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LECTURE 10 - Inflation II

In the previous lecture we began to analyze how a period of accelerated expansion in the early universe, prior to
radiation domination, could solve the shortcomings of the conventional Big Bang model, namely the horizon and
flatness problems. This period is known as inflation and, as we began to discuss, can be implemented in models with
non-standard fluids that mimic the effect of a cosmological constant at early times but may decay into radiation and
ordinary particles after a sufficiently long period of quasi-exponential expansion that dilutes any initial curvature
effects and increases the size of the causal horizon at the time of last scattering. Today we will describe in more
detail how the dynamics of a scalar field provides a simple mechanism to implement this construction and discuss
particular field theory models where this can be realized.

Dynamics of slow-roll inflation

Recall that the action for a real scalar field in a curved spacetime is given by:

Sφ =

∫
d4x
√
−g
[
−1

2
∂µφ∂

µφ− V (φ)

]
, (1)

from which we determined the corresponding energy-momentum tensor, with an energy density ρφ = φ̇2/2 + V (φ)

and pressure pφ = φ̇2/2 − V (φ) for a homogeneous scalar field. This implies that such a scalar field can mimic the
effect of a cosmological constant if its potential energy V (φ) gives the dominant contribution to the energy density
and pressure, thus yielding an effective Λ if it overcomes all other fluid components at early times. Physically, it is
easy to understand that this will be the case if the field value is varying slowly. As any physical system, the value
of the field, which describes the collective motion of the associated Bose-Einstein condensate, will adjust itself in
order to minimize its energy, in particular decreasing its potential energy. If the function V (φ) varies considerably
with the value of φ, the field will move quickly down the potential curve; if, on the other hand, the potential energy
remains approximately constant for a range of field values, the inflaton will roll slowly towards the minimum of the
potential, which is the case we are interested in.

To better quantify this physical picture, we need to derive the equation of motion that describes the dynamics
of the inflaton field in an expanding FRW spacetime. As we have seen in several cases before, this can be obtained
by minimizing the variation of the action in Eq. (1) for small field variations. We then have:

δSφ =

∫
d4x
√
−g
[
−1

2
gµν∂µφ∂ν(δφ)× 2− V ′(φ)δφ

]
=

∫
d4x

[
∂ν
(√
−ggµν∂µφ

)
(δφ)−

√
−gV ′(φ)δφ

]
=

∫
d4x
√
−g
[

1√
−g

∂ν
(√
−ggµν∂µφ

)
− V ′(φ)

]
δφ , (2)

1



where we have integrated the first term by parts and set to zero variations of the field at infinity. Hence, for arbitrarily
small variations of the field, we require δSφ = 0, so that:

1√
−g

∂ν
(√
−ggµν∂µφ

)
− V ′(φ) = 0 , (3)

where the second order differential operator acting on the field is known as the d’Alembertian and usually denoted as
�φ. Since inflation will dilute any curvature effects, we may consider for simplicity a flat FRW universe with metric
gµν = diag(−1, a2(t), a2(t), a2(t)) in cartesian coordinates, such that

√
−g = a3(t) and so:

1
a3 ∂t

(
−a3φ̇

)
+ 1

a3 × a
3 × a−2∇2φ− V ′(φ) = 0

φ̈+ 3 ȧa φ̇−
1
a2∇

2φ+ V ′(φ) = 0 . (4)

As we discussed in the previous lecture and can see explicitly in this equation, spatial variations will become less
important as the universe expands, so that the field becomes essentially homogeneous. Hence, neglecting gradients,
the equation of motion for the inflaton field can be written as:

φ̈+ 3Hφ̇+ V ′(φ) = 0 . (5)

One can also easily show that this equation of motion follows trivially from conservation of the energy-momentum
tensor, which for an expanding FRW universe reduces to ρ̇φ + 3H(ρφ + pφ) = 0 as we have obtained before:

∂t

(
1
2 φ̇

2 + V (φ)
)

+ 3Hφ̇2 = 0

φ̇
(
φ̈+ 3Hφ̇+ V ′(φ)

