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Transplanckian collisions @ speed of light: Motivation

1 Large extra dimensions (ADD) solve the hierarchy problem.
Transplanckian scattering starts @ ∼ 1TeV in ADD.

� SM effective theory
on a thin brane

R

Our 4D spacetime brane

Extra dimensions
M2

4 = VnMn+2
(4+n) = 1032TeV2

N. Arkani-Hamed et al. hep-th/9803315 (ADD)

2 Predicts Newton law dev. 1/r2 → 1/r2+n & KK gravitons.
Compatible with experiments if n > 2 for M4+n & 1TeV.

3 @ short distances/high energy, grav. strongest force⇒BHs!

impact parameter

Event horizon size

b
2rS ∆x � rS

⇒ √s � M4+n

Hoop conjecture⇒ σdisk ∼ πr2
S, rs =

Cn

M4+n

( √
s

M4+n

) 1
n+1

S. B. Giddings and S. D. Thomas, hep-ph/0106219
S. Dimopoulos and G. Landsberg, hep-ph/0106295
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Evidence for classical BH in transplanckian scattering

Numerical relativity in 4 and higher dimensions

U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738 b = 0

M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 b 6= 0

Sperhake, Cardoso, Pretorius, Berti, Hinderer, Yunes arXiv:0907.1252 b 6= 0

M. Choptuik, F. Pretorius, arXiv:0908.1780 b = 0 (solitons)

Zilhao, Witek, Sperhake, Cardoso, Gualtieri, Herdeiro, Nerozzi arXiv:1001.2302 4 + n

Shock wave collisions in higher dimensions
D. M. Eardley and S. B. Giddings, gr-qc/0201034

H. Yoshino and V. S. Rychkov hep-th/0503171

⇒ Apparent horizon before the collision
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LHC pp collisions well above 1 TeV!

PP

PP

proton remnant

initial state radiation

hard process

secondary decays
parton showers

hadronisation

v/c > 0.999@LHC

The BH is assumed to decay through Hawking evaporation.

(?) As we approach M4+n ⇒ unknown quantum gravity effects!

First bounds rely on bad knowledge of gravitational radiation
CMS collaboration arXiv:1012.3357

ATLAS-CONF-2011-065
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The Aichelburg-Sexl ultraboost

Schwarzschild metric→ field of source µ ∝ GDM at rest.

ds2 = −
(
1− µ

rD−3

)
dt2 +

(
1− µ

rD−3

)−1 dr2 + r2dΩ2
D−2

Boost along z
-

v → 1, M → 0, E fixed
-

ds2 = − dudv + dρ2 + ρ2dΩ2
D−3 + κΦ(ρ)δ(u)du2

Flat region I z-axis Flat region II

(u, v) = (t − z, t + z)
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Basic properties of a single shock wave

Solution of Einstein’s equations, point source Pµ = E nµ

Tµν = Eδ(u)δ(D−2)(x i)nµnν , nµnµ = 0

On the shock we have a profile

Φ(ρ) =


−2 ln(ρ) , D = 4

2
(D − 4)ρD−4 , D > 4

.

Riemann tensor singular on the shock
Null geodesics and tangent vectors are discontinuous
No difference if we smear & quantum corrections small
S. B. Giddings and V. S. Rychkov, hep-th/0409131
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Superposition of two shock waves
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Constraints due to the apparent horizon

Apparent horizon area⇒ lower bound on Mtrapped

Particle falling into BH
Instantaneous collision

News function
Trapped surface bound

Simulation

.

D

Fractional mass lost during production

1110987654

0.5

0.4

0.3

0.2

0.1

0

Frost, Gaunt, MOPS, Casals, Dolan, Parker, Webber arXiv:0904.0979

D’Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694

Cardoso, Berti and Cavaglia hep-ph/0505125

Berti, Cavaglia and Gualtieri hep-th/0309203

⇒ Upper bound on the amount of gravitational radiation
News function result 16.3% consistent with 14± 3% NGR
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Strong shock vs weak shock

D’Eath and Payne found a trick⇒ perturbative approach

1 Perform a large boost along +z with velocity β ≡ tanhα

2 Energy parameter of right/left moving shock κ→ e±ακ

3 Exact boundary conditions on u = 0+ (strong shock ν)

gµν = ν
2

D−3

[
ηµν +

λ

ν
h(1)
µν +

(
λ

ν

)2

h(2)
µν

]
,
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Validity & Physical interpretation

Note: h(i)
µν ∼

[
1

ρD−2 (
√

2v − Φ)θ(
√

2v − Φ)
]i

t
z
θ = 0

θ = π

boosted frame (−z direction)CM frame



Future light cone of the collision

u = 0 , v =
Φ(ρ)√

2
,

u
v

~x

weak shock null generators

u = 0
strong
shock

u = 0 , v >Φ(ρ)√
2

u > 0 , v = Φ(ρ̄)√
2

+ u Φ′(ρ̄)2

4
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Perturbative expansion

Assume perturbative ansatz

gµν = ν
2

D−3

[
ηµν +

∞∑
i=1

(
λ

ν

)i

h(i)
µν

]

Fix gauge order by order (de Donder)

xµ → xNµ = xµ +
∞∑

i=1

(
λ

ν

)i

ξ(i)µ

Obtain decoupled sets of wave equations with source

�h(i)N
µν = T (i−1)

µν .

