\mu \nu}^{\dagger} W^{\mu \nu}+m_{W}^{2} W_{\mu}^{\dagger} W^{\mu}+ \\
\quad-\frac{1}{4} Z_{\mu \nu} Z^{\mu \nu}+\frac{m_{Z}^{2}}{2} Z_{\mu} Z^{\mu}-\frac{1}{4} A_{\mu \nu} A^{\mu \nu}
\end{gathered}
$$

- 1 Higgs particle $(s=0)$,
- 3 families of leptons and 3 of quarks ($s=1 / 2$),
- 1 non-abelian $S U(3)_{c}$ gluon field, 3 massive vector bosons, 1 neutral $U(1)$ Maxwell field ($s=1$).

The Standard Model - Particle content

"Low" energy degrees of freedom (after symmetry breaking):

$$
\begin{gathered}
\mathcal{L}_{S M}=\frac{1}{2} \partial^{\mu} h \partial_{\mu} h-\frac{m_{h}^{2}}{2} h^{2}+\bar{e}^{a}\left(i \not \partial-m_{e_{a}}\right) e^{a}+\bar{\nu}^{a} i \not \partial \nu^{a}+\bar{u}^{a}\left(i \not \partial-m_{u_{a}}\right) u^{a}+ \\
+\bar{d}^{a}\left(i \not \partial-m_{d_{a}}\right) d^{a}-\frac{1}{4} \mathbf{G}_{\mu \nu} \cdot \mathbf{G}^{\mu \nu}-\frac{1}{2} W_{\mu \nu}^{\dagger} W^{\mu \nu}+m_{W}^{2} W_{\mu}^{\dagger} W^{\mu}+ \\
\quad-\frac{1}{4} Z_{\mu \nu} Z^{\mu \nu}+\frac{m_{Z}^{2}}{2} Z_{\mu} Z^{\mu}-\frac{1}{4} A_{\mu \nu} A^{\mu \nu}+\text { Interactions }
\end{gathered}
$$

- 1 Higgs particle $(s=0)$,
- 3 families of leptons and 3 of quarks ($s=1 / 2$),
- 1 non-abelian $S U(3)_{c}$ gluon field, 3 massive vector bosons, 1 neutral $U(1)$ Maxwell field ($s=1$).

The Standard Model - Interactions

The hierarchy problem: SM vs Gravity
The action for gravity coupled to matter is

$$
\mathcal{S}=\int d^{4} x \sqrt{|g|}\left[\frac{M_{4}^{2}}{2} R+\mathcal{L}_{S M}\right]
$$

The hierarchy problem: SM vs Gravity

The action for gravity coupled to matter is

$$
\mathcal{S}=\int d^{4} x \sqrt{|g|}\left[\frac{M_{4}^{2}}{2} R+\mathcal{L}_{S M}\right]
$$

Linear perturbations $g_{\mu \nu}=\eta_{\mu \nu}+\frac{E}{M_{4}} h_{\mu \nu}\left(\right.$ units $\left.x \rightarrow x /\left(E^{-1}\right)\right)$

$$
\mathcal{S}=\int\left[\mathcal{L}_{h_{\mu \nu}, \text { kinetic }}+\mathcal{L}_{S M}+\frac{E}{2 M_{4}} T_{\mu \nu} h^{\mu \nu}+\ldots\right], \frac{1 \mathrm{TeV}}{\mathbf{M}_{4}} \sim \sqrt{\alpha_{\mathrm{G}}} \sim 10^{-16}
$$

The hierarchy problem: SM vs Gravity

The action for gravity coupled to matter is

$$
\mathcal{S}=\int d^{4} x \sqrt{|g|}\left[\frac{M_{4}^{2}}{2} R+\mathcal{L}_{S M}\right]
$$

Linear perturbations $g_{\mu \nu}=\eta_{\mu \nu}+\frac{E}{M_{4}} h_{\mu \nu}\left(\right.$ units $\left.x \rightarrow x /\left(E^{-1}\right)\right)$
$\mathcal{S}=\int\left[\mathcal{L}_{h_{\mu \nu}, \text { kinetic }}+\mathcal{L}_{S M}+\frac{E}{2 M_{4}} T_{\mu \nu} h^{\mu \nu}+\ldots\right], \frac{1 \mathrm{TeV}}{\mathbf{M}_{4}} \sim \sqrt{\alpha}_{\mathbf{G}} \sim 10^{-16}$

