Gravitational radiation from shock wave collisions in higher dimensions

Marco Sampaio

msampaio@ua.pt

Aveiro University & i3n

December 20th, 2011

IV Black Hole Workshop

In collaboration with Flávio Coelho, Carlos Herdeiro & Carmen Rebelo

Based on: JHEP07(2011)121 [arXiv:1105.2298] & work in progress

• Large extra dimensions (ADD) solve the hierarchy problem. Transplanckian scattering starts $@ \sim 1 \text{TeV}$ in ADD.

• Large extra dimensions (ADD) solve the hierarchy problem. Transplanckian scattering starts $@ \sim 1 \text{TeV}$ in ADD.

N. Arkani-Hamed et al. hep-th/9803315 (ADD)

Predicts Newton law dev. $1/r^2 → 1/r^{2+n}$ & KK gravitons. Compatible with experiments if n > 2 for M_{4+n} ≥ 1TeV.

• Large extra dimensions (ADD) solve the hierarchy problem. Transplanckian scattering starts $@ \sim 1 \text{TeV}$ in ADD.

- Predicts Newton law dev. $1/r^2 \rightarrow 1/r^{2+n}$ & KK gravitons. Compatible with experiments if n > 2 for M_{4+n} ≥ 1TeV.
- @ short distances/high energy, grav. strongest force
 BHs!

• Large extra dimensions (ADD) solve the hierarchy problem. Transplanckian scattering starts $@ \sim 1 \text{TeV}$ in ADD.

- Predicts Newton law dev. $1/r^2 \rightarrow 1/r^{2+n}$ & KK gravitons. Compatible with experiments if n > 2 for M_{4+n} ≥ 1TeV.
- @ short distances/high energy, grav. strongest force
 BHs!

$$b_{\text{input parameter}} \stackrel{2\mathbf{r}_{S}}{\stackrel{S}}{\stackrel{I}_{S}}{\stackrel{I}{\stackrel{I}_{S}}{\stackrel{I}_{S}}{\stackrel{I}_{S}}{\stackrel{I}_{S}}{\stackrel{I$$

• Large extra dimensions (ADD) solve the hierarchy problem. Transplanckian scattering starts $@ \sim 1 \text{TeV}$ in ADD.

- Predicts Newton law dev. $1/r^2 \rightarrow 1/r^{2+n}$ & KK gravitons. Compatible with experiments if n > 2 for M_{4+n} ≥ 1TeV.
- @ short distances/high energy, grav. strongest force
 BHs!

Evidence for classical BH in transplanckian scattering

Numerical relativity in 4 and higher dimensions

U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738 b = 0M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 $b \neq 0$ Sperhake, Cardoso, Pretorius, Berti, Hinderer, Yunes arXiv:0907.1252 $b \neq 0$ M. Choptuik, F. Pretorius, arXiv:0908.1780 b = 0 (solitons) Zilhao, Witek, Sperhake, Cardoso, Gualtieri, Herdeiro, Nerozzi arXiv:1001.2302 4 + n

Shock wave collisions in higher dimensions
 D. M. Eardley and S. B. Giddings, gr-qc/0201034
 H. Yoshino and V. S. Rychkov hep-th/0503171
 ⇒ Apparent horizon before the collision

Evidence for classical BH in transplanckian scattering

Numerical relativity in 4 and higher dimensions

U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738 b = 0M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 $b \neq 0$ Sperhake, Cardoso, Pretorius, Berti, Hinderer, Yunes arXiv:0907.1252 $b \neq 0$ M. Choptuik, F. Pretorius, arXiv:0908.1780 b = 0 (solitons) Zilhao, Witek, Sperhake, Cardoso, Gualtieri, Herdeiro, Nerozzi arXiv:1001.2302 4 + n

Shock wave collisions in higher dimensions
 D. M. Eardley and S. B. Giddings, gr-qc/0201034
 H. Yoshino and V. S. Rychkov hep-th/0503171
 ⇒ Apparent horizon before the collision

v/*c* > 0.999@*LHC*

The **BH** is assumed to **decay through Hawking evaporation**. (?) As we approach $M_{4+n} \Rightarrow$ **unknown** quantum gravity effects! First bounds rely on **bad** knowledge of gravitational radiation CMS collaboration arXiv:1012.3357 ATLAS-CONF-2011-065

v/c > 0.999@*LHC*

The BH is assumed to decay through Hawking evaporation.

(?) As we approach $M_{4+n} \Rightarrow$ **unknown** quantum gravity effects!

First bounds rely on **bad** knowledge of gravitational radiation CMS collaboration arXiv:1012.3357 ATLAS-CONF-2011-065

v/*c* > 0.999@*LHC*

The **BH** is assumed to **decay through Hawking evaporation**. (?) As we approach $M_{4+n} \Rightarrow$ **unknown** quantum gravity effects! First bounds rely on **bad** knowledge of gravitational radiation CMS collaboration arXiv:1012.3357

ATLAS-CONF-2011-065

v/*c* > 0.999@*LHC*

The **BH** is assumed to **decay through Hawking evaporation**. (?) As we approach $M_{4+n} \Rightarrow$ **unknown** quantum gravity effects! First bounds rely on **bad** knowledge of gravitational radiation CMS collaboration arXiv:1012.3357 ATLAS-CONF-2011-065

Outline

Aichelburg-SexI shock waves

- Definition & Physical interpretation
- Superposition and apparent horizons
- 2 Shock wave collisions in D-dimensions
 - Perturbative set up to determine future development
 - The first order calculation & radiation extraction

Outline

Aichelburg-Sexl shock waves

- Definition & Physical interpretation
- Superposition and apparent horizons

2 Shock wave collisions in D-dimensions

- Perturbative set up to determine future development
- The first order calculation & radiation extraction

$$ds^{2} = -\left(1 - \frac{\mu}{r^{D-3}}\right) dt^{2} + \left(1 - \frac{\mu}{r^{D-3}}\right)^{-1} dr^{2} + r^{2} d\Omega_{D-2}^{2}$$

$$ds^{2} = -\left(1 - \frac{\mu}{r^{D-3}}\right) dt^{2} + \left(1 - \frac{\mu}{r^{D-3}}\right)^{-1} dr^{2} + r^{2} d\Omega_{D-2}^{2}$$

$$ds^{2} = -\left(1 - \frac{\mu}{r^{D-3}}\right) dt^{2} + \left(1 - \frac{\mu}{r^{D-3}}\right)^{-1} dr^{2} + r^{2} d\Omega_{D-2}^{2}$$

Schwarzschild metric \rightarrow field of source $\mu \propto G_D M$ at rest.

$$ds^{2} = -\left(1 - \frac{\mu}{r^{D-3}}\right) dt^{2} + \left(1 - \frac{\mu}{r^{D-3}}\right)^{-1} dr^{2} + r^{2} d\Omega_{D-2}^{2}$$