Note: The source is zero for i = 1!



Perturbative expansion

Assume perturbative ansatz

gµν = ν
2

D−3

[
ηµν +

∞∑
i=1

(
λ

ν

)i

h(i)
µν

]

Fix gauge order by order (de Donder)

xµ → xNµ = xµ +
∞∑

i=1

(
λ

ν

)i

ξ(i)µ

Obtain decoupled sets of wave equations with source

�h(i)N
µν = T (i−1)

µν .

Note: The source is zero for i = 1!



Perturbative expansion

Assume perturbative ansatz

gµν = ν
2

D−3

[
ηµν +

∞∑
i=1

(
λ

ν

)i

h(i)
µν

]

Fix gauge order by order (de Donder)

xµ → xNµ = xµ +
∞∑

i=1

(
λ

ν

)i

ξ(i)µ

Obtain decoupled sets of wave equations with source

�h(i)N
µν = T (i−1)

µν .

Note: The source is zero for i = 1!



Perturbative expansion

Assume perturbative ansatz

gµν = ν
2

D−3

[
ηµν +

∞∑
i=1

(
λ

ν

)i

h(i)
µν

]

Fix gauge order by order (de Donder)

xµ → xNµ = xµ +
∞∑

i=1

(
λ

ν

)i

ξ(i)µ

Obtain decoupled sets of wave equations with source

�h(i)N
µν = T (i−1)

µν .

Note: The source is zero for i = 1!



Causal structure of the background & formal solution

u

(0, v ′, ~x ′)
~x

v

(u, v , ~x)

u = 0

h(i)N
µν (y) = F .P.

∫
u′>0

dDy ′G(y , y ′)
[
T (i−1)
µν (y ′) + 2δ(u′)∂v ′h(i)N

µν (y ′)
]
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Ray analysis off axis

ray 1

ray 2

ρ = 0

P

weak shock null generators

u = 0
strong shock



The first order result – radiation extraction

Radiative components hij = δijD(u, v , ρ) + ∆ij(x)E(u, v , ρ)

At first order (i = 1) only E(u, v , ρ)

In our paper→ Landau-Lifshitz pseudo-tensor
Yoshino and Shibata, arXiv:0907.2760

Recently shown equivalent to news function in higher D
Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

Eradiated =

∫
dt
∫

SD−2

dEnergy
dSdt

' ΩD−3

32πGD
lim
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Reduced Wave forms
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Extracting the axis limit
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Conclusions

1 Transplanckian collision in D > 4 are important for Black
Holes at the LHC.

2 We have generalised the D’Eath & Payne calculation and
found a first order estimate that indicates a smaller
emission of gravitational radiation than AH bounds.

3 However same tendency of increase with D!
4 Second order calculation (which gives good results in 4D)

on the way.
The main challenges are:

i) computational (numerically more intensive)

ii) extracting the first angular correction from numerics
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Open questions in progress

How to solve odd D? (non-itegrable tails)

Do we have same problem at second order?

How to justify extrapolation off axis (maybe some
symmetry argument?)

How to justify good agreement with NGR in 4D? (will the
same hold for D > 4?)

Thanks for your attention! Questions?
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The Standard Model – Particle content

“Low” energy degrees of freedom (after symmetry breaking):

LSM =
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∂µh∂µh−m2

h
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h2+ēa (i�∂ −mea) ea+ν̄ai�∂νa+ūa (i�∂ −mua) ua+

+ d̄a (i�∂ −mda) da − 1
4

Gµν ·Gµν − 1
2

W †
µνWµν + m2

W W †
µWµ +

− 1
4

ZµνZµν +
m2

Z
2

ZµZµ − 1
4

AµνAµν + Interactions

1 Higgs particle (s = 0),
3 families of leptons and 3 of quarks (s = 1/2),
1 non-abelian SU(3)C gluon field, 3 massive vector
bosons, 1 neutral U(1) Maxwell field (s = 1).
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The Standard Model – Interactions
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The hierarchy problem: SM vs Gravity
The action for gravity coupled to matter is

S =

∫
d4x

√
|g|
[

M2
4

2
R + LSM

]

Linear perturbations gµν = ηµν +
E
M4

hµν (units x → x/(E−1))

S =

∫ [
Lhµν ,kinetic + LSM +

E
2M4

Tµνhµν + . . .