Operator type	Couplings	at $E \sim 1 \mathrm{TeV}$
$T_{\alpha \beta} h^{\alpha \beta}$	E / M_{4}	10^{-16}
SM Interactions	$\sim e, g_{Q C D}, \frac{m_{H}}{v}, \frac{v}{E}, \frac{m_{f}}{v}$	$O\left(10^{-6}\right)-O(1)$

Solving the hierarchy problem with Extra Dimensions

$$
\mathbf{M}_{\mathbf{4}} \sim 10^{16} \mathbf{M}_{\mathrm{EW}}
$$

Hierarchy due to taking the scale for new physics from gravity (mesoscopic) rather than the electroweak scale (microscopic). The ADD solution: Assume \mathbf{M}_{EW} is more fundamental.
N. Arkani-Hamed et al. hep-th/9803315 (ADD)

Solving the hierarchy problem with Extra Dimensions

$$
\mathbf{M}_{\mathbf{4}} \sim 10^{16} \mathbf{M}_{\mathrm{EW}}
$$

Hierarchy due to taking the scale for new physics from gravity (mesoscopic) rather than the electroweak scale (microscopic).
The ADD solution: Assume \mathbf{M}_{EW} is more fundamental.
N. Arkani-Hamed et al. hep-th/9803315 (ADD)

- Assume our space time is 4+n dimensional SM effective theory on a thin brane

$$
\mathbf{S}_{\mathbf{G}} \sim \int \mathrm{d}^{4+\mathrm{n}} \mathbf{X} \mathbf{M}_{(4+\mathrm{n})}^{2+\mathrm{n}} \sqrt{-\mathbf{g}} \mathcal{R}^{(4+\mathbf{n})}
$$

- Take $\mathbf{M}_{\mathbf{E w}} \sim 1 \mathrm{TeV} \rightarrow \mathbf{M}_{\mathbf{4}+\mathbf{n}}$ as the fundamental scale
- At large distances

Solving the hierarchy problem with Extra Dimensions

$$
\mathbf{M}_{\mathbf{4}} \sim 10^{16} \mathbf{M}_{\mathrm{EW}}
$$

Hierarchy due to taking the scale for new physics from gravity (mesoscopic) rather than the electroweak scale (microscopic).
The ADD solution: Assume \mathbf{M}_{EW} is more fundamental.
N. Arkani-Hamed et al. hep-th/9803315 (ADD)

- Assume our space time is $4+n$ dimensional SM effective theory on a thin brane

$$
\mathbf{S}_{\mathbf{G}} \sim \int \mathrm{d}^{4+\mathrm{n}} \mathbf{X} \mathbf{M}_{(4+\mathrm{n})}^{2+\mathrm{n}} \sqrt{-\mathbf{g}} \mathcal{R}^{(\mathbf{4 + n})}
$$

- Take $\mathbf{M}_{\mathbf{E w}} \sim 1 \mathrm{TeV} \rightarrow \mathbf{M}_{\mathbf{4}+\mathbf{n}}$ as the fundamental scale
- At large distances

$$
\mathbf{S}_{\mathbf{G}} \sim \int \mathrm{d}^{4} \mathbf{x} \mathbf{M}_{(4+\mathbf{n})}^{2+\mathbf{n}} \mathbf{R}^{\mathbf{n}} \sqrt{-\mathbf{g}} \mathcal{R}^{(\mathbf{4})} \Rightarrow 4 \mathrm{D} \text { gravity diluted }
$$

Consequences of the extra dimensions

So how does gravity look like in ADD?

Consequences of the extra dimensions

So how does gravity look like in ADD?

$$
F_{r \ll R} \sim \frac{1}{\mathbf{M}_{(4+n)}^{2+n} r^{2+n}} \quad F_{r \gg R} \sim \frac{1}{M_{(4-n)}^{2} R^{n} r^{2}}\left(1+2 n e^{-\frac{r}{\beta}}+\ldots\right)
$$

- Predicts deviations from Newtonian gravity as we approach short distances.
© Contains KK gravitons from the 4D point of view.
© Gravity is higher dimensional at very short distances.
This can be used to put bounds on R as a function of n.