 $ds^2 = -dudv + d\rho^2 + \rho^2 d\Omega_{D-3}^2 + \kappa \Phi(\rho) \delta(u) du^2$

Schwarzschild metric \rightarrow field of source $\mu \propto G_D M$ at rest.

$$ds^{2} = -\left(1 - \frac{\mu}{r^{D-3}}\right) dt^{2} + \left(1 - \frac{\mu}{r^{D-3}}\right)^{-1} dr^{2} + r^{2} d\Omega_{D-2}^{2}$$

 $ds^{2} = - dudv + d\rho^{2} + \rho^{2} d\Omega_{D-3}^{2} + \kappa \Phi(\rho) \delta(u) du^{2}$

Schwarzschild metric \rightarrow field of source $\mu \propto G_D M$ at rest.

$$ds^{2} = -\left(1 - \frac{\mu}{r^{D-3}}\right) dt^{2} + \left(1 - \frac{\mu}{r^{D-3}}\right)^{-1} dr^{2} + r^{2} d\Omega_{D-2}^{2}$$

 $ds^{2} = -dudv + d\rho^{2} + \rho^{2}d\Omega_{D-3}^{2} + \kappa\Phi(\rho)\delta(u)du^{2}$

• Solution of Einstein's equations, **point source** $P^{\mu} = E n^{\mu}$

$$T^{\mu\nu} = E \delta(u) \delta^{(D-2)}(x^i) n^{\mu} n^{\nu} , \ n^{\mu} n_{\mu} = 0$$

• On the shock we have a profile

$$\Phi(\rho) = \begin{cases} -2\ln(\rho) , & D = 4\\ \frac{2}{(D-4)\rho^{D-4}} , & D > 4 \end{cases}$$

- **Riemann** tensor singular on the shock
- Null geodesics and tangent vectors are discontinuous
- No difference if we smear & quantum corrections small
 S. B. Giddings and V. S. Rychkov, hep-th/0409131

• Solution of Einstein's equations, **point source** $P^{\mu} = E n^{\mu}$

$$T^{\mu\nu} = E \delta(u) \delta^{(D-2)}(x^i) n^{\mu} n^{\nu} , n^{\mu} n_{\mu} = 0$$

• On the **shock** we have a **profile**

$$\Phi(\rho) = \begin{cases} -2\ln(\rho) , & D = 4 \\ \frac{2}{(D-4)\rho^{D-4}} , & D > 4 \end{cases}$$

٠

- Riemann tensor singular on the shock
- Null geodesics and tangent vectors are discontinuous
- No difference if we smear & quantum corrections small
 S. B. Giddings and V. S. Rychkov, hep-th/0409131

• Solution of Einstein's equations, **point source** $P^{\mu} = E n^{\mu}$

$$T^{\mu\nu} = E \delta(u) \delta^{(D-2)}(x^i) n^{\mu} n^{\nu} , \ n^{\mu} n_{\mu} = 0$$

• On the **shock** we have a **profile**

٠

- Riemann tensor singular on the shock
- Null geodesics and tangent vectors are discontinuous
- No difference if we smear & quantum corrections small
 S. B. Giddings and V. S. Rychkov, hep-th/0409131

• Solution of Einstein's equations, **point source** $P^{\mu} = E n^{\mu}$

$$T^{\mu\nu} = E \delta(u) \delta^{(D-2)}(x^i) n^{\mu} n^{\nu} , n^{\mu} n_{\mu} = 0$$

• On the **shock** we have a **profile**

٠

- Riemann tensor singular on the shock
- Null geodesics and tangent vectors are discontinuous
- No difference if we smear & quantum corrections small
 S. B. Giddings and V. S. Rychkov, hep-th/0409131

• Solution of Einstein's equations, **point source** $P^{\mu} = E n^{\mu}$

$$T^{\mu\nu} = E \delta(u) \delta^{(D-2)}(x^{i}) n^{\mu} n^{\nu} , n^{\mu} n_{\mu} = 0$$

• On the **shock** we have a **profile**

- Riemann tensor singular on the shock
- Null geodesics and tangent vectors are discontinuous
- No difference if we smear & quantum corrections small
 S. B. Giddings and V. S. Rychkov, hep-th/0409131

Outline

Aichelburg-Sexl shock waves Definition & Physical interpretation

Superposition and apparent horizons

2 Shock wave collisions in D-dimensions

- Perturbative set up to determine future development
- The first order calculation & radiation extraction

Constraints due to the apparent horizon

• Apparent horizon area \Rightarrow lower bound on $M_{trapped}$

Frost, Gaunt, MOPS, Casals, Dolan, Parker, Webber arXiv:0904.0979 D'Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694 Cardoso, Berti and Cavaglia hep-ph/0505125 Berti, Cavaglia and Gualtieri hep-th/0309203

ullet \Rightarrow Upper bound on the amount of gravitational radiation

• News function result 16.3% consistent with $14 \pm 3\%$ NGR
Constraints due to the apparent horizon

• Apparent horizon area \Rightarrow lower bound on $M_{trapped}$

Frost, Gaunt, MOPS, Casals, Dolan, Parker, Webber arXiv:0904.0979 D'Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694 Cardoso, Berti and Cavaglia hep-ph/0505125 Berti, Cavaglia and Gualtieri hep-th/0309203

→ Upper bound on the amount of gravitational radiation
 News function result 16.3% consistent with 14 + 3% NG

Constraints due to the apparent horizon

• Apparent horizon area \Rightarrow lower bound on $M_{trapped}$

Frost, Gaunt, MOPS, Casals, Dolan, Parker, Webber arXiv:0904.0979 D'Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694 Cardoso, Berti and Cavaglia hep-ph/0505125 Berti, Cavaglia and Gualtieri hep-th/0309203

 $\bullet \Rightarrow$ Upper bound on the amount of gravitational radiation

• News function result 16.3% consistent with 14 \pm 3% NGR

Outline

1 Aichelburg-Sexl shock waves

- Definition & Physical interpretation
- Superposition and apparent horizons

2 Shock wave collisions in D-dimensions

- Perturbative set up to determine future development
- The first order calculation & radiation extraction

- **1** Perform a large boost along +z with velocity $\beta \equiv \tanh \alpha$
- ⁽²⁾ Energy parameter of right/left moving shock $\kappa \to e^{\pm \alpha} \kappa$
- **(3)** Exact boundary conditions on $u = 0^+$ (strong shock ν)

$$g_{\mu\nu} = \nu^{\frac{2}{D-3}} \left[\eta_{\mu\nu} + \frac{\lambda}{\nu} h^{(1)}_{\mu\nu} + \left(\frac{\lambda}{\nu}\right)^2 h^{(2)}_{\mu\nu} \right] ,$$