]
,
1 TeV

M4
∼ √αG ∼ 10−16

Operator type Couplings at E ∼ 1 TeV

Tαβhαβ E/M4 10−16

SM Interactions ∼ e,gQCD,
mH
v , v

E ,
mf
v O(10−6)−O(1)
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Solving the hierarchy problem with Extra Dimensions

M4 ∼ 1016MEW

Hierarchy due to taking the scale for new physics from gravity
(mesoscopic) rather than the electroweak scale (microscopic).
The ADD solution: Assume MEW is more fundamental.
N. Arkani-Hamed et al. hep-th/9803315 (ADD)

Assume our space time is 4+n dimensional

SG ∼
∫

d4+nx M2+n
(4+n)

√−gR(4+n)

?

SM effective theory
on a thin brane

R

Our 4D spacetime brane

Extra dimensions

Take MEW ∼ 1 TeV→ M4+n as the fundamental scale

At large distances

?

M2
4

SG ∼
∫

d4x M2+n
(4+n)R

n√−gR(4)⇒ 4D gravity diluted
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Consequences of the extra dimensions

So how does gravity look like in ADD?

Fr�R ∼
1

M2+n
(4+n)r

2+n
, Fr�R ∼

1
M2+n

(4+n)R
nr2

(
1 + 2ne−

r
R + . . .

)

1 Predicts deviations from Newtonian gravity as we
approach short distances.

2 Contains KK gravitons from the 4D point of view.
3 Gravity is higher dimensional at very short distances.

This can be used to put bounds on R as a function of n.

⇒ Translates as a bound on M4+n.
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Bounds on extra dimensions

M2
4 = RnM2+n

(4+n) R in µm (n = 2) M4+n ∼ 1TeV OK

Deviations from r−2 in
torsion-balance . 55 n > 1

KK graviton produc-
tion @ colliders . 800 n > 2

KK graviton produc-
tion in Supernovae . 5.1× 10−4 n > 3

KK gravitons early
Universe production . 2.2× 10−5 n > 3

SM on a 4D brane of thickness L . (1TeV)−1 ∼ 10−13µm
To avoid bounds from Electroweak precision and fast proton decay.
Quarks and leptons may have to be on sub-branes for L . (1TeV)−1.

All SM particles propagating on a single brane.
Good approximation if process occurs at large scales compared to L.
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Gravity becomes strong above MD ∼ 1TeV
At short distances gravity is higher dimensional

⇒ √αG ∼
E
M4
→ E

M4+n
∼ E

1TeV

So gravity becomes the strongest force above 1 TeV!
⇒ Small impact parameter, high energy collision→ BHs!

impact parameter

Event horizon sizeb
2rS

parton
parton

∆x � rS

⇒ √s � M4+n

Hoop conjecture⇒ σdisk ∼ πr2
S, rs =

Cn

M4+n

( √
s

M4+n

) 1
n+1

S. B. Giddings and S. D. Thomas, hep-ph/0106219

S. Dimopoulos and G. Landsberg, hep-ph/0106295
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Evidence for classical BH in transplanckian scattering

Numerical relativity in 4 and higher dimensions

U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738 b = 0

M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 b 6= 0

Sperhake, Cardoso, Pretorius, Berti, Hinderer, Yunes arXiv:0907.1252 b 6= 0

M. Choptuik, F. Pretorius, arXiv:0908.1780 b = 0 (solitons)

Zilhao, Witek, Sperhake, Cardoso, Gualtieri, Herdeiro, Nerozzi arXiv:1001.2302 4 + n

Shock wave collisions in higher dimensions
D. M. Eardley and S. B. Giddings, gr-qc/0201034

H. Yoshino and V. S. Rychkov hep-th/0503171

⇒ Apparent horizon before the collision
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LHC pp collisions well above 1 TeV!

PP

PP

proton remnant

initial state radiation

hard process

secondary decays
parton showers

hadronisation

The BH is assumed to decay through Hawking evaporation.

(?) As we approach M4+n ⇒ unknown quantum gravity effects!

First bounds rely on bad knowledge of gravitational radiation
CMS collaboration arXiv:1012.3357

ATLAS-CONF-2011-065
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The hierarchy problem: Higgs mass

Look at radiative corrections to Higgs mass:

Higgs mass runs from high scale:

δm2
h =

(
|λf |2 −

1
2
λ

)
Λ2

cutoff
8π2 + . . .

If Λcutoff ∼ M4 ∼ 1016 TeV⇒ fine tuning of ∼ 10−16
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The hierarchy problem: BSM solutions

1 Arrange cancellation of quadratic divergences.

⇒ New particles: SUSY, Little Higgs, etc...

2 Change the running to exponential.

⇒ Strong dynamics: the Higgs is a pion field of a new
strongly coupled sector.

