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LECTURE 6 - Thermal history of the Universe I

In the next three lectures we will take a closer look at the thermodynamical evolution of the Universe as it expands
from an initially hot and dense state. The notion of local thermal equilibrium is extremely important in determining
how the temperature, energy density and entropy density of the Universe evolve with the Hubble expansion, so we
will begin by reviewing some of the basic aspects of systems of both relativistic and non-relativistic particles in
thermal equilibrium. On the other hand, departures from thermal equilibrium will allow some species to acquire a
significant cosmological abundance. This is behind the origin of the Cosmic Microwave Background and Big Bang
nucleosynthesis, which we will analyze in more detail later on.

Review of equilibrium thermodynamics

The perfect black body form of the CMB is the best evidence we have for local thermal equilibrium in the early
Universe. In general, thermal equilibrium is the natural state for which a system of interacting particles evolves. By
the time the CMB was “emitted” at photon decoupling, 379 000 years had passed since the initial singularity, which
means that the Universe had more than enough time to reach this state. We expect that in the very early Universe
most particles were also in thermal equilibrium with photons, so it is important to recall the basic properties of
particle distributions in thermal equilibrium.

A system of particles in kinetic equilibrium has a phase space occupancy f given by the familiar Bose-Einstein
or Fermi-Dirac distributions at temperature T :

f(p) =
1

e
E−µ
T ± 1

, (1)

where E = |p|2 +m2 is the energy of the particles, µ the chemical potential and the + sign corresponds to fermions
while the − to bosons. Furthermore, if a species is in chemical equilibrium, its chemical potential is related to the
chemical potentials of the species it interacts with. For example, if a species A interacts with species B, C and D
via scattering processes of the form:

A+B ←→ C +D , (2)

then chemical equilibrium implies µA + µB = µC + µD. Local thermal equilibrium is achieved for species which are
both in kinetic and chemical equilibrium.

The phase space distribution allows one to compute the associated number density n, energy density ρ and
pressure p for a dilute and weakly-interacting gas of particles with g internal degrees of freedom:

n = g

∫
d3p

(2π)3
f(p) ,

ρ = g

∫
d3p

(2π)3
E(p)f(p) ,

p = g

∫
d3p

(2π)3

|p|2

3E(p)
f(p) . (3)
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Note that the expression for the pressure agrees with our previous analysis of the energy-momentum tensor, p =
n〈γmv2〉/3, with the factor 3 associated with the assumed isotropy of the momentum distribution. Also, the number
of internal degrees of freedom g corresponds to the number of spin states or polarizations of the particle. For example,
an electron has two spin states ±1/2 and similarly a photon has two possible polarizations, so that ge = gγ = 2.

Let us now compute the above expressions in two asymptotic limits - relativistic and non-relativistic particles,
which will be sufficient for our discussion of how the different particle species evolve in an expanding universe. We
will consider the case |µ| � T and neglect all chemical potentials, since all evidence indicates that this is a good
approximation [1].

(a) Relativistic species

For T � m, the Bose-Einstein and Fermi-Dirac distributions reduce to:

f(y) =
1

ey ± 1
, (4)

where we have defined y = |p|/T . This implies for the particle number density that:

n = g

∫ +∞

0

4π|p|2d|p|
(2π)3

1

ey ± 1

=
g

2π2
T 3

∫ +∞

0

y2

ey ± 1
dy . (5)

It is then useful to use the following results:

1

ex + 1
=

1

ex − 1
− 2

e2x − 1
,∫ +∞

0

yn

ey − 1
dy = ζ(n+ 1)Γ(n+ 1) , (6)

where ζ(z) is the Riemann Zeta-function. For bosons, it is then straightforward to obtain:

nb =
g

2π2
T 3ζ(3)(2!)

=
g

π2
ζ(3)T 3 . (7)

Similarly, for fermions we have:

nf =
g

2π2
T 3

(∫ +∞

0

y2

ey − 1
dy − 2

∫ +∞

0

y2

e2y − 1
dy

)
=

g

2π2
T 3

(∫ +∞

0

y2

ey − 1
dy − 1

4

∫ +∞

0

z2

ez − 1
dz

)
=

g

π2
T 3

(
ζ(3)(2!)− 1

4
ζ(3)(2!)