- **1** Perform a large boost along +z with velocity $\beta \equiv \tanh \alpha$
- 2 Energy parameter of right/left moving shock $\kappa
 ightarrow e^{\pm lpha} \kappa$
- **(3)** Exact boundary conditions on $u = 0^+$ (strong shock ν)

$$g_{\mu\nu} = \nu^{\frac{2}{D-3}} \left[\eta_{\mu\nu} + \frac{\lambda}{\nu} h^{(1)}_{\mu\nu} + \left(\frac{\lambda}{\nu}\right)^2 h^{(2)}_{\mu\nu} \right] ,$$

- Perform a large boost along +z with velocity $\beta \equiv \tanh \alpha$
- 2 Energy parameter of right/left moving shock $\kappa \rightarrow e^{\pm \alpha} \kappa$
- **(3)** Exact boundary conditions on $u = 0^+$ (strong shock ν)

$$g_{\mu\nu} = \nu^{\frac{2}{D-3}} \left[\eta_{\mu\nu} + \frac{\lambda}{\nu} h^{(1)}_{\mu\nu} + \left(\frac{\lambda}{\nu}\right)^2 h^{(2)}_{\mu\nu} \right] ,$$

- **1** Perform a large boost along +z with velocity $\beta \equiv \tanh \alpha$
- 2 Energy parameter of right/left moving shock $\kappa \rightarrow e^{\pm \alpha} \kappa$
- Solution Solution Solution $u = 0^+$ (strong shock ν)

$$g_{\mu
u} =
u^{rac{2}{D-3}} \left[\eta_{\mu
u} + rac{\lambda}{
u} h^{(1)}_{\mu
u} + \left(rac{\lambda}{
u}
ight)^2 h^{(2)}_{\mu
u}
ight] ,$$

Validity & Physical interpretation

Note:
$$h_{\mu\nu}^{(i)} \sim \left[\frac{1}{\rho^{D-2}}(\sqrt{2}\nu - \Phi)\theta(\sqrt{2}\nu - \Phi)\right]^i$$

CM frame

boosted frame (-z direction)

Future light cone of the collision

Future light cone of the collision

Future light cone of the collision

• Assume perturbative ansatz

$$m{g}_{\mu
u} =
u^{rac{2}{D-3}} \left[\eta_{\mu
u} + \sum_{i=1}^{\infty} \left(rac{\lambda}{
u}
ight)^i m{h}_{\mu
u}^{(i)}
ight]$$

• Fix gauge order by order (de Donder)

$$x^{\mu} \rightarrow x^{N\mu} = x^{\mu} + \sum_{i=1}^{\infty} \left(\frac{\lambda}{\nu}\right)^{i} \xi^{(i)\mu}$$

Obtain decoupled sets of wave equations with source

$$\Box h_{\mu\nu}^{(i)N} = T_{\mu\nu}^{(i-1)} .$$

• Assume perturbative ansatz

$$m{g}_{\mu
u} =
u^{rac{2}{D-3}} \left[\eta_{\mu
u} + \sum_{i=1}^{\infty} \left(rac{\lambda}{
u}
ight)^i m{h}_{\mu
u}^{(i)}
ight]$$

• Fix gauge order by order (de Donder)

$$x^{\mu}
ightarrow x^{N\mu} = x^{\mu} + \sum_{i=1}^{\infty} \left(\frac{\lambda}{\nu}\right)^i \xi^{(i)\mu}$$

Obtain decoupled sets of wave equations with source

$$\Box h_{\mu\nu}^{(i)N} = T_{\mu\nu}^{(i-1)} .$$

• Assume perturbative ansatz

$$m{g}_{\mu
u} =
u^{rac{2}{D-3}} \left[\eta_{\mu
u} + \sum_{i=1}^{\infty} \left(rac{\lambda}{
u}
ight)^i m{h}_{\mu
u}^{(i)}
ight]$$

• Fix gauge order by order (de Donder)

$$x^{\mu}
ightarrow x^{N\mu} = x^{\mu} + \sum_{i=1}^{\infty} \left(\frac{\lambda}{\nu}\right)^i \xi^{(i)\mu}$$

Obtain decoupled sets of wave equations with source

$$\Box h_{\mu\nu}^{(i)N} = T_{\mu\nu}^{(i-1)} .$$

• Assume perturbative ansatz

$$m{g}_{\mu
u} =
u^{rac{2}{D-3}} \left[\eta_{\mu
u} + \sum_{i=1}^{\infty} \left(rac{\lambda}{
u}
ight)^i m{h}_{\mu
u}^{(i)}
ight]$$

• Fix gauge order by order (de Donder)

$$x^{\mu}
ightarrow x^{N\mu} = x^{\mu} + \sum_{i=1}^{\infty} \left(\frac{\lambda}{\nu}\right)^i \xi^{(i)\mu}$$

Obtain decoupled sets of wave equations with source

$$\Box h_{\mu\nu}^{(i)N} = T_{\mu\nu}^{(i-1)} .$$

Causal structure of the background & formal solution

Outline

1 Aichelburg-Sexl shock waves

- Definition & Physical interpretation
- Superposition and apparent horizons

2 Shock wave collisions in D-dimensions

- Perturbative set up to determine future development
- The first order calculation & radiation extraction

Integration limits and ray analysis 1

Note: Point at the axis is a blind spot \leftarrow destructive interference

Integration limits and ray analysis 1

Note: Point at the axis is a blind spot \leftarrow destructive interference

Ray analysis off axis

• Radiative components $h_{ij} = \delta_{ij} D(u, v, \rho) + \Delta_{ij}(x) E(u, v, \rho)$

- At first order (i = 1) only $E(u, v, \rho)$
- In our paper \rightarrow Landau-Lifshitz pseudo-tensor Yoshino and Shibata, arXiv:0907.2760
- Recently shown equivalent to news function in higher D Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

$$E_{\text{radiated}} = \int dt \int_{S^{D-2}} \frac{dEnergy}{dSdt}$$

$$\simeq \frac{\Omega_{D-3}}{32\pi G_D} \lim_{\hat{\theta} \to 0, r \to \infty} \left(r^2 \rho^{D-4} \int h^{ij}_{,v} h_{ij,v} dt \right)$$

$$\frac{E_{\text{radiated}}}{E_{CM}} \to \frac{1}{8} \frac{D-2}{D-3} \lim_{\hat{\theta} \to 0, r \to \infty} \left(\int (r \rho^{\frac{D-4}{2}} E_{,v})^2 dt \right)$$