Consequences of the extra dimensions

So how does gravity look like in ADD?

$$
F_{r \ll R} \sim \frac{1}{\mathbf{M}_{(4+\mathrm{n})}^{2+n} r^{2+n}}, \quad F_{r \gg R} \sim \frac{1}{\mathbf{M}_{(4+\mathrm{n})}^{2+n} \mathrm{R}^{\mathrm{n}} r^{2}}\left(1+2 n e^{-\frac{r}{R}}+\ldots\right)
$$

- Predicts deviations from Newtonian gravity as we approach short distances.
© Contains KK gravitons from the 4D point of view.
© Gravity is higher dimensional at very short distances.
This can be used to put bounds on R as a function of n.

Consequences of the extra dimensions

So how does gravity look like in ADD?

$$
F_{r \ll R} \sim \frac{1}{\mathbf{M}_{(4+\mathrm{n})}^{2+\mathrm{n}} r^{2+n}}, \quad F_{r \gg R} \sim \frac{1}{\mathbf{M}_{(4+\mathrm{n})}^{2+\mathrm{n}} \mathbf{R}^{\mathrm{n}} r^{2}}\left(1+2 n e^{-\frac{r}{R}}+\ldots\right)
$$

(1) Predicts deviations from Newtonian gravity as we approach short distances.
(2) Contains KK gravitons from the 4D point of view.
(3) Gravity is higher dimensional at very short distances.

This can be used to put bounds on R as a function of n.

Consequences of the extra dimensions

So how does gravity look like in ADD?

$$
F_{r \ll R} \sim \frac{1}{\mathbf{M}_{(4+\mathrm{n})}^{2+\mathrm{n}} r^{2+n}}, \quad F_{r \gg R} \sim \frac{1}{\mathbf{M}_{(4+\mathrm{n})}^{2+\mathrm{n}} \mathbf{R}^{\mathrm{n}} r^{2}}\left(1+2 n e^{-\frac{r}{R}}+\ldots\right)
$$

(1) Predicts deviations from Newtonian gravity as we approach short distances.
(2) Contains KK gravitons from the 4D point of view.
(3) Gravity is higher dimensional at very short distances.

This can be used to put bounds on R as a function of n.
\Rightarrow Translates as a bound on M_{4+n}.

Bounds on extra dimensions

$\mathbf{M}_{\mathbf{4}}^{\mathbf{2}}=\mathrm{R}^{\mathrm{n}} \mathbf{M}_{(4+\mathbf{n})}^{2+\mathbf{n}}$	R in $\mu \mathrm{m}(\mathbf{n}=2)$	$\mathbf{M}_{\mathbf{4 + \mathbf { n }}} \sim 1 \mathrm{TeV} \mathrm{OK}$
Deviations from r^{-2} in torsion-balance	$\lesssim 55$	$n>1$
KK graviton produc- tion @ colliders	$\lesssim 800$	$n>2$
KK graviton produc- tion in Supernovae	$\lesssim 5.1 \times 10^{-4}$	$n>3$
KK gravitons early Universe production	$\lesssim 2.2 \times 10^{-5}$	$n>3$

Bounds on extra dimensions

$\mathbf{M}_{\mathbf{4}}^{\mathbf{2}}=\mathrm{R}^{\mathrm{n}} \mathbf{M}_{(4+\mathbf{n})}^{\mathbf{2}+\mathbf{n}}$	R in $\mu \mathrm{m}(\mathbf{n}=2)$	$\mathbf{M}_{\mathbf{4 + \mathbf { n }}} \sim 1 \mathrm{TeV} \mathrm{OK}$
Deviations from r torsion-balance	$\lesssim 55$	$n>1$
KK graviton produc- tion @ colliders	$\lesssim 800$	$n>2$
KK graviton produc- tion in Supernovae	$\lesssim 5.1 \times 10^{-4}$	$n>3$
KK gravitons early Universe production	$\lesssim 2.2 \times 10^{-5}$	$n>3$

- SM on a 4D brane of thickness $L \lesssim(1 \mathrm{TeV})^{-1} \sim 10^{-13} \mu \mathrm{~m}$

To avoid bounds from Electroweak precision and fast proton decay. Quarks and leptons may have to be on sub-branes for $L \lesssim(1 \mathrm{TeV})^{-1}$.