)
= 0 , (6)

which for φ̇ 6= 0 reduces to Eq. (5). We hence see that the time variation of the homogeneous inflaton field is
determined by a competition between two effects − the slope of the potential V ′(φ) and Hubble expansion. The
expansion rate is determined by the Friedmann equation, which assuming that the energy density of the inflaton is
dominant fluid component in the early universe is given by:

H2 =
8πG

3
ρφ =

1

3M2
P

(
1

2
φ̇2 + V (φ)

)
, (7)

where one should recall that the reduced Planck mass is given by MP = 1/
√

8πG in natural units.
From Eq. (5) one concludes that the variation of the inflaton field is driven by two effects - Hubble expansion

and the slope of the potential. The former acts as an effective friction term proportional to the field velocity, 3Hφ̇,
that damps the variation of the field and, from Eq. (7), is sourced by the inflaton itself. On the other hand, the
slope of the potential always tends to drive the field towards the minimum of the potential (assuming it is bounded),
increasing the magnitude of the acceleration |φ̈|.

To better understand the effect of these two terms, let us consider a particular case of a quadratic inflaton
potential, V (φ) = m2φ2/2, for which the equation of motion corresponds to a damped harmonic oscillator:

φ̈+ 3Hφ̇+m2φ = 0 . (8)

The parameter m denotes the mass of the scalar field, or equivalently the mass of the particles that make up
the associated condensate. Note, in particular, that the generic relativistic equation describing the propagation of
massive waves is given by (∂2

t −∇2 +m2)φ = 0 in Minkowski (non-expanding) spacetime. This yields the well-known
relativistic formula E2 = |p|2 + m2 with the standard operator identifications in quantum mechanics E → i∂t and
p→ −i∇. Following the procedure described in Problem 9, it is easy to see that Eq. (8) has two types of solutions
depending on the value of the mass m:

• m2 � H2: The field is underdamped in this regime, as the Hubble friction term can be neglected and the field
has an oscillating profile with frequency m, φ(t) = A cos(mt) +B sin(mt);
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• m2 � H2: The field is overdamped in this regime and the mass term is negligible, so that the field varies slowly,
φ̈ ' φ̇ ' 0.

For inflation to occur, we are interested in the latter case where the field mimics a cosmological constant, since
the kinetic energy will be negligible compared to the potential energy and pφ ' −ρφ. More complicated potentials
are simply non-linear generalizations of the damped harmonic oscillator case, and in the generic case we require the
following two conditions to be satisfied:

1. The kinetic energy of the inflaton is much smaller than its potential energy:

1

2
φ̇2 � V (φ) , (9)

ensuring the equation of state is close to a cosmological constant, wφ ' −1.

2. The acceleration of the field is small, or otherwise the field velocity will grow quickly and the first condition
cannot be satisfied during a sufficiently long period:

φ̈� 3Hφ̇ . (10)

These two conditions are known as the slow-roll conditions, ensuring the motion of the field is overdamped for
sufficiently long to allow for quasi-exponential expansion. If these conditions are satisfied, the inflaton and Friedmann
equations that the following form:

3Hφ̇ ' −V ′(φ)

H2 ' V (φ)

3M2
P

. (11)

Hence, the potential energy sets the expansion rate and the size of the causal horizon during inflation, while its slope
sets the velocity of the field and hence the duration of the slow-roll period. The slow-roll conditions are conventionally
expressed in terms of two slow-roll parameters, defined as:

εφ =
1

2
M2
P

(
V ′(φ)

V (φ)

)2

,

ηφ = M2
P

(
V ′′(φ)

V (φ)

)
. (12)

These parameters measure the relative slope and curvature of the potential function V (φ) in units of the Planck
mass. Using Eqs. (11), one can show that:

φ̇2/2

V (φ)
' 1

2V (φ)

(
V ′(φ)

3H

)2

' M2
P

6

(
V ′(φ)

V (φ)

)2

=
εφ
3
� 1 (13)

Similarly, the relative variation of the Hubble parameter in a Hubble time H−1 can be obtained by differentiating
the Friedmann equation and using the slow-roll equation for the field:

2HḢ ' V ′(φ)φ̇

3M2
P

' − [V ′(φ)]
2

9HM2
P

, (14)

and dividing by 2H4 ' 2(V (φ)/3M2
P )2 we obtain:

Ḣ

H2
' −M

2
P

2

(
V ′(φ)