- Radiative components $h_{ij} = \delta_{ij}D(u, v, \rho) + \Delta_{ij}(x)E(u, v, \rho)$
- At first order (i = 1) only $E(u, v, \rho)$
- In our paper \rightarrow Landau-Lifshitz pseudo-tensor Yoshino and Shibata, arXiv:0907.2760
- Recently shown equivalent to news function in higher D Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

$$E_{\text{radiated}} = \int dt \int_{S^{D-2}} \frac{dEnergy}{dSdt}$$

$$\simeq \frac{\Omega_{D-3}}{32\pi G_D} \lim_{\hat{\theta} \to 0, r \to \infty} \left(r^2 \rho^{D-4} \int h^{ij}_{,v} h_{ij,v} dt \right)$$

$$\frac{E_{\text{radiated}}}{E_{CM}} \to \frac{1}{8} \frac{D-2}{D-3} \lim_{\hat{\theta} \to 0, r \to \infty} \left(\int (r \rho^{\frac{D-4}{2}} E_{,v})^2 dt \right)$$

• Radiative components $h_{ij} = \delta_{ij} D(u, v, \rho) + \Delta_{ij}(x) E(u, v, \rho)$

- At first order (i = 1) only $E(u, v, \rho)$
- In our paper \rightarrow Landau-Lifshitz pseudo-tensor Yoshino and Shibata, arXiv:0907.2760
- Recently shown equivalent to news function in higher D Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

$$E_{\text{radiated}} = \int dt \int_{S^{D-2}} \frac{dEnergy}{dSdt}$$

$$\simeq \frac{\Omega_{D-3}}{32\pi G_D} \lim_{\hat{\theta} \to 0, r \to \infty} \left(r^2 \rho^{D-4} \int h^{ij}_{,v} h_{ij,v} dt \right)$$

$$\frac{E_{\text{radiated}}}{E_{CM}} \to \frac{1}{8} \frac{D-2}{D-3} \lim_{\hat{\theta} \to 0, r \to \infty} \left(\int (r \rho^{\frac{D-4}{2}} E_{,v})^2 dt \right)$$

• Radiative components $h_{ij} = \delta_{ij}D(u, v, \rho) + \Delta_{ij}(x)E(u, v, \rho)$

- At first order (i = 1) only $E(u, v, \rho)$
- In our paper → Landau-Lifshitz pseudo-tensor Yoshino and Shibata, arXiv:0907.2760
- Recently shown equivalent to news function in higher D Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

$$E_{\text{radiated}} = \int dt \int_{S^{D-2}} \frac{dEnergy}{dSdt}$$

$$\simeq \frac{\Omega_{D-3}}{32\pi G_D} \lim_{\hat{\theta} \to 0, r \to \infty} \left(r^2 \rho^{D-4} \int h^{ij}_{,v} h_{ij,v} dt \right)$$

$$\frac{E_{\text{radiated}}}{E_{CM}} \to \frac{1}{8} \frac{D-2}{D-3} \lim_{\hat{\theta} \to 0, r \to \infty} \left(\int (r \rho^{\frac{D-4}{2}} E_{,v})^2 dt \right)$$

• Radiative components $h_{ij} = \delta_{ij} D(u, v, \rho) + \Delta_{ij}(x) E(u, v, \rho)$

- At first order (i = 1) only $E(u, v, \rho)$
- In our paper \rightarrow Landau-Lifshitz pseudo-tensor Yoshino and Shibata, arXiv:0907.2760
- Recently shown equivalent to news function in higher D Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

$$E_{\text{radiated}} = \int dt \int_{S^{D-2}} \frac{dEnergy}{dSdt}$$

$$\simeq \frac{\Omega_{D-3}}{32\pi G_D} \lim_{\hat{\theta} \to 0, r \to \infty} \left(r^2 \rho^{D-4} \int h^{ij}_{,v} h_{ij,v} dt \right)$$

$$\frac{E_{\text{radiated}}}{E_{CM}} \to \frac{1}{8} \frac{D-2}{D-3} \lim_{\hat{\theta} \to 0, r \to \infty} \left(\int (r \rho^{\frac{D-4}{2}} E_{,v})^2 dt \right)$$

• Radiative components $h_{ij} = \delta_{ij} D(u, v, \rho) + \Delta_{ij}(x) E(u, v, \rho)$

- At first order (i = 1) only $E(u, v, \rho)$
- In our paper \rightarrow Landau-Lifshitz pseudo-tensor Yoshino and Shibata, arXiv:0907.2760
- Recently shown equivalent to news function in higher D Tanabe, Kinoshita and Shiromizu, arXiv:1104.0303

$$E_{\text{radiated}} = \int dt \int_{S^{D-2}} \frac{dEnergy}{dSdt}$$

$$\simeq \frac{\Omega_{D-3}}{32\pi G_D} \lim_{\hat{\theta} \to 0, r \to \infty} \left(r^2 \rho^{D-4} \int h^{ij}_{,v} h_{ij,v} dt \right)$$

$$\frac{E_{\text{radiated}}}{E_{CM}} \to \frac{1}{8} \frac{D-2}{D-3} \lim_{\hat{\theta} \to 0, r \to \infty} \left(\int (r \rho^{\frac{D-4}{2}} E_{,v})^2 dt \right)$$

Reduced Wave forms

Extracting the axis limit

D	4	5	6	7	8	9	10
AH bound (%)	29.3	33.5	36.1	37.9	39.3	40.4	41.2
First order(%)	25.0	—	33.3	—	37.5	—	40.0

1 Aichelburg-Sexl shock waves

- Definition & Physical interpretation
- Superposition and apparent horizons

2 Shock wave collisions in D-dimensions Perturbative set up to determine future development The first order calculation & radiation extraction

- Transplanckian collision in D > 4 are important for Black Holes at the LHC.
- We have generalised the D'Eath & Payne calculation and found a first order estimate that indicates a smaller emission of gravitational radiation than AH bounds.
- Intersection of the section of th
- Second order calculation (which gives good results in 4D) on the way.

The main challenges are:

i) computational (numerically more intensive)

• Transplanckian collision in D > 4 are important for Black Holes at the LHC.

- We have generalised the D'Eath & Payne calculation and found a first order estimate that indicates a smaller emission of gravitational radiation than AH bounds.
- Intersection of the section of th
- Second order calculation (which gives good results in 4D) on the way.

The main challenges are:

i) computational (numerically more intensive)

- Transplanckian collision in D > 4 are important for Black Holes at the LHC.
- We have generalised the D'Eath & Payne calculation and found a first order estimate that indicates a smaller emission of gravitational radiation than AH bounds.
- Increase with D!
- Second order calculation (which gives good results in 4D) on the way.

The main challenges are:

i) computational (numerically more intensive)

- Transplanckian collision in D > 4 are important for Black Holes at the LHC.
- We have generalised the D'Eath & Payne calculation and found a first order estimate that indicates a smaller emission of gravitational radiation than AH bounds.
- However same tendency of increase with D!
- Second order calculation (which gives good results in 4D) on the way.