- All SM particles propagating on a single brane. Good approximation if process occurs at large scales compared to L.

Gravity becomes strong above $M_{D} \sim 1 \mathrm{TeV}$

At short distances gravity is higher dimensional

$$
\Rightarrow \sqrt{\alpha_{G}} \sim \frac{E}{M_{4}} \rightarrow \frac{E}{M_{4+n}} \sim \frac{E}{1 \mathrm{TeV}}
$$

So gravity becomes the strongest force above 1 TeV !
\Rightarrow Small impact parameter, high energy collision \rightarrow BHs!

Gravity becomes strong above $M_{D} \sim 1 \mathrm{TeV}$

At short distances gravity is higher dimensional

$$
\Rightarrow \sqrt{\alpha_{G}} \sim \frac{E}{M_{4}} \rightarrow \frac{E}{M_{4+n}} \sim \frac{E}{1 \mathrm{TeV}}
$$

So gravity becomes the strongest force above 1 TeV !
\Rightarrow Small impact parameter, high energy collision \rightarrow BHs!

Gravity becomes strong above $M_{D} \sim 1 \mathrm{TeV}$

At short distances gravity is higher dimensional

$$
\Rightarrow \sqrt{\alpha_{G}} \sim \frac{E}{M_{4}} \rightarrow \frac{E}{M_{4+n}} \sim \frac{E}{1 \mathrm{TeV}}
$$

So gravity becomes the strongest force above 1 TeV ! \Rightarrow Small impact parameter, high energy collision $\rightarrow \mathrm{BHs}$!

S. B. Giddings and S. D. Thomas, hep-ph/0106219
S. Dimopoulos and G. Landsberg, hep-ph/0106295

Gravity becomes strong above $M_{D} \sim 1 \mathrm{TeV}$

At short distances gravity is higher dimensional

$$
\Rightarrow \sqrt{\alpha_{G}} \sim \frac{E}{M_{4}} \rightarrow \frac{E}{M_{4+n}} \sim \frac{E}{1 \mathrm{TeV}}
$$

So gravity becomes the strongest force above 1 TeV !
\Rightarrow Small impact parameter, high energy collision $\rightarrow \mathrm{BHs}$!

Hoop conjecture $\Rightarrow \sigma_{\text {disk }} \sim \pi \mathbf{r}_{\mathbf{S}}^{2}, \quad \mathbf{r}_{\mathbf{s}}=\frac{C_{n}}{M_{4+n}}\left(\frac{\sqrt{s}}{M_{4+n}}\right)^{\frac{1}{n+1}}$
S. B. Giddings and S. D. Thomas, hep-ph/0106219
S. Dimopoulos and G. Landsberg, hep-ph/0106295

Evidence for classical BH in transplanckian scattering

- Numerical relativity in 4 and higher dimensions
U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738 b=0
M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 b $=0$

Sperhake, Cardoso, Pretorius, Berti, Hinderer, Yunes arXiv:0907.1252 b$\neq 0$
M. Choptuik, F. Pretorius, arXiv:0908.1780 $b=0$ (solitons)

Zilhao, Witek, Sperhake, Cardoso, Gualtieri, Herdeiro, Nerozzi arXiv:1001.2302 $4+n$

- Shock wave collisions in higher dimensions
D. M. Eardley and S. B. Giddings, gr-qc/0201034
H. Yoshino and V. S. Rychkov hep-th/0503171
\Rightarrow Apparent horizon before the collision

Evidence for classical BH in transplanckian scattering

- Numerical relativity in 4 and higher dimensions
U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738 b=0
M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 b $=0$

Sperhake, Cardoso, Pretorius, Berti, Hinderer, Yunes arXiv:0907.1252 b$\neq 0$
M. Choptuik, F. Pretorius, arXiv:0908.1780 $b=0$ (solitons)

Zilhao, Witek, Sperhake, Cardoso, Gualtieri, Herdeiro, Nerozzi arXiv:1001.2302 $4+n$

- Shock wave collisions in higher dimensions
D. M. Eardley and S. B. Giddings, gr-qc/0201034
H. Yoshino and V. S. Rychkov hep-th/0503171
\Rightarrow Apparent horizon before the collision

LHC pp collisions well above 1 TeV !