V (φ)

)2

= −εφ � 1 . (15)
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Hence, requiring εφ � 1 ensures that equation of state approaches that of a cosmological constant, where the Hubble
parameter remains roughly constant during inflation, as required. On the other hand, the field acceleration can be
obtained from differentiating the slow-roll equation:

φ̈ ' ∂t
(
−V

′(φ)

3H

)
' −V

′′(φ)φ̇

3H
+
V ′(φ)

3

Ḣ

H2
, (16)

where the second term is proportional to εφ � 1 and may be neglected. For consistency, we then require:∣∣∣∣∣ φ̈

3Hφ̇

∣∣∣∣∣ '
∣∣∣∣V ′′(φ)

9H2

∣∣∣∣ =
1

3
M2
P

∣∣∣∣V ′′(φ)

V (φ)

∣∣∣∣ =
|ηφ|
3
� 1 . (17)

Thus, up to numerical factors the slow-roll conditions can be expressed as conditions on the slope and curvature of
the potential, measured in units of the Hubble scale:

εφ � 1 , |ηφ| � 1. (18)

If we go back to our example of a quadratic potential function, we see that the second slow-roll condition corresponds
to:

ηφ = M2
P

m2

V (φ)
' 1

3

m2

H2
� 1 , (19)

which is exactly the condition for an overdamped harmonic oscillator found earlier, where the field varies slowly in
time. In general, the second derivative of the potential corresponds to the effective mass of the field, so we say that
inflation requires a light scalar field (as compared to the Hubble scale) dominating the energy density in the early
universe.

Note that other types of fields could also be overdamped and dominate the energy balance in the early universe.
For example, particles like the photon are described by vector fields Aµ(x), whereas fermions such as the electron are
described by spinor fields ψ(x). The scalar field case is special since, having no intrinsic spin, it remains unchanged
under Lorenz transformations, i.e. it does not pick up a special reference frame in the universe. A constant value
for a vector field would, on the other hand, yield a preferred direction that could break the isotropy of the universe,
which is one of the basic postulates of the Hot Big Bang model.

Inflation begins when the potential energy of the inflaton overcomes any pre-existing components, and we will
last as long as the slow-roll conditions are satisfied and the field acts as an effective cosmological constant. Afterwards,
the inflaton equation of state will change and the field decays into ordinary particles as we discuss below. Suppose
that inflation begins at time ti when the field has the value φi in a Hubble-sized patch of the universe, and ends
at time te where the field value is such that εφ(φe) ∼ 1 or |ηφ(φe)| ∼ 1. The total number of e-folds of accelerated
expansion is then given by:

Ne = log

(
ae
ai

)
=

∫ ae

ai

da

a

=

∫ te

ti

1

a

da

dt
dt

=

∫ te

ti

H(t)dt

=

∫ φe

φi

H

φ̇
dφ

' −
∫ φe

φi

3H2

V ′(φ)
dφ

' − 1

M2
P

∫ φe

φi

V (φ)

V ′(φ)
dφ , (20)
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where we have successively changed the integration variable from the scale factor a(t) to cosmic time t and field
value φ(t), and used the slow-roll and Friedmann equations, Eq. (11). It is thus explicit that the flatter the inflaton
potential, i.e. the smaller its slope in the relevant range of field values, the longer inflation will last. Let us consider
our working example with a quadratic potential, for which:

εφ = ηφ = 2

(
MP

φ

)2

, (21)

so that inflation requires super-planckian values of the field, φ�MP . This implies that φe =
√

2MP � φi, and we
have from Eq. (20):

Ne ' −
1

2M2
P

∫ φe

φi

φdφ =
φ2
i − φ2

e

4M2
P

≈ φ2
i

4M2
P

, (22)

so that inflation will last longer if it begins at larger field values. In particular, Ne ' 50−60 requires φi/MP ' 14−15.

Inflationary model building

As we have seen so far, the main ingredient for a successful model of inflation solving the problems of the standard
cosmological model is a scalar field with a sufficiently flat potential. Scalar fields have a long standing history in
particle physics, describing for example neutral pions, which are bound states of quarks and antiquarks. Elementary
scalar fields have been postulated to exist for several decades, but only recently have we found experimental evidence
for the long-sought Higgs boson - the scalar field responsible for spontaneously breaking the electroweak symmetry and
giving mass to elementary particles. Although it is not yet clear that this discovery corresponds to an elementary (as
opposed to composite) particle, it gives a new motivation to take the slowly-rolling scalar field inflationary paradigm
seriously.