)
=

3

4

g

π2
ζ(3)T 3 , (8)

implying nf = (3/4)nb. We can perform similar calculations for the energy density to obtain:

ρb =
π2

30
gT 4 ,

ρf =
7

8

π2

30
gT 4 . (9)

Finally, for both bosons and fermions, in the relativistic limit E ∼ |p|, so that from Eq. (3) we have p = ρ/3, as
expected.
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(b) Non-relativistic species

For T � m, the exponential factor dominates the denominator in both the Bose-Einstein and Fermi-Dirac distribu-
tions in Eq. (1), so that the bosonic or fermionic nature of the particles becomes indistinguishable. Furthermore, we
have:

E = (|p|2 +m2)1/2 = m

(
1 +
|p|2

m2

)1/2

' m+
|p|2

2m
. (10)

Defining x = |p|/
√

2mT , we have for the number density:

n ' g

2π2
e−m/T (2mT )3/2

∫ +∞

0

x2e−x
2

dx. (11)

We may then use the following result: ∫ +∞

0

xne−x
2

dx =
1

2
Γ

(
1 + n

2

)
, (12)

and, taking n = 2 with Γ(3/2) =
√
π/2, we obtain:

n ' g
(
mT

2π

)3/2

e−m/T , (13)

which gives the Boltzmann distribution. From Eq. (10) it easy to see that to leading order ρ = mn in this case. To
obtain the associated pressure, note that to leading order |p|2/E ' |p|2/m, so that:

p ' g

2π2
e−m/T

(2mT )5/2

3m

∫ +∞

0

x4e−x
2

dx

=
g

2π2
e−m/T

(2mT )5/2

3m

3
√
π

8

= g

(
mT

2π

)3/2

e−m/TT

= nT , (14)

where we have used Γ(5/2) = 3
√
π/4. Notice that restoring the missing Boltzmann constant kB this corresponds to

the familar result for a non-relativistic perfect gas, p = nkBT . Since T � m, we have p � ρ and the pressure may
be neglected for a gas of non-relativistic particles, as we had anticipated.

Energy and entropy density

Let T denote the temperature of the photon bath in the early universe. If there are other relativistic species in the
early Universe, the total energy density of radiation is given by:

ρr =
π2

30
g∗(T )T 4 , (15)

where g∗(T ) corresponds to the effective number of relativistic degrees of freedom present in the universe at the
temperature T , including both bosons and fermions. This may receive contributions from two types of species:

1. Thermal bath: relativistic species in thermal equilibrium with the photons Ti = T � mi:

gth∗ (T ) =
∑
bosons

gi +
7

8

∑
fermions

gi . (16)
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2. Decoupled species: relativistic species that are not in thermal equilibrium with the photons, T 6= Ti � mi:

gD∗ (T ) =
∑
bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

. (17)

The full number of relativistic degrees of freedom is thus given by g∗(T ) = gth∗ (T )+gD∗ (T ). This number remains
roughly constant away from particle mass thresholds T ∼ mi, and as we had seen previously for T & 1 TeV all the
Standard Model degrees of freedom are relativistic and in equilibrium and g∗ = 106.75. For T < 1 MeV, the only
relativistic species are the photons and the three neutrinos, and as we will see below g∗ ' 3.36. We illustrate the
variation of g∗(T ) in the Standard Model in the figure below.

Figure 1: Variation of the number of relativistic degrees of freedom, g∗ and g∗S , with temperature according to the
Standard Model of particle physics [1].

A very important quantity is the entropy of the Universe. In our earlier discussion in the context of newtonian
cosmology, we considered that there was no entropy variation (i.e. heat transfer) per comoving volume in an expanding
Universe, and we obtained the evolution of the energy density, ρ̇ = −3H(ρ+p), in agreement with the result of energy-
momentum conservation in general relativity for a perfect fluid. This means that energy-momentum conservation
implies an isentropic expansion in thermal equilibrium. Since the entropy is constant, it is a useful quantity to
compute. To do this, recall that the first law of thermodynamics for zero chemical potential can be written as:

TdS = dE + pdV . (18)

Using the fact that both the energy and the entropy are extensive quantities, i.e.

