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LECTURE 7 - Thermal history of the Universe II

In this lecture we will continue our study of the thermal history of the universe, analyzing two important aspects
of Big Bang cosmology where departures from thermal equilibrium play a crucial role. We will begin by studying
generic models for the creation of a baryon asymmetry in our universe and then describe the synthesis of light nuclear
elements in the early universe.

Baryogenesis

The existence of anti-matter has been known for some time. The original theoretical proposal goes back to 1928 and
the British physicist Paul A. M. Dirac, who in developing his generalization of the Schrödinger equation for relativistic
spin-1/2 fermions, such as the electron, realized that his description required the existence of anti-electrons - particles
with the same spin and mass as the electron but opposite charge. The positron was discovered four years later by
Carl Anderson, and today we know that all particles have an associated anti-particle, although neutral particles as
the photon are their own anti-particles.

This poses a cosmological problem, however, since we know that particles and anti-particles quickly annihilate
each other, in processes such as e+e− → γγ. If these annihilations are efficient in the early universe and there are
equal amounts of matter and anti-matter in the universe, there would be very few matter particles in the universe,
which would contain mostly radiation. We know, however, that we are made essentially of particles as protons,
neutrons and electrons and that is very little anti-matter in our astrophysical vicinity. For example, measurements
of cosmic rays yield a flux of anti-protons about 104 times smaller than the corresponding proton flux.

The overabundance of matter over anti-matter could be a local observation, with other regions of the Universe
having an opposite overabundance and giving an overall symmetric Universe. However, this would imply that at the
boundary between regions with opposite overabundances annihilations of matter and anti-matter particles would lead
to an enormous flux of radiation that has not been observed. It is thus widely accepted that at least the observable
part of our Universe must have developed an excess of particles over anti-particles at some point in the cosmological
history.

Of particular importance is the overabundance of baryons, essentially protons and neutrons, over anti-baryons, a
crucial aspect for the synthesis of light nuclear elements in the early Universe as we mentioned previously and discuss
in more detail below. From the light element abundances and measurements of the CMB anisotropy spectrum, we
can infer the present baryon-to-entropy ratio to be:

ηs =
nB
s

=
nb − nb̄

s
' 10−10 , (1)

a quantity that remains constant if there are no processes producing more baryons than anti-baryons. Baryon number
is actually an apparently accidental global symmetry of the Standard Model (SM). Protons and neutrons have baryon
number B = +1 while their anti-particles carry a B = −1 baryonic charge, corresponding to B = +1/3 for the three
elementary quarks that constitute them and B = −1/3 for the associated anti-quarks. All perturbative processes
in the SM conserve this charge, although such a symmetry was not an initial ingredient of the theory. The same
is true for lepton number, which is L = +1 for electrons and neutrinos and the opposite for their anti-particles.

1



Annihilations of baryons and anti-baryons are not completely efficient, and in a baryon-symmetric universe we could
still find small freeze-out abundances nb/s ∼ nb̄/s ∼ 10−21, which is however too small compared to the observed
asymmetry.

This implies that there must be some mechanism occurring in the early universe that produces an overabundance
of baryons compared to anti-baryons and which is generically known as baryogenesis. A strict requirement is that
baryogenesis takes place before Big Bang nucleosynthesis, for T & 10 MeV, so that the initial conditions for the
production of light nuclear elements are in place. Several models have been proposed in the literature, typically based
on extensions of the SM, and although quite different in detail, all these models must satisfy the three conditions
first described by Andrei Sakharov in 1967 for the production of a baryon asymmetry [1]:

1. B-violation

The requirement of interactions that do not conserve baryon number B is quite obvious, or otherwise all
processes would produce the same number of baryons and anti-baryons.