The main challenges are:

i) computational (numerically more intensive)

- Transplanckian collision in D > 4 are important for Black Holes at the LHC.
- We have generalised the D'Eath & Payne calculation and found a first order estimate that indicates a smaller emission of gravitational radiation than AH bounds.
- However same tendency of increase with D!
- Second order calculation (which gives good results in 4D) on the way.

The main challenges are:

- i) computational (numerically more intensive)
- ii) extracting the first angular correction from numerics

Open questions in progress

- How to solve odd *D*? (non-itegrable tails)
- Do we have same problem at second order?
- How to **justify extrapolation** off axis (maybe some symmetry argument?)
- How to justify good agreement with NGR in 4D? (will the same hold for D > 4?)

Open questions in progress

• How to solve odd D? (non-itegrable tails)

- Do we have same problem at second order?
- How to **justify extrapolation** off axis (maybe some symmetry argument?)
- How to justify good agreement with NGR in 4D? (will the same hold for D > 4?)
Open questions in progress

- How to solve odd D? (non-itegrable tails)
- Do we have same problem at second order?
- How to **justify extrapolation** off axis (maybe some symmetry argument?)
- How to justify good agreement with NGR in 4D? (will the same hold for D > 4?)

Open questions in progress

- How to solve odd D? (non-itegrable tails)
- Do we have same problem at second order?
- How to **justify extrapolation** off axis (maybe some symmetry argument?)
- How to justify good agreement with NGR in 4D? (will the same hold for D > 4?)

Open questions in progress

- How to solve odd D? (non-itegrable tails)
- Do we have same problem at second order?
- How to justify extrapolation off axis (maybe some symmetry argument?)
- How to justify good agreement with NGR in 4D? (will the same hold for D > 4?)

Thanks for your attention! Questions?

BACKUP

- 1 Higgs particle (s = 0),
- 3 families of leptons and 3 of quarks (s = 1/2),
- 1 non-abelian SU(3)_C gluon field, 3 massive vector bosons, 1 neutral U(1) Maxwell field (s = 1).

"Low" energy degrees of freedom (after symmetry breaking):

$$\mathcal{L}_{SM} = \frac{1}{2} \partial^{\mu} h \partial_{\mu} h - \frac{m_h^2}{2} h^2$$

• 1 Higgs particle (s = 0),

- 3 families of leptons and 3 of quarks (s = 1/2),
- 1 non-abelian SU(3)_C gluon field, 3 massive vector bosons, 1 neutral U(1) Maxwell field (s = 1).

$$\begin{split} \mathcal{L}_{SM} &= \frac{1}{2} \partial^{\mu} h \partial_{\mu} h - \frac{m_{h}^{2}}{2} h^{2} + \bar{e}^{a} \left(i \not{\partial} - m_{e_{a}} \right) e^{a} + \bar{\nu}^{a} i \not{\partial} \nu^{a} + \bar{u}^{a} \left(i \not{\partial} - m_{u_{a}} \right) u^{a} + \\ &+ \bar{d}^{a} \left(i \not{\partial} - m_{d_{a}} \right) d^{a} \end{split}$$

- 1 Higgs particle (s = 0),
- 3 families of leptons and 3 of quarks (s = 1/2),
- 1 non-abelian SU(3)_C gluon field, 3 massive vector bosons, 1 neutral U(1) Maxwell field (s = 1).

$$\begin{split} \mathcal{L}_{SM} &= \frac{1}{2} \partial^{\mu} h \partial_{\mu} h - \frac{m_{h}^{2}}{2} h^{2} + \bar{e}^{a} \left(i \not{\partial} - m_{e_{a}} \right) e^{a} + \bar{\nu}^{a} i \not{\partial} \nu^{a} + \bar{u}^{a} \left(i \not{\partial} - m_{u_{a}} \right) u^{a} + \\ &+ \bar{d}^{a} \left(i \not{\partial} - m_{d_{a}} \right) d^{a} - \frac{1}{4} \, \mathbf{G}_{\mu\nu} \cdot \mathbf{G}^{\mu\nu} - \frac{1}{2} W^{\dagger}_{\mu\nu} W^{\mu\nu} + m_{W}^{2} W^{\dagger}_{\mu} W^{\mu} + \\ &- \frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} + \frac{m_{Z}^{2}}{2} Z_{\mu} Z^{\mu} - \frac{1}{4} A_{\mu\nu} A^{\mu\nu} \end{split}$$

- 1 Higgs particle (s = 0),
- 3 families of leptons and 3 of quarks (s = 1/2),
- 1 non-abelian SU(3)_C gluon field, 3 massive vector bosons, 1 neutral U(1) Maxwell field (s = 1).

$$\begin{split} \mathcal{L}_{SM} &= \frac{1}{2} \partial^{\mu} h \partial_{\mu} h - \frac{m_{h}^{2}}{2} h^{2} + \bar{e}^{a} \left(i \not{\partial} - m_{e_{a}} \right) e^{a} + \bar{\nu}^{a} i \not{\partial} \nu^{a} + \bar{u}^{a} \left(i \not{\partial} - m_{u_{a}} \right) u^{a} + \\ &+ \bar{d}^{a} \left(i \not{\partial} - m_{d_{a}} \right) d^{a} - \frac{1}{4} \, \mathbf{G}_{\mu\nu} \cdot \mathbf{G}^{\mu\nu} - \frac{1}{2} W^{\dagger}_{\mu\nu} W^{\mu\nu} + m_{W}^{2} W^{\dagger}_{\mu} W^{\mu} + \\ &- \frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} + \frac{m_{Z}^{2}}{2} Z_{\mu} Z^{\mu} - \frac{1}{4} A_{\mu\nu} A^{\mu\nu} + Interactions \end{split}$$

- 1 Higgs particle (s = 0),
- 3 families of leptons and 3 of quarks (s = 1/2),
- 1 non-abelian SU(3)_C gluon field, 3 massive vector bosons, 1 neutral U(1) Maxwell field (s = 1).