∂E

∂V
=
E

V
,

∂S

∂V
=
S

V
, (19)

we may write the first law in the form:

T
∂S

∂V
dV + T

∂S

∂T
dT − pdV =

∂E

∂V
dV +

∂E

∂T
dT(

T
S

V
− p
)
dV + T

∂S

∂T
dT =

E

V
dV +

∂E

∂T
dT , (20)

where we have taken S = S(V, T ) and E = E(V, T ). Equating the terms in dV and dT , this yields:

∂E

∂T
= T

∂S

∂T
,

E

V
= T

S

V
− p . (21)
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From the second equality, we find for the entropy:

S =
E + pV

T
. (22)

We may define the entropy density s = S/V , which is thus given by:

s =
ρ+ p

T
. (23)

For a relativistic species, we have pi = ρi/3, and hence

si =
4

3

ρi
Ti

. (24)

The total entropy density of radiation in the early Universe is given by a sum over all relativistic species:

s =
2π2

45
g∗S(T )T 3 , (25)

where g∗S(T ) = gth∗S(T )+gD∗S(T ) is the effective number of relativistic degrees of freedom contributing to the entropy.
Note that for species in thermal equilibrium gth∗S(T ) = gth∗ (T ). However, given that si ∝ T 3

i , for decoupled species
we find:

gD∗S(T ) =
∑
bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

6= gD∗ (T ) . (26)

This difference is apparent in figure 1 at low temperatures as neutrinos decouple from the photon bath as we will
see below. Entropy conservation implies that S = a3s remains constant as the universe expands, which implies:

g∗ST
3a3 = const. (27)

Away from particle mass thresholds, g∗S is approximately constant and T ∝ a−1 as expected. Also, since s ∝ a−3,
this allows one to define the number of particles of a given species in a comoving volume:

Ni = a3ni =
ni
s
, (28)

where we have redefined the scale factor to absorb the constant factors. If no particles are being created or destroyed
in a comoving volume, this quantity remains constant, and we have:

Ni =

{
45ζ(3)

2π4
gi
g∗S

, T � mi

45
4
√

2π

gi
g∗S

(
mi
T

)3/2
e−mi/T , T � mi

. (29)

An important consequence of this is that, in the absence of interactions that produce or destroy baryon number, the
baryon-to-entropy ratio is conserved:

ηS =
nB
s

=
nb − nb̄

s
= const. (30)

where b and b̄ denote baryons and antibaryons, respectively. Notice that, on the other hand, the baryon-to-photon
ration nB/nγ only remains constant away from particle mass thresholds when g∗S is constant.

Finally, note that g∗S accounts for particles becoming non-relativistic and “disappearing”’ from the thermal
bath, since their energy density and entropy is exponentially suppressed. When this happens, their entropy is
transferred into the species that remain in the plasma, which makes the radiation temperature decrease more slowly
than T ∝ a−1.
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Decoupling and freeze-out

In the previous discussion we have distinguished between particle species which are in thermal equilibrium with the
photons and those which are decoupled from it. To understand how a species decouples from the plasma we need to
include interactions between the different particles. This is described by the Boltzmann equation, which gives the
general evolution of the particle number density:

ṅi + 3Hni = −〈σivi〉
[
n2
i − (nEQi )2

]
. (31)

The left hand side of the equation simply yields the effect of Hubble expansion, which in the absence of particle
creation or destruction gives ni ∝ a−3. The collision term on the right hand side, on the other hand, includes the
possibility that particles are created and/or destroyed via processes with a total cross section σi, with vi denoting

the interaction velocity of the particles. Also, nEQi denotes the equilibrium distribution of the particle species, and
it is easy to see that any departure from thermal equilibrium makes the system evolve towards thermal equilibrium
once again. For example, if there is a deficit of particles, ni < nEQi , the right hand side gives a positive contribution
to ṅi and makes the number density grow until equilibrium is attained. Similarly, if ni is above its equilibrium value,
more particles will be destroyed until equilibrium is achieved.