The prototypical example of a B-violating process is the decay of heavy gauge or Higgs bosons that arise
in extensions of the SM that unify the three known gauge interactions - strong, weak and electromagnetic.
Generically, these grand unified theories (GUT) are based on gauge symmetries that enhance the SM gauge
group SUc(3) × SU(2)W × U(1)Y , and that are spontaneously broken at high energy scales MGUT ∼ 1016

GeV via a mechanism similar to the electroweak Higgs mechanism. This leaves the SM gauge group as the
only exact symmetry at low energies but explains the apparent unification of the associated gauge couplings
at energies E > MGUT . In the process, some of the original Higgs and gauge bosons acquire large masses, and
typically exhibit B-violating interactions that allow them to decay into quarks and leptons. For example, for
the simplest GUT with SU(5) gauge group we have:

X → qq, X → q̄l̄ , (2)

where X represents a generic gauge or Higgs boson and q, l denote the SM quarks and leptons, respectively.
The first decay channel gives a B = +2/3 and L = 0 final state, while the second yields B = −1/3 and L = −1.
This means that there is no consistent assignments of a baryon or lepton number to the boson X and that both
charges are not conserved in these decays. Notice that B−L = +2/3 for both decays, so that this combination
is still a symmetry of the underlying GUT, which is however not always the case.

2. Departure from thermal equilibrium

The second of Sakharov’s condition is also easy to understand in a cosmological constant, given our discussion
in the previous lecture. Let us consider a generic process X0 → Y0 +ZB , with X0 representing a generic initial
state with vanishing baryon number, Y0 denoting all particles in the final state also with vanishing baryonic
charge and ZB corresponding to all produced particles with an overall B-charge. If this process is in thermal
equilibrium, than its rate must be equal to the rate of the inverse process:

Γ[X0 → Y0 + ZB ] = Γ[Y0 + ZB → X0] , (3)

and not net baryon asymmetry can arise from this since B is produced at the same rate that it is destroyed. We
thus need a departure from thermal equilibrium that suppresses the inverse processes for a viable baryogenesis
mechanism.

In the GUT example above, departures from thermal equilibrium may occur when the X-boson is non-
relativistic, mX & T , at the time of decay, t ∼ 1/Γ. In this case, the X boson may decay into relativistic
quarks and leptons with typical energies and momenta ∼ T , while there is not enough energy for the latter to
annihilate back into an X boson. In practice, there are always some particles in the thermal bath with suffi-
ciently large energies and momenta, but these correspond to the tails of the statistical thermal distribution, so
that the rate of the inverse processes, qq → X or q̄l̄→ X is Boltzmann-suppressed by a factor e−mX/T .
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3. C and CP violation

The third Sakharov condition is most subtle requirement for a baryogenesis mechanism. Let us again consider
the generic process X0 → Y0 + ZB . If charge conjugation C is a symmetry of the interactions, then we expect
the rate of the charge-conjugated process involving the anti-particles, X̄0 → Ȳ0 + Z̄B , to be the same:

Γ[X0 → Y0 + ZB ] = Γ[X̄0 → Ȳ0 + Z̄B ] , (4)

Again this means that a baryon excess B is being produced at the same rate as the opposite excess −B, with
no net baryon asymmetry resulting.

Even if C is violated in some process, this may not be sufficient, since the convolution of charge conjugation and
a parity transformation, CP must also be violated. It is a well established fact that SM fermions, i.e. quarks
and leptons, come in opposite parity states with different charges under the SM gauge group. The intrinsic
parity of a particle corresponds to the way its wavefunction transforms under spatial inversions x → −x, and
spin-1/2 fermions can be left- or right-handed. In the SM, for example, left-handed fermions come in doublet
representations of the weak isospin gauge group SU(2)W , while right-handed fermions correspond to singlet
representations with no weak isospin.

To illustrate the need for CP violation, consider a scenario where our X boson can decay into either left-handed
or right-handed quarks, X → qLqL and X → qRqR. Under C, qL → q̄L, while under CP we have qL → q̄R,
where q̄R is the anti-particle of qR, which is left-handed. Similarly, we have qR → q̄R under C and qR → q̄L
under CP . In this case, violation of C ensures that

Γ[X → qLqL] 6= Γ[X̄ → q̄Lq̄L] , (5)

but if CP is conserved, we have:

Γ[X → qLqL] = Γ[X̄ → q̄Rq̄R] ,

Γ[X → qRqR] = Γ[X̄ → q̄Lq̄L] , (6)

and taking into account both decays, we find:

Γ[X → qLqL]+ Γ[X → qRqR] = Γ[X̄ → q̄Rq̄R] + Γ[X̄ → q̄Lq̄L] . (7)

Then, if we have equal numbers of X particles and X̄ anti-particles initially, we will end up with the same
number of quarks and anti-quarks, even though an asymmetry between left-handed and right-handed particles
may be produced. Note that in this example both decay channels have B = +2/3 in the final state, and we
need additional decay channels in order to satisfy the first of Sakharov’s conditions and have violation of baryon
number conservation.