The BH is assumed to decay through Hawking evaporation.
(?) As we approach $M_{4+n} \Rightarrow$ unknown quantum gravity effects!
First bounds rely on bad knowledge of gravitational radiation
CMS collaboration arXiv:1012.3357
ATLAS-CONF-2011-065

LHC pp collisions well above 1 TeV !

The BH is assumed to decay through Hawking evaporation.
(?) As we approach $M_{4+n} \Rightarrow$ unknown quantum gravity effects!
First bounds rely on bad knowledge of gravitational radiation
CMS collaboration arXiv:1012.3357
ATLAS-CONF-2011-065

LHC pp collisions well above 1 TeV !

The BH is assumed to decay through Hawking evaporation.
(?) As we approach $M_{4+n} \Rightarrow$ unknown quantum gravity effects!
First bounds rely on bad knowledge of gravitational radiation CMS collaboration arXiv:1012.3357 ATLAS-CONF-2011-065

LHC pp collisions well above 1 TeV !

The BH is assumed to decay through Hawking evaporation.
(?) As we approach $M_{4+n} \Rightarrow$ unknown quantum gravity effects!
First bounds rely on bad knowledge of gravitational radiation CMS collaboration arXiv:1012.3357

ATLAS-CONF-2011-065

The hierarchy problem: Higgs mass

The hierarchy problem: Higgs mass

Look at radiative corrections to Higgs mass:

The hierarchy problem: Higgs mass

Look at radiative corrections to Higgs mass:

Higgs mass runs from high scale:

$$
\delta m_{h}^{2}=\left(\left|\lambda_{f}\right|^{2}-\frac{1}{2} \lambda\right) \frac{\Lambda_{\text {cutoff }}^{2}}{8 \pi^{2}}+\ldots
$$

The hierarchy problem: Higgs mass

Look at radiative corrections to Higgs mass:

Higgs mass runs from high scale:

$$
\delta m_{h}^{2}=\left(\left|\lambda_{f}\right|^{2}-\frac{1}{2} \lambda\right) \frac{\Lambda_{\text {cutoff }}^{2}}{8 \pi^{2}}+\ldots
$$

If $\Lambda_{\text {cutoff }} \sim M_{4} \sim 10^{16} \mathrm{TeV} \Rightarrow$ fine tuning of $\sim 10^{-16}$

The hierarchy problem: BSM solutions

The hierarchy problem: BSM solutions

(1) Arrange cancellation of quadratic divergences.
\Rightarrow New particles: SUSY, Little Higgs, etc...

The hierarchy problem: BSM solutions

(1) Arrange cancellation of quadratic divergences.
\Rightarrow New particles: SUSY, Little Higgs, etc...
(2) Change the running to exponential.
\Rightarrow Strong dynamics: the Higgs is a pion field of a new strongly coupled sector.

The hierarchy problem: BSM solutions

(1) Arrange cancellation of quadratic divergences.
\Rightarrow New particles: SUSY, Little Higgs, etc...
(2) Change the running to exponential.
\Rightarrow Strong dynamics: the Higgs is a pion field of a new strongly coupled sector.
(3) Assume the fundamental Planck scale is 1 TeV .
\Rightarrow Extra dimensions.

The hierarchy problem: BSM solutions

(1) Arrange cancellation of quadratic divergences.
\Rightarrow New particles: SUSY, Little Higgs, etc...
(2) Change the running to exponential.
\Rightarrow Strong dynamics: the Higgs is a pion field of a new strongly coupled sector.
(3) Assume the fundamental Planck scale is 1 TeV .
\Rightarrow Extra dimensions.
(1) Etc...