Although we will not have time in this course to look at a full derivation or solutions of the Boltzmann equation,
it will be useful to note that the evolution of the number density is a competition between the Hubble expansion and
the collision term. This may be quantified by comparing the interaction rate Γi = ni〈σi|v|i〉 with the Hubble rate.
We then have that:

• For Γi & H, the collision term dominates and the system will evolve and remain in thermal equilibrium;

• For Γi . H, the collision term cannot compensate for the Hubble expansion and the system departs from
thermal equilibrium.

There is, of course, a smooth transition between these two regimes, but this criterion provides a simple and
sufficiently good approximation to analyze the evolution of the number density. The physical interpretation of this
criterion is not difficult. For Γi > H, particles are being created and destroyed within a Hubble time and equilibrium
is maintained. If, on the other hand, Γi < H, interactions can no longer keep up with Hubble expansion and virtually
no particles are created or destroyed within a Hubble time. This implies that the abundance of the species i will
remain constant after decoupling, which is known as freeze-out.

Scattering processes are typically mediated by gauge bosons, such as photons, gluons or the weak bosons, W±

and Z0. The scattering cross sections depend on whether the gauge bosons are relativistic or non-relativistic at
decoupling. Defining the generalized structure constant α = g2

A/(4π) for the gauge coupling associated with a
generic gauge boson A, we have:

• For a massive gauge boson, mA & T , the cross section is typically σ ∼ G2
AT

2, where the generalized Fermi
constant GA = α/m2

A.

• For a massless gauge boson, mA � T , the cross section is σ ∼ α2/T 2.

Suppose then that we have a relativistic species which is maintained in thermal equilibrium by scattering
processes mediated by gauge bosons in one of the above situations. Since ni ∼ T 3 up to O(1) factors and v ∼ 1,
Γi ∼ σT 3. As we have seen earlier, when the Universe is dominated by radiation, we have:

H =
π√
90
g

1/2
∗

T 2

MP
. (32)

This implies that up to constant factors

Γi
H
∼

{
G2
AMPT

3 , mA & T

α2MP

T , mA � T
. (33)
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This means that the particle can be in thermal equilibrium at high temperature, mA � T �MP , and decouple later
on, once the temperature drops below TD ∼ (G2

AMP )−1/3 ∼ α−2/3(mA/MP )1/3mA . mA.
If a particle decouples when relativistic, TD � mi, its energy will simply be redshifted by expansion, E(t) =

E(tD)a(tD)/a(t). Since it is no longer interacting with the plasma, its phase space occupancy f(p) remains un-
changed, and in particular E/T = const. This means that its temperature will also redshift with the scale factor:

T (t) = TD
a(tD)

a(t)
, mi � TD . (34)

This implies, in particular, that its temperature is not affected by subsequent changes in g∗S . If, on the other
hand, a particle is non-relativistic at the time of decoupling, TD . mi, its momentum will redshift with expansion
and consequently its kinetic energy scales as E ∝ |p|2 ∝ a−2. Since n ∝ a−3 due to the absence of particle
production or destruction for any decoupled species, f(p) is maintained after decoupling, and in this case we require
(E − µ)/T = const., yielding:

T (t) = TD

(
a(tD)

a(t)

)2

,

µ(t) = m+ (µD −m)T (t)/TD , mi & TD . (35)

Note that the variation of the chemical potential ensures that n ∝ a−3, which is formally required even though we
will neglect chemical potentials in most of our discussion, as mentioned earlier.

It is important to emphasize that, despite the different scaling behaviour of the temperature for relativistic and
non-relativistic species after decoupling, in both cases the equilibrium distribution is maintained.