Having enumerated the Sakharov conditions for a successful baryogenesis, let us now look at the GUT baryoge-
nesis model in more detail. The relevant interactions in this model correspond to the decays described above, anni-
hilations of X and X̄ bosons and the corresponding inverse processes. Annihilations processes are ‘self-quenching’,
since the rates are proportional to nX and naturally become suppressed as the universe expands and nX is diluted.
We can then discard annihilations to a first approximation, so that the Boltzmann equation for the evolution of nX
is given by:

ṅX + 3HnX = −ΓD(nX − nEQX ) , (8)

where ΓD denotes the decay width of the X bosons. This is slightly different from the case we have seen in the
previous lecture where the collision term corresponded to 2 → 2 scattering processes and was then proportional to
n2
X − n

EQ2
X .

Let us consider a simple toy model with two possible B-violating decay channels such that:

Γ[X → B = +1] =
1

2
(1 + ε)ΓD ,

Γ[X → B = −1] =
1

2
(1− ε)ΓD , (9)
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where ε quantifies the amount of C- and CP -violation. Then, the Boltzmann equation for the number densities of
baryons and anti-baryons is given by:

ṅb + 3Hnb = −1

2
(1 + ε)ΓD(nX − nEQX ) ,

ṅb̄ + 3Hnb̄ = −1

2
(1− ε)ΓD(nX − nEQX ) , (10)

so that subtracting these equations we get for nB = nb − nb̄:

ṅB + 3HnB = εΓD(nX − nEQX ) . (11)

We thus see that ε > 0 and departures from thermal equilibrium are crucial in obtaining a non-vanishing baryon
asymmetry. For a generic heavy gauge or Higgs boson, we have:

ΓD ' αmX

{
mX

T , T & mX

1 , T . mX

,

(12)

where α = g2/4π corresponds to the relevant coupling constant and the suppression factor at high-temperatures is
due to time dilation, taking into account the Lorentz boost factor γ = E/mX ∼ T/mX for T & mX , while γ ∼ 1
for T . mX . This implies that very few bosons decay at high temperatures T � mX , and for an initial population
in local thermal equilibrium one expects nX ∼ nX̄ ∼ nγ . The crucial aspect is whether decays and inverse decays
are effective at the time the bosons become non-relativistic, T ∼ mX , since at this point their number density must
decrease exponentially in order to preserve their equilibrium distribution. Recalling that baryogenesis must occur in
the radiation era before nucleosynthesis takes place, with H ' 0.33

√
g∗T

2/MP , we have for T = mX :

K ≡ ΓD
H

∣∣∣∣
T=mX

∼ αMP

0.33
√
g∗mX

(13)

If K � 1, decays are ineffective at this stage, and one can expect a significant departure from thermal equilibrium
and, hence an overabundance of X and X̄ bosons relative to their equilibrium distribution. At the time the bosons
effectively decay, when ΓD ∼ H or equivalently T ∼

√
KmX � mX , we have nX ∼ nγ � nEQX yielding a net baryon

number:

nB ' εΓDnX∆t ' εnγ , (14)

where we used ∆t ∼ Γ−1
D for the effective decay time. Hence, as s ∼ g∗nγ , the baryon-to-entropy ratio resulting from

the out-of-equilibrium decay of the heavy bosons is:

ηs '
ε

g∗
. (15)

For g∗ ' 102 − 103 typical of GUT models with a large number of relativistic degrees of freedom, we see that only a
tiny amount of C and CP violation is required, with ε ∼ 10−8 − 10−7.