The Standard Model – Interactions

The hierarchy problem: SM vs Gravity The action for gravity coupled to matter is

 $S = \int d^4x \sqrt{|g|} \left[\frac{M_4^2}{2} R + \mathcal{L}_{SM} \right]$

The hierarchy problem: SM vs Gravity The action for gravity coupled to matter is

$$S = \int d^4x \sqrt{|g|} \left[\frac{M_4^2}{2} R + \mathcal{L}_{SM} \right]$$

Linear perturbations $g_{\mu\nu} = \eta_{\mu\nu} + \frac{E}{M_4}h_{\mu\nu}$ (units $x \to x/(E^{-1})$)

$$\mathcal{S} = \int \left[\mathcal{L}_{h_{\mu\nu}, \text{kinetic}} + \mathcal{L}_{SM} + \frac{E}{2M_4} T_{\mu\nu} h^{\mu\nu} + \ldots \right], \frac{1 \text{ TeV}}{M_4} \sim \sqrt{\alpha}_{\rm G} \sim 10^{-16}$$

The hierarchy problem: SM vs Gravity The action for gravity coupled to matter is

$$S = \int d^4x \sqrt{|g|} \left[\frac{M_4^2}{2} R + \mathcal{L}_{SM} \right]$$

Linear perturbations $g_{\mu\nu} = \eta_{\mu\nu} + \frac{E}{M_4} h_{\mu\nu}$ (units $x \to x/(E^{-1})$)

$$\mathcal{S} = \int \left[\mathcal{L}_{h_{\mu\nu}, \text{kinetic}} + \mathcal{L}_{SM} + \frac{E}{2M_4} T_{\mu\nu} h^{\mu\nu} + \ldots \right], \frac{1 \text{ TeV}}{M_4} \sim \sqrt{\alpha}_{\rm G} \sim 10^{-16}$$

Operator type	Couplings	at $E \sim 1 { m TeV}$
$\mathcal{T}_{lphaeta} \mathit{h}^{lphaeta}$	E/M_4	10 ⁻¹⁶
SM Interactions	$\sim m{e}, m{g}_{QCD}, rac{m_H}{v}, rac{m{v}}{m{E}}, rac{m_f}{m{v}}$	<i>O</i> (10 ⁻⁶) - <i>O</i> (1)

Solving the hierarchy problem with Extra Dimensions $M_4 \sim 10^{16} M_{EW}$

Hierarchy due to taking the scale for new physics from gravity (mesoscopic) rather than the electroweak scale (microscopic).

The ADD solution: Assume M_{EW} is more fundamental.

N. Arkani-Hamed et al. hep-th/9803315 (ADD)

Assume our space time is 4+n dimensional

 $\mathbf{S}_{\mathbf{G}}\sim\int\mathrm{d}^{4+n}x\,\mathsf{M}^{2+n}_{(4+n)}\,\sqrt{-g}\,\mathcal{R}^{(4+n)}$

 $\bullet~$ Take $M_{EW} \sim$ 1 TeV $\rightarrow M_{4+n}$ as the fundamental scale

At large distances M²

 ${f S}_{f G}\sim\int {
m d}^4 x\, M^{2+n\,\dagger}_{(4+n)}{f R}^n\,\sqrt{-g}\,{\cal R}^{(4)}{\Rightarrow}\,4{
m D}\,$ gravity diluted

Solving the hierarchy problem with Extra Dimensions $M_4 \sim 10^{16} M_{EW}$

Hierarchy due to taking the scale for new physics from gravity (mesoscopic) rather than the electroweak scale (microscopic).

The ADD solution: Assume M_{EW} is more fundamental.

N. Arkani-Hamed et al. hep-th/9803315 (ADD)

Assume our space time is 4+n dimensional SM effective theory

$$\boldsymbol{S_{G}} \sim \int \mathrm{d}^{4+n} \boldsymbol{x} \, \boldsymbol{M}_{(4+n)}^{2+n} \, \sqrt{-g} \, \mathcal{R}^{(4+n)}$$

- $\bullet~$ Take $M_{EW} \sim 1~{\rm TeV} \rightarrow M_{4+n}$ as the fundamental scale
- At large distances M_4^2 $S_G \sim \int d^4 x M_{(4+n)}^{2+n \dagger} R^n \sqrt{-g} \mathcal{R}^{(4)} \Rightarrow 4D$ gravity diluted

Solving the hierarchy problem with Extra Dimensions $M_4 \sim 10^{16} M_{EW} \label{eq:M4}$

Hierarchy due to taking the scale for new physics from gravity (mesoscopic) rather than the electroweak scale (microscopic).

The ADD solution: Assume M_{EW} is more fundamental.

N. Arkani-Hamed et al. hep-th/9803315 (ADD)

Assume our space time is 4+n dimensional SM effective theory

$$\textbf{S}_{\textbf{G}} \sim \int \mathrm{d}^{\textbf{4}+\textbf{n}} \textbf{x} \, \textbf{M}_{(\textbf{4}+\textbf{n})}^{2+\textbf{n}} \, \sqrt{-\textbf{g}} \, \mathcal{R}^{(\textbf{4}+\textbf{n})}$$

- $\bullet~$ Take $M_{EW} \sim 1~{\rm TeV} \rightarrow M_{4+n}$ as the fundamental scale
- At large distances M_4^2 $S_G \sim \int d^4 x M_{(4+n)}^{2+n} R^n \sqrt{-g} \mathcal{R}^{(4)} \Rightarrow 4D$ gravity diluted

So how does gravity look like in ADD?

$$F_{r \ll R} \sim \frac{1}{M_{(4+n)}^{2+n} r^{2+n}}, \quad F_{r \gg R} \sim \frac{1}{M_{(4+n)}^{2+n} R^n r^2} \left(1 + 2n e^{-\frac{r}{R}} + \ldots\right)$$

- Predicts deviations from Newtonian gravity as we approach short distances.
- Contains KK gravitons from the 4D point of view.
- **③** Gravity is higher dimensional at very short distances.

This can be used to put bounds on *R* as a function of *n*.

So how does gravity look like in ADD?

$$F_{r\ll R} \sim \frac{1}{M_{(4+n)}^{2+n}r^{2+n}}, \quad F_{r\gg R} \sim \frac{1}{M_{(4+n)}^{2+n}R^nr^2} \left(1 + 2ne^{-\frac{r}{R}} + \ldots\right)$$

Predicts deviations from Newtonian gravity as we approach short distances.

- Contains KK gravitons from the 4D point of view.
- **③** Gravity is higher dimensional at very short distances.

This can be used to put bounds on *R* as a function of *n*.

So how does gravity look like in ADD?

$$F_{r \ll R} \sim \frac{1}{M_{(4+n)}^{2+n} r^{2+n}}, \quad F_{r \gg R} \sim \frac{1}{M_{(4+n)}^{2+n} R^n r^2} \left(1 + 2n e^{-\frac{r}{R}} + \ldots\right)$$

Predicts deviations from Newtonian gravity as we approach short distances.

- Contains KK gravitons from the 4D point of view.
- **③** Gravity is higher dimensional at very short distances.

This can be used to put bounds on *R* as a function of *n*.