3 Assume the fundamental Planck scale is 1 TeV.

⇒ Extra dimensions.

4 Etc...
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Bounds on extra dimensions

M2
Pl = RnM2+n

(4+n) R in µm (n = 2) M4+n ∼ 1TeV OK

Deviations from r−2 in
torsion-balance . 55 n > 1

KK graviton produc-
tion @ colliders . 800 n > 2

KK graviton produc-
tion in Supernovae . 5.1× 10−4 n > 3

KK gravitons early
Universe production . 2.2× 10−5 n > 3
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Classical approximation

For the classical approximation for production to be valid we
need the wavelength of each colliding particle to be small
compared to the interaction length.

∆x ∼ 1
p
� rS

But:
p large⇒ ∆x small

p large⇒ √s ≡ ECM large⇒ rS large

The condition is satisfied when
√

s � M4+n (trans-Planckian).

Also quantum gravity approximations indicate small corrections:
T. Banks and W. Fischler, hep-th/9906038
S. N. Solodukhin, hep-ph/0201248

S. D. H. Hsu, hep-ph/0203154



Classical approximation

For the classical approximation for production to be valid we
need the wavelength of each colliding particle to be small
compared to the interaction length.

∆x ∼ 1
p
� rS

But:
p large⇒ ∆x small

p large⇒ √s ≡ ECM large⇒ rS large

The condition is satisfied when
√

s � M4+n (trans-Planckian).

Also quantum gravity approximations indicate small corrections:
T. Banks and W. Fischler, hep-th/9906038
S. N. Solodukhin, hep-ph/0201248

S. D. H. Hsu, hep-ph/0203154



Classical approximation

For the classical approximation for production to be valid we
need the wavelength of each colliding particle to be small
compared to the interaction length.

∆x ∼ 1
p
� rS

But:
p large⇒ ∆x small

p large⇒ √s ≡ ECM large⇒ rS large

The condition is satisfied when
√

s � M4+n (trans-Planckian).

Also quantum gravity approximations indicate small corrections:
T. Banks and W. Fischler, hep-th/9906038
S. N. Solodukhin, hep-ph/0201248

S. D. H. Hsu, hep-ph/0203154



Classical approximation

For the classical approximation for production to be valid we
need the wavelength of each colliding particle to be small
compared to the interaction length.

∆x ∼ 1
p
� rS

But:
p large⇒ ∆x small

p large⇒ √s ≡ ECM large⇒ rS large

The condition is satisfied when
√

s � M4+n (trans-Planckian).

Also quantum gravity approximations indicate small corrections:
T. Banks and W. Fischler, hep-th/9906038
S. N. Solodukhin, hep-ph/0201248

S. D. H. Hsu, hep-ph/0203154



Classical approximation

For the classical approximation for production to be valid we
need the wavelength of each colliding particle to be small
compared to the interaction length.

∆x ∼ 1
p
� rS

But:
p large⇒ ∆x small

p large⇒ √s ≡ ECM large⇒ rS large

The condition is satisfied when
√

s � M4+n (trans-Planckian).

Also quantum gravity approximations indicate small corrections:
T. Banks and W. Fischler, hep-th/9906038
S. N. Solodukhin, hep-ph/0201248

S. D. H. Hsu, hep-ph/0203154



Classical approximation

For the classical approximation for production to be valid we
need the wavelength of each colliding particle to be small
compared to the interaction length.

∆x ∼ 1
p
� rS

But:
p large⇒ ∆x small

p large⇒ √s ≡ ECM large⇒ rS large

The condition is satisfied when
√

s � M4+n (trans-Planckian).

Also quantum gravity approximations indicate small corrections:
T. Banks and W. Fischler, hep-th/9906038
S. N. Solodukhin, hep-ph/0201248

S. D. H. Hsu, hep-ph/0203154



Classical approximation

For the classical approximation for production to be valid we
need the wavelength of each colliding particle to be small
compared to the interaction length.

∆x ∼ 1
p
� rS

But:
p large⇒ ∆x small

p large⇒ √s ≡ ECM large⇒ rS large

The condition is satisfied when
√

s � M4+n (trans-Planckian).

Also quantum gravity approximations indicate small corrections:
T. Banks and W. Fischler, hep-th/9906038
S. N. Solodukhin, hep-ph/0201248

S. D. H. Hsu, hep-ph/0203154



Transient period

During formation we should have an asymmetric BH with
electric and gravitational multipole moments.

→Distorted geometry.

HAWKING ?BALDING

The time for loss of multipoles is rS (natural units).

We will look next into the Hawking decay and realise that
the typical timescale there is

∆t ∼ rS

(
MBH

M4+n

) n+2
n+1

� rS .

We assume a quick loss of asymmetries
⇒ BH settles down to a stationary axisymmetric solution.
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