In the opposite limit, K � 1, decays and inverse decays are in equilibrium for T ∼ mX , and nX will track its
equilibrium distribution closely, so that no significant departures from thermal equilibrium will occur and no baryon
asymmetry can develop. In the regime K ' 1 a sizeable asymmetry may still be produced, although in this case a
detailed analysis of the Boltzmann equation is required. Note that K . 1 requires heavy bosons, as from Eq. (13):

mX &
α

0.33g∗
MP ∼

( α

0.01

)
1016 GeV . (16)

For a GUT gauge boson α = αGUT ' 1/45, while for a Higgs boson the coupling can be much smaller so that K � 1
for mX 'MGUT . Note also that in our discussion we have neglected the effects of 2→ 2 scatterings of the baryons
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and anti-baryons, which also contain in general a C- and CP -violating contribution and may damp the produced
asymmetry. However, this only becomes significant for K � 1 and may in general be neglected in the most relevant
case K � 1.

The GUT baryogenesis mechanism is actually disfavoured, since it requires large temperatures in the early
Universe, T & MGUT , in order to have an initial population of gauge or Higgs bosons in local thermal equilibrium,
in particular after inflation as we will discuss later on in this course. Nevertheless, this model illustrates the basic
properties of baryogenesis models and the Sakharov conditions, and alternative GUT mechanisms based on non-
thermal or quasi-thermal distributions of heavy bosons have been proposed in the literature.

Although, as we have mentioned earlier, B is conserved by all perturbative processes in the SM, there are actually
B-violating non-perturbative processes known as sphalerons in the electroweak theory. They correspond to tunneling
processes between different vacuum states due to the non-trivial vacuum structure of gauge theories, and as such are
typically exponentially suppressed. However, at high temperatures these processes become classically allowed and
may occur in thermal equilibrium for 100 GeV . T . 1013 GeV. These processes conserve the combination B − L
while violating B + L, the main problem being the too small amount of CP -violation in the SM, corresponding
roughly to ε ∼ 10−20. If other sources of CP -violation can be found in extensions of the SM, such as supersymmetric
theories, the electroweak phase transition when the Higgs field acquires a non-zero vacuum expectation value may
provide the necessary out-of-equilibrium condition if it is strongly first-order. The addition of heavy right-handed
neutrinos to explain the smallness of the (left-handed) SM neutrino masses via the see-saw mechanism also leads to
successful models of leptogenesis, as similarly to the model we described above they can decay out of equilibrium
and produce a net lepton number L, which electroweak sphalerons may later convert into a B-asymmetry since only
B − L is conserved. This leads to an important general issue, since sphalerons may actually wash out any baryon
asymmetry produced at high temperatures, T � 1013 GeV, so that either L or B − L asymmetries lead to more
robust mechanisms. There are several other models of baryogenesis in the market, many of which unfortunately
cannot be tested directly in the laboratory with the present technology, not even the powerful LHC, as it “only”
reaches energies ∼ 103 GeV that are much below the GUT scale. These models are too many to be presented in these
lectures (see e.g. [2] for a pedagogical review of baryogenesis mechanisms), but an important scenario to mention is
the Affleck-Dine mechanism [3], in which a homogeneous scalar field acquires a non-zero baryon number, a feature
that we will explore in Problem 7.

Big Bang nucleosynthesis

As we have briefly discussed before, the synthesis of the light nuclear elements and the predictions for their cos-
mological abundances is one of the great successes of the Hot Big Bang model, yielding tight constraints on any
modifications of the cosmological evolution at temperatures around T . 10 MeV. While heavy elements can be
generated in the interior of stars via nuclear fusion processes, the lighter elements such as deuterium (D), 3He, 4He
and 7Li cannot be produced in this way, with the corresponding ratios approaching zero values in young stars. The
observed abundances have thus to be present already in the primordial gas.