So how does gravity look like in ADD?

$$F_{r \ll R} \sim \frac{1}{M_{(4+n)}^{2+n} r^{2+n}}, \quad F_{r \gg R} \sim \frac{1}{M_{(4+n)}^{2+n} R^n r^2} \left(1 + 2n e^{-\frac{r}{R}} + \ldots\right)$$

- Predicts deviations from Newtonian gravity as we approach short distances.
- Contains KK gravitons from the 4D point of view.
- **Gravity is higher dimensional** at very short distances.

This can be used to put <u>bounds on *R* as a function of *n*.</u>

So how does gravity look like in ADD?

$$F_{r \ll R} \sim \frac{1}{M_{(4+n)}^{2+n} r^{2+n}}, \quad F_{r \gg R} \sim \frac{1}{M_{(4+n)}^{2+n} R^n r^2} \left(1 + 2n e^{-\frac{r}{R}} + \ldots\right)$$

- Predicts deviations from Newtonian gravity as we approach short distances.
- Ocntains KK gravitons from the 4D point of view.
- **Gravity is higher dimensional** at very short distances.

This can be used to put bounds on *R* as a function of *n*.

Bounds on extra dimensions

$M_4^2 = R^n M_{(4+n)}^{2+n}$	R in µm (n = 2)	$M_{4+n} \sim 1 \text{TeV OK}$
Deviations from r ⁻² in torsion-balance	\lesssim 55	<i>n</i> > 1
KK graviton produc- tion @ colliders	\lesssim 800	n > 2
KK graviton produc- tion in Supernovae	$\lesssim 5.1 imes 10^{-4}$	n > 3
KK gravitons early Universe production	\lesssim 2.2 $ imes$ 10 ⁻⁵	n > 3

Bounds on extra dimensions

$M_4^2 = R^n M_{(4+n)}^{2+n}$	R in μm (n = 2)	$M_{4+n} \sim 1 \text{TeV OK}$
Deviations from r ⁻² in torsion-balance	\lesssim 55	<i>n</i> > 1
KK graviton produc- tion @ colliders	\lesssim 800	n > 2
KK graviton produc- tion in Supernovae	$\lesssim 5.1 imes 10^{-4}$	n > 3
KK gravitons early Universe production	\lesssim 2.2 $ imes$ 10 ⁻⁵	n > 3

 $\bullet\,$ SM on a 4D brane of thickness L $\lesssim (1{\rm TeV})^{-1} \sim 10^{-13} \mu m$

To avoid bounds from Electroweak precision and fast proton decay. Quarks and leptons may have to be on sub-branes for $L \lesssim (1 \text{TeV})^{-1}$.

• All SM particles propagating on a single brane.

Good approximation if process occurs at large scales compared to L.

At short distances gravity is higher dimensional

$$\Rightarrow \sqrt{\alpha_G} \sim \frac{E}{M_4} \rightarrow \frac{E}{M_{4+n}} \sim \frac{E}{1\text{TeV}}$$

So gravity becomes the strongest force above 1 TeV! \Rightarrow Small impact parameter, high energy collision \rightarrow BHs!

At short distances gravity is higher dimensional

$$\Rightarrow \sqrt{\alpha_G} \sim \frac{E}{M_4} \rightarrow \frac{E}{M_{4+n}} \sim \frac{E}{1\text{TeV}}$$

So gravity becomes the strongest force above 1 TeV! \Rightarrow Small impact parameter, high energy collision \rightarrow BHs!

At short distances gravity is higher dimensional

$$\Rightarrow \sqrt{\alpha_G} \sim \frac{E}{M_4} \rightarrow \frac{E}{M_{4+n}} \sim \frac{E}{1\text{TeV}}$$

So gravity becomes the strongest force above 1 TeV! \Rightarrow Small impact parameter, high energy collision \rightarrow BHs!

S. Dimopoulos and G. Landsberg, hep-ph/0106295

At short distances gravity is higher dimensional

$$\Rightarrow \sqrt{\alpha_G} \sim \frac{E}{M_4} \rightarrow \frac{E}{M_{4+n}} \sim \frac{E}{1\text{TeV}}$$

So gravity becomes the strongest force above 1 TeV! \Rightarrow Small impact parameter, high energy collision \rightarrow BHs!

Hoop conjecture
$$\Rightarrow \sigma_{\text{disk}} \sim \pi r_{\text{S}}^2$$
, $r_{\text{s}} = \frac{C_n}{M_{4+n}} \left(\frac{\sqrt{s}}{M_{4+n}}\right)^{n+1}$

- S. B. Giddings and S. D. Thomas, hep-ph/0106219
- S. Dimopoulos and G. Landsberg, hep-ph/0106295

Evidence for classical BH in transplanckian scattering

Numerical relativity in 4 and higher dimensions

U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738 b = 0M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 $b \neq 0$ Sperhake, Cardoso, Pretorius, Berti, Hinderer, Yunes arXiv:0907.1252 $b \neq 0$ M. Choptuik, F. Pretorius, arXiv:0908.1780 b = 0 (solitons) Zilhao, Witek, Sperhake, Cardoso, Gualtieri, Herdeiro, Nerozzi arXiv:1001.2302 4 + n

Shock wave collisions in higher dimensions
 D. M. Eardley and S. B. Giddings, gr-qc/0201034
 H. Yoshino and V. S. Rychkov hep-th/0503171
 ⇒ Apparent horizon before the collision

Evidence for classical BH in transplanckian scattering

Numerical relativity in 4 and higher dimensions

U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738 b = 0M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 $b \neq 0$ Sperhake, Cardoso, Pretorius, Berti, Hinderer, Yunes arXiv:0907.1252 $b \neq 0$ M. Choptuik, F. Pretorius, arXiv:0908.1780 b = 0 (solitons) Zilhao, Witek, Sperhake, Cardoso, Gualtieri, Herdeiro, Nerozzi arXiv:1001.2302 4 + n

Shock wave collisions in higher dimensions
 D. M. Eardley and S. B. Giddings, gr-qc/0201034
 H. Yoshino and V. S. Rychkov hep-th/0503171
 ⇒ Apparent horizon before the collision

The **BH** is assumed to **decay through Hawking evaporation**. (?) As we approach $M_{4+n} \Rightarrow$ **unknown** quantum gravity effects! First bounds rely on **bad** knowledge of gravitational radiation CMS collaboration arXiv:1012.3357 ATLAS-CONF-2011-065

The BH is assumed to decay through Hawking evaporation.

(?) As we approach $M_{4+n} \Rightarrow$ **unknown** quantum gravity effects!