Bounds on extra dimensions

$\mathbf{M}_{\text {PI }}^{2}=\mathrm{R}^{\mathrm{n}} \mathrm{M}_{(4+\mathrm{n})}^{2+\mathrm{n}}$	\mathbf{R} in $\mu \mathrm{m}(\mathbf{n}=\mathbf{2})$	$\mathbf{M}_{4+\mathbf{n}} \sim 1 \mathrm{TeV} \mathrm{OK}$
Deviations from r^{-2} in torsion-balance	$\lesssim 55$	$n>1$
KK graviton production @ colliders	$\lesssim 800$	$n>2$
KK graviton production in Supernovae	$\lesssim 5.1 \times 10^{-4}$	$n>3$
KK gravitons early Universe production	$\lesssim 2.2 \times 10^{-5}$	$n>3$

Classical approximation

Classical approximation

For the classical approximation for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

Classical approximation

For the classical approximation for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$
\Delta x \sim \frac{1}{p} \ll r_{S}
$$

Classical approximation

For the classical approximation for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$
\Delta x \sim \frac{1}{p} \ll r_{S}
$$

But:

- p large $\Rightarrow \Delta x$ small

Classical approximation

For the classical approximation for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$
\Delta x \sim \frac{1}{p} \ll r_{S}
$$

But:

- p large $\Rightarrow \Delta x$ small
- p large $\Rightarrow \sqrt{s} \equiv E_{C M}$ large $\Rightarrow r_{S}$ large

Classical approximation

For the classical approximation for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$
\Delta x \sim \frac{1}{p} \ll r_{S}
$$

But:

- p large $\Rightarrow \Delta x$ small
- p large $\Rightarrow \sqrt{s} \equiv E_{C M}$ large $\Rightarrow r_{S}$ large

The condition is satisfied when $\sqrt{s} \gg M_{4+n}$ (trans-Planckian).

Classical approximation

For the classical approximation for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$
\Delta x \sim \frac{1}{p} \ll r_{S}
$$

But:

- p large $\Rightarrow \Delta x$ small
- p large $\Rightarrow \sqrt{s} \equiv E_{C M}$ large $\Rightarrow r_{S}$ large

The condition is satisfied when $\sqrt{s} \gg M_{4+n}$ (trans-Planckian).
Also quantum gravity approximations indicate small corrections:
T. Banks and W. Fischler, hep-th/9906038
S. N. Solodukhin, hep-ph/0201248
S. D. H. Hsu, hep-ph/0203154

Transient period

- During formation we should have an asymmetric BH with electric and gravitational multipole moments.
\rightarrow Distorted geometry.
- The time for loss of multipoles is r_{s} (natural units).
- We will look noxt into the Hawking decay and realise that the typical timescale there is

$$
\begin{aligned}
& \text { We assume a quick loss of asymmetries } \\
& \Rightarrow \mathrm{BH} \text { settles down to a stationary axisymmetric solution. }
\end{aligned}
$$

Transient period

- During formation we should have an asymmetric BH with electric and gravitational multipole moments.
\rightarrow Distorted geometry.

- The time for loss of multipoles is r's (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

We assume a quick loss of asymmetries
 $\Rightarrow \mathrm{BH}$ settles down to a stationary axisymmetric solution.

Transient period

- During formation we should have an asymmetric BH with electric and gravitational multipole moments.
\rightarrow Distorted geometry.
- The time for loss of multipoles is r_{s} (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

We assume a quick loss of asymmetries
$\Rightarrow \mathrm{BH}$ settles down to a stationary axisymmetric solution.

Transient period

- During formation we should have an asymmetric BH with electric and gravitational multipole moments.
\rightarrow Distorted geometry.
- The time for loss of multipoles is r_{s} (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

$$
\Delta t \sim \mathbf{r}_{\mathbf{S}}\left(\frac{\mathbf{M}_{\mathbf{B H}}}{\mathbf{M}_{\mathbf{4}+\mathbf{n}}}\right)^{\frac{\mathbf{n}+2}{n+1}} \gg \mathbf{r}_{\mathbf{S}}
$$

We assume a quick loss of asymmetries
$\Rightarrow \mathrm{BH}$ settles down to a stationary axisymmetric solution.

Transient period

- During formation we should have an asymmetric BH with electric and gravitational multipole moments.
\rightarrow Distorted geometry.
- The time for loss of multipoles is r_{s} (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

$$
\Delta t \sim \mathbf{r}_{\mathbf{S}}\left(\frac{\mathbf{M}_{\mathrm{BH}}}{\mathbf{M}_{\mathbf{4}+\mathbf{n}}}\right)^{\frac{n+2}{n+1}} \gg \mathbf{r}_{\mathbf{S}}
$$

We assume a quick loss of asymmetries
$\Rightarrow \mathrm{BH}$ settles down to a stationary axisymmetric solution.

Apparent horizon