For a generic non-relativistic nuclear species with Z protons and A−Z neutrons, where A is the mass number,
the number density in thermal equilibrium is given by:

nA = gA

(
mAT

2π

)3/2

exp

(
µA −mA

T

)
. (17)

Thermal equilibrium requires the nuclear reactions that produce such a nucleus from Z protons and A−Z neutrons
to be faster than the Hubble rate, as we have seen before, and in this case the species is in both kinetic and chemical
equilibrium. The chemical potential of the species is then related to the proton and neutron chemical potentials via:

µA = Zµp + (A− Z)µn . (18)

We can use this fact to express the exponential factor in terms of the proton and neutron number densities:

exp (µA/T ) = exp

(
Zµp + (A− Z)µn

T

)
= nZp n

A−Z
n 2−A

(
2π

mNT

) 3A
2

exp

(
Zmp + (A− Z)mn

T

)
, (19)
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where we have used that mn −mp ' 1.29 MeV � mp, defining mN = mP in the pre-factor, and that gp = gn = 2.
Now, the binding energy of the nuclear species is defined as:

BA = Zmp + (A− Z)mn −mA , (20)

and replacing Eqs. (19) and (20) into Eq. (21), taking into account that mA ' AmN for small binding energies, we
obtain to leading order:

nA = gAA
3/22−A

(
2π

mNT

)3(A−1)/2

nZp n
A−Z
n exp

(
BA
T

)
. (21)

To have an idea of the values involved, the smallest binding energy is for deuterium, with B2 = 2.22 MeV (g2 = 3)
and for 4He we have B4 ' 28.3 MeV (g4 = 1), which are well below the nuclear masses mA ' A GeV.

Since all particle number densities decrease as a−3 if the particle number per comoving volume is conserved, It
is convenient to define the mass fraction of each nuclear species as:

XA =
nAA

nB

= gA

[
ζ(3)A−1π

1−A
3 2

3A−5
2

]
A5/2

(
T

mN

)3(A−1)/2

ηA−1XZ
p X

A−Z
n exp

(
BA
T

)
, (22)

where we have defined the baryon-to-photon ratio η = nB/nγ ' 7ηS , with nγ = (2ζ(3)/π2)T 3. For example, this
yields:

X2 = 16.3

(
T

mN

)3/2

ηeB2/TXnXp ,

X3 = 57.4

(
T

mN

)3

η2eB3/TXnX
2
p ,

X4 = 113

(
T

mN

)9/2

η2eB4/TX2
nX

2
p ,

X12 = 3.2× 105

(
T

mN

)33/2

η11eB12/TX6
nX

6
p . (23)

At large temperatures, T � 1 MeV, neutrons and protons are kept in thermal equilibrium by weak interactions:

n ←→ p+ e− + ν̄e ,

νe + n ←→ p+ e−

e+ + n ←→ p+ ν̄e (24)

This sets the chemical equilibrium condition µn + µν = µp + µe, giving:

Xn

Xp
=
nn
np

= exp

(
−Q
T

+
µe − µν

T

)
, (25)

where Q = mn −mp = 1.29 MeV. From the charge neutrality of the Universe, we expect µe/T ∼ ne/nγ = np/nγ ∼
η � 1, so that we usually may neglect the chemical potential for the electron. This should hold for the neutrinos as
well, although the relic neutrino background has yet to be detected, but in general we expect that Xn/Xp ' e−Q/T
to hold. Since all baryons must be either in the form of free nucleons or in bound states, we have:∑

i

Xi = Xp +Xn +X2 +X3 +X4 +X12 + . . . = 1 , (26)
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Figure 1: Evolution of the mass fractions in thermal equilibrium for a system of neutrons, protons, D, 3He, 4He
and 12C as a function of the temperature. For simplicity, we take Xn = Xp neglecting the neutron-proton mass
difference.

and we can use this to determine the thermal abundances of each nuclear species. In Figure 1 we illustrate this for
a simplified case where we take Xn = Xp and consider only the abundances of D, 3He, 4He and 12C.