Neutrino decoupling

Let us now look at a particular example - the decoupling of neutrinos. Neutrinos are light particles with masses
mν . 1 eV and that are kept in thermal equilibrium with electrons and positrons via weak interactions of the form:

e− + νe ←→ e− + νe

e− + e+ ←→ νe + ν̄e . (36)

The cross section for these interactions is σ = G2
FT

2, where GF = 10−5/m2
p ' 1.17×10−5 GeV−2 is Fermi’s constant

and mp ' 1 GeV is the proton mass. Both neutrinos and electrons/positrons are fermions, so that:

ne,νe =
3ζ(3)

4π2
ge,νeT

3 ' 0.1ge,νeT
3 , (37)

with ge = 2 and gνe = 1 since neutrinos are left-handed particles. This gives a total interaction rate:

Γν = 0.1(ge + gνe)T
3 ×G2

FT
2 ' 0.3G2

FT
5 , (38)

where we have taken v ∼ 1 for both species. The number of relativistic degrees of freedom for T & 1 MeV includes
photons, electrons, positrons and three neutrinos in the thermal bath, yielding g∗S = 10.75. Using Eq. (32) for the
Hubble rate in the radiation-dominated era, we find:

Γν
H
'
(

T

2 MeV

)3

, (39)

so that neutrinos decouple from the thermal bath at TD ∼ 2 MeV. Note that solving the full Boltzmann equation
one obtains TD ∼ 1 MeV, which gives an idea of how good this criterion is.

Shortly after neutrinos decouple, the temperature drops below the electron mass, me = 0.511 MeV, and the
entropy in e± is transferred to the photons, but not to the decoupled neutrinos. We then have:

g∗S =

{
2 + 7

8 × 4 = 11
2 , T & me

2 , T < me

, (40)
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where we have neglected neutrinos and other decoupled species. Since, in equilibrium, g∗S(aT )3 remains constant,
we find that aT increases after T < me by a factor (11/4)1/3, while aTν remains the same. This implies that the
present temperature of neutrinos is given by:

Tν =

(
4

11

)1/3

T0 ' 1.95 K . (41)

Note that the decrease in the number of relativistic degrees of freedom does not lead to an actual increase in the
temperature, it just makes it decrease more slowly than a−1. This means that, besides the CMB, we expect a back-
ground of relic neutrinos from the Big Bang, the CνB, which is slightly colder than the relic photons. Unfortunately,
since neutrinos interact so weakly with matter, they are very difficult to detect and it is not certain that one might
be able to detect the neutrino background directly in the future. There is, however, compelling indirect evidence for
its existence, since their contribution to the entropy and energy density affects BBN and CMB anisotropies. In fact,
this can be used to determine the number of neutrino species from cosmological measurements, and the most recent
results from the Planck satellite yield Nν = 3.30± 0.27, consistently with the known three species, νe, νµ and ντ [2].

Having computed the present temperature of neutrinos, we may also compute the present values of g∗ and g∗S :

g∗(T0) = 2 +
7

8
× 2× 3×

(
4

11

)4/3

= 3.36 ,

g∗S(T0) = 2 +
7

8
× 2× 3×

(
4

11

)
= 3.91 , (42)

from which we can see the explicit difference between the two effective numbers of relativistic degrees of freedom when
there are relativistic species decoupled from the photons. We can also use this to compute the present abundance of
radiation:

ρr(T0) =
π2

30
g∗(T0)T 4

0 ' 8× 10−34 gcm−3 ,

Ωrh
2 ' 4× 10−5 , (43)

so that the contribution from relativistic degrees of freedom to the present energy density in the Universe is negligible,
as we had discussed earlier in the course.

Problem 6

Suppose there is an additional species of massive neutrinos contributing to the dark matter density in the Universe.
Assume additionally that these neutrinos interact with electrons and positrons in the same way as ordinary neutrinos,
such that they decouple at TD ∼ 1 MeV > mν and that they are non-relativistic today. Hence show that their present
abundance is

Ωνh
2 ' mν

91 eV
. (44)

Use this to obtain an upper bound for the mass of these neutrinos. [Note that, for a massive fermion, g = 2.]
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