First bounds rely on **bad** knowledge of gravitational radiation CMS collaboration arXiv:1012.3357 ATLAS-CONF-2011-065

The **BH** is assumed to **decay through Hawking evaporation**. (?) As we approach $M_{4+n} \Rightarrow$ **unknown** quantum gravity effects! First bounds rely on **bad** knowledge of gravitational radiation CMS collaboration arXiv:1012.3357 ATLAS-CONF-2011-065

The **BH** is assumed to **decay through Hawking evaporation**. (?) As we approach $M_{4+n} \Rightarrow$ **unknown** quantum gravity effects! First bounds rely on **bad** knowledge of gravitational radiation CMS collaboration arXiv:1012.3357 ATLAS-CONF-2011-065 The hierarchy problem: Higgs mass

The hierarchy problem: Higgs mass

Look at radiative corrections to Higgs mass:

The hierarchy problem: Higgs mass

Look at radiative corrections to Higgs mass:

Higgs mass runs from high scale:

$$\delta m_h^2 = \left(|\lambda_f|^2 - \frac{1}{2}\lambda \right) \frac{\Lambda_{\text{cutoff}}^2}{8\pi^2} + \dots$$

The hierarchy problem: Higgs mass

Look at radiative corrections to Higgs mass:

Higgs mass runs from high scale:

$$\delta m_h^2 = \left(|\lambda_f|^2 - \frac{1}{2}\lambda \right) \frac{\Lambda_{\text{cutoff}}^2}{8\pi^2} + \dots$$

If $\Lambda_{cutoff} \sim M_4 \sim 10^{16} \text{ TeV} \Rightarrow$ fine tuning of $\sim 10^{-16}$

Arrange cancellation of quadratic divergences.

 \Rightarrow New particles: SUSY, Little Higgs, etc...

Arrange cancellation of quadratic divergences.

 \Rightarrow New particles: SUSY, Little Higgs, etc...

Change the running to exponential.

 \Rightarrow Strong dynamics: the Higgs is a pion field of a new strongly coupled sector.

Arrange cancellation of quadratic divergences.

 \Rightarrow New particles: SUSY, Little Higgs, etc...

Change the running to exponential.

 \Rightarrow Strong dynamics: the Higgs is a pion field of a new strongly coupled sector.

Assume the fundamental Planck scale is 1 TeV.

 \Rightarrow Extra dimensions.

Arrange cancellation of quadratic divergences.

 \Rightarrow New particles: SUSY, Little Higgs, etc...

Change the running to exponential.

 \Rightarrow Strong dynamics: the Higgs is a pion field of a new strongly coupled sector.

Assume the fundamental Planck scale is 1 TeV.

 \Rightarrow Extra dimensions.

Bounds on extra dimensions

$\mathbf{M}_{\mathbf{PI}}^{2} = \mathbf{R}^{\mathbf{n}} \mathbf{M}_{(4+\mathbf{n})}^{2+\mathbf{n}}$	R in µm (n = 2)	$M_{4+n} \sim 1 \text{TeV OK}$
Deviations from r ⁻² in torsion-balance	\lesssim 55	<i>n</i> > 1
KK graviton produc- tion @ colliders	\lesssim 800	n > 2
KK graviton produc- tion in Supernovae	$\lesssim 5.1 imes 10^{-4}$	n > 3
KK gravitons early Universe production	\lesssim 2.2 $ imes$ 10 ⁻⁵	n > 3

For the **classical approximation** for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

For the **classical approximation** for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$\Delta x \sim \frac{1}{p} \ll r_S$$

For the **classical approximation** for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$\Delta x \sim rac{1}{p} \ll r_S$$

But:

• $p \text{ large} \Rightarrow \Delta x \text{ small}$

For the **classical approximation** for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$\Delta x \sim \frac{1}{p} \ll r_S$$

But:

- $p \text{ large} \Rightarrow \Delta x \text{ small}$
- $p \text{ large} \Rightarrow \sqrt{s} \equiv E_{CM} \text{ large} \Rightarrow r_S \text{ large}$

For the **classical approximation** for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$\Delta x \sim \frac{1}{p} \ll r_S$$

But:

- $p \text{ large} \Rightarrow \Delta x \text{ small}$
- $p \text{ large} \Rightarrow \sqrt{s} \equiv E_{CM} \text{ large} \Rightarrow r_S \text{ large}$

The condition is satisfied when $\sqrt{s} \gg M_{4+n}$ (trans-Planckian).

For the **classical approximation** for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$\Delta x \sim \frac{1}{p} \ll r_S$$

But:

- $p \text{ large} \Rightarrow \Delta x \text{ small}$
- $p \text{ large} \Rightarrow \sqrt{s} \equiv E_{CM} \text{ large} \Rightarrow r_{S} \text{ large}$

The condition is satisfied when $\sqrt{s} \gg M_{4+n}$ (trans-Planckian).

Also quantum gravity approximations indicate small corrections:

- T. Banks and W. Fischler, hep-th/9906038
- S. N. Solodukhin, hep-ph/0201248
- S. D. H. Hsu, hep-ph/0203154

• During formation we should have an asymmetric BH with electric and gravitational multipole moments.

 \rightarrow Distorted geometry.

- The time for loss of multipoles is **r**_S (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

$$\Delta t \sim r_{S} \left(\frac{M_{BH}}{M_{4+n}} \right)^{\frac{n+2}{n+1}} \gg r_{S} \; . \label{eq:delta_state}$$

We assume a quick loss of asymmetries

• During formation we should have an asymmetric BH with electric and gravitational multipole moments.

 \rightarrow Distorted geometry.

- The time for loss of multipoles is **r**_S (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

$$\Delta t \sim r_{S} \left(\frac{M_{BH}}{M_{4+n}} \right)^{\frac{n+2}{n+1}} \gg r_{S} \; . \label{eq:delta_state}$$

We assume a quick loss of asymmetries

• During formation we should have an asymmetric BH with electric and gravitational multipole moments.

 \rightarrow Distorted geometry.

- The time for loss of multipoles is r_S (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

$$\Delta t \sim r_{S} \left(\frac{M_{BH}}{M_{4+n}} \right)^{\frac{n+2}{n+1}} \gg r_{S} \; . \label{eq:delta_state}$$

We assume a quick loss of asymmetries

• During formation we should have an asymmetric BH with electric and gravitational multipole moments.

 \rightarrow Distorted geometry.

- The time for loss of multipoles is r_S (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

$$\Delta t \sim r_{S} \left(\frac{M_{BH}}{M_{4+n}} \right)^{\frac{n+2}{n+1}} \gg r_{S} \; . \label{eq:delta_states}$$

We assume a quick loss of asymmetries

• During formation we should have an asymmetric BH with electric and gravitational multipole moments.

 \rightarrow Distorted geometry.

- The time for loss of multipoles is r_S (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

$$\Delta t \sim r_{S} \left(\frac{M_{BH}}{M_{4+n}} \right)^{\frac{n+2}{n+1}} \gg r_{S} \; . \label{eq:delta_states}$$

We assume a quick loss of asymmetries

Apparent horizon