As one can easily see in this figure, at large temperatures T > 1 MeV neutrons and protons are basically free
and around 0.3 MeV the thermal mass fractions of light elements begin to rise. This may be surprising since the
average binding energy per nucleon varies between 1 and 8 MeV, but from Eq. (23) we see that heavier elements are
suppressed by larger powers of η � 1, which explains why the temperature needs to drop somewhat below 1 MeV
for their relative abundances to increase. The figure also shows that in thermal equilibrium heavier elements will
eventually be the dominant form of baryonic matter, and in the example this corresponds to carbon.

Hence, if thermal equilibrium was the whole story we would end up with very little Hydrogen or Helium around,
which is not what is observed in the present Universe. However, as we have seen in several examples before, departures
from thermal equilibrium are crucial in understanding the evolution of the Universe, and nuclear abundances are not
an exception.

As we have discussed before, weak interactions freeze out around T = TF ' 1 MeV, leading to neutrino
decoupling from the plasma and later on T . me/3 to annihilation of electrons and positrons that transfer their
entropy to photons, raising the photon temperature with respect to the neutrino temperature. The weak interactions
that convert neutrons into protons and vice-versa also freeze out around this time, t ' 1 sec, yielding:

nn
np

∣∣∣∣
F

' e−Q/TF ' 1

6
. (27)

After this the neutron-to-proton ratio does not really remain constant since some neutrons can still decay, nn =
nn(TF )e−t/τn , where τn ' 886 sec. This will decrease the neutron-to-proton ratio by the time nuclesynthesis actually
takes place, for t ' 100 sec, yielding:

nn
np

∣∣∣∣
NUC

' 1

7
. (28)

As we have seen above, for T ' 0.3 MeV the thermal equilibrium mass fraction of 4He begins to increase
very quickly and to approach unity. Howeverm this assumes that the reactions that produce 4He are in thermal
equilibrium. These reactions are mainly:

D + D −→ 3He + n ,
3He + D −→ 4He + p ,

(29)
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D + D −→ 3H + p ,
3H + D −→ 4He + n ,

(30)

and

D + D −→ 4He + γ . (31)

Hence, the rate at which 4He is produced depends on the number densities of the lighter elements, which in thermal
equilibrium are very small as we have seen above. Furthermore, Coulomb-barrier suppression becomes more signif-
icant as the temperature drops, and one needs two protons to tunnel through this repulsive barrier to form a 4He
nucleus. This barrier is given approximately by:

〈σv〉 ∝ exp
(
−2Ā1/3(Z1Z2)2/3(T/1 MeV)−1/3

)
, (32)

where Ā = A1A2/(A1 + A2) for the two nuclei involved in the reaction. For these reasons, around T ' 0.5 MeV
the mass fraction of 4He drops below its equilibrium value, as the nuclear reactions cannot keep up with expansion.
However, the abundances of the lighter elements are actually starting to exceed their thermal equilibrium values
and around T = TNUC ' 0.1 MeV they become sufficiently large to resume the production of 4He. At this stage,
essentially all available neutrons are quickly bound into helium nuclei, yielding:

X4 =
4n4

nB
' 4× (nn/2)

np + nn
=

2nn
nn + np

=
2(nn/np)

1 + (nn/np)
. (33)

Using Eq. (28), this gives:

X4 =
2/7

1 + 1/7
=

1

4
' 0.25 , (34)

which is in remarkable agreement with the observational value for the Helium mass fraction [4],

X4 = 0.249± 0.009 . (35)

The abundances of the lighter elements can also be estimated by computing the time at which the relevant reactions
freeze out and these species decouple, yielding X2 ∼ X3 ∼ 10−5, also in agreement with the observational values.
As we discussed in the first lecture, some 7Li is also produced, with a mass fraction X7 ∼ 10−10, but the prediction
exceeds the observational value by a factor 3 − 4, which is known as the ‘lithium problem’. This points towards
a modification of the cosmological evolution that modifies the lithium abundance but not the mass fractions of
the lighter elements, which poses a difficult theoretical challenge that may require beyond the SM (BSM) physical
processes.

Although in thermal equilibrium we would expect elements heavier than helium to dominate the baryonic
abundances at low temperatures due to their larger binding energies, the departures from thermal equilibrium
described above prevent this from occurring. In particular, the ‘light element bottleneck’ that delays nucleosynthesis
down to T ∼ 0.1 MeV (t ' 100 sec) and the increasing Coulomb-barrier suppression prevent the formation of heavier
nuclei, along with the absence of stable elements with mass numbers 5 and 8.

In stellar cores, the nuclear density is sufficiently large to enable the triple-alpha (4He nuclei) reaction that can
overcome these mass gaps and produce an excited state of carbon-12:

4He + 4He −→ 8Be + γ ,
4He + 8Be −→ 12C∗ −→ 12C + γ . (36)

The produced 12C can react further to produce oxygen and nytrogen isotopes in the so-called CNO cycle, while
heavier elements are produced in supernovae explosions at the end of stellar lifetimes.

The successful predictions of Big Bang Nucleosynthesis (BBN) pose tight constraints on the cosmological pa-
rameters and consequently on BSM scenarios that may change them. In particular, the light element abundances
are sensitive to three important parameters:
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1. Neutron half-life

Neutrons decay through weak interactions of the form in Eq. (24), and all relevant weak interaction rates
depend on this parameter:

ΓW ∼ G2
FT

5 ∝ T 5

τn
. (37)

These rates determine the temperature at which neutrons and protons decouple and ΓW ∼ H ∝ T 2 implies

TF ∝ τ
1/3
n . A larger neutron half-life thus implies an earlier freeze-out and a larger value of nn/np(TF ),

increasing the prediction for the 4He abundance.

2. Number of relativistic species

The freeze out of weak interactions is also determined by the value of g∗, since H ∝ g1/2
∗ T 2 and so TF ∝ g1/6

∗ .
The existence of additional massless (or very light) particles in BSM theories could then increase the 4He
abundance. In the SM, as we have seen previously, we expect g∗ = 5.5 + (7/4)Nν , where Nν is the number of
neutrino species. The current bounds on the helium-4 abundance then give Nν = 3.24±1.2 [4], which is in very
good agreement with the existence of only three SM neutrinos but may accommodate an additional degree of
freedom.

3. Baryon-to-photon ratio

As we have seen above, the nuclear equilibrium distributions are determined by different powers of η. This
means that for larger values of η the abundances of the light elements that lead to 4He formation grow earlier,
yielding larger values of nn/np(TF ) and hence increase the helium-4 abundance. The dependence of the helium-
4 prediction on η is actually much smaller than on the other two parameters, but the amounts of D and 3He
left after nuclear reactions freeze out do depend strongly on the baryon-to-photon ratio, decreasing as η−n,
with n ∼ 1− 2. BBN thus constrains η = (5− 7)× 10−10 giving the value that has to produced at T � 1 MeV
by a baryogenesis mechanism as described above.
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Problem 7

Consider the action for a complex scalar field φ, with spin 0, in Minkowski space:

S =

∫
d4x [−(∂µφ)(∂µφ∗)− V (φ)] . (38)

where φ∗(x) is the complex conjugate field and V (φ) an arbitrary potential.

(a) By varying this action with respect to the field or its complex conjugate, show that the associated field equations
can be written as:

∂µ∂
µφ− ∂V

∂φ∗
φ = 0 . (39)

(b) Find the condition that the potential function V (φ) must satisfy for the 4-vector current:

jµ = φ∗∂µφ− φ∂µφ∗ (40)

to be conserved, i.e. ∂µj
µ = 0.

(c) Show that under this condition the charge Q =
∫
d3xj0 is conserved, i.e. dQ/dt = 0 and that the action is

invariant under the transformation φ→ eiαφ for an arbitrary constant parameter α.

(d) By writing the field in the polar form φ = ρeiθ, where ρ = |φ|, verify that a non-zero charge corresponds to a
non-zero angular velocity.

In extensions of the Standard Model of particle physics, there are complex scalar fields for which the associated
charge Q is baryon number - the same charge carried by fundamental quarks. If the scalar potential contains terms
that do not satisfy the condition found above and acquires an angular velocity in the early universe, a non-zero
baryon number can be produced. These fields may subsequently decay into quarks and produce the observed baryon
asymmetry. This is called the Affleck-Dine mechanism.
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