Extensions of the Standard Model (SM) of particle physics typically include several additional scalar fields.
For example, supersymmetry postulates the existence of scalar partners for all the quarks and leptons, while in
theories with compact extra-dimensions the size and shape of these invisible dimensions are effectively described by
the dynamics of scalar fields. Several models of inflation have been developed since the 1980’s, either motivated
in extensions of the SM or simply looking for potential functions that satisfy the slow-roll requirements. While an
exhaustive review of inflationary models is outside the scope of thus course, there are three large classes of models
that group the many models found in the literature with similar features:

1. Large field models

In these models, inflation occurs for large field values, typically super-planckian. The quadratic potential is an
example of such a model, as we have seen previously, and is part of a larger class of models with monomial
potentials:

V (φ) = λφn , (23)

for which we have

εφ =
n2

2

(
MP

φ

)2

, ηφ = n(n− 1)

(
MP

φ

)2

, (24)

yielding a number of e-folds:

Ne '
1

2n

φ2
i

M2
P

, (25)

such that we need φi �MP in order to obtain 50-60 e-folds of inflation. Monomial potentials are the canonical
example of what is known as chaotic inflation, originally proposed by Andrei Linde [1], who argued that,
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according to Heisenberg’s uncertainty principle, the universe should emerge from the quantum gravity era, for
energies above the Planck scale, with stochastic initial conditions, such that energy densities 〈V 〉 ∼ 〈φ̇2〉 ∼M4

P .
This corresponds to φ > MP for small λ in the case of monomial potentials, and in some patches of the post-
planckian universe the potential energy would be the dominant component and inflate.

2. Small field models

In this class of models, inflation occurs near the origin of field space, φ�MP . A particular example are hilltop
models:

V (φ) = V0

(
1− γ

n

(
φ

MP

)n)
, (26)

with n ≥ 2. These typically correspond to an expansion of a more general potential about the origin, as is the
case of the Higgs potential V (φ) = λ(φ2 − v2)2, where the origin corresponds to an unstable maximum of the
potential, so that the field will evolve towards the true minimum at φ = v. Close to the origin the constant
term V0 is the leading contribution to the potential, which may thus have the required flatness. In particular,
we have:

εφ =
γ2

2

(
φ

MP

)2n−2

, ηφ = −γ(n− 1)

(
φ

MP

)n−2

, (27)

with slow-roll occuring for φ�MP and/or small values of γ. As the field evolves towards non-zero values we
have φe � φi and the number of e-folds is given by:

Ne '
1

γ(n− 2)

(
φi
MP

)2−n

. (28)

3. Hybrid models

Hybrid models consider two or more coupled scalars with a potential of the form [2]:

V (φ, χ) = f(φ) +
g2

2
φ2χ2 +

λ2

4
(χ2 − v2)2 , (29)

where φ acts as the inflaton field and χ is known as the waterfall field. The function f(φ) is arbitrary but
typically includes contributions from quantum effects. The main idea is that the χ field has a Higgs-like
potential whose minimum value depends on the inflaton field, φ. In particular, the origin χ = 0 is either a
minimum or a maximum of the potential. To see this, let us evaluate the mass of the waterfall field at this
point, i.e. the curvature of the potential:

m2
χ(χ = 0) =

∂2V (φ, χ)

∂χ2
(φ, 0) = g2φ2 − λ2v2 , (30)

which means that for gφ > λv the field is heavy and the field χ sits at a (meta)stable minimum at the origin
χ = 0. This yields for the inflaton a potential of the form V (φ, 0) = f(φ) + λ2v4/4, which is constant up to
corrections included in f(φ), which are model-dependent but can be made small. Hence, the inflaton potential
is naturally flat for large field values. If f(φ) makes the inflaton decrease, the system will eventually reach a
stage where the waterfall field becomes massless and the origin χ = 0 becomes an unstable maximum. This
triggers a phase transition that ends inflation with the waterfall field moving towards the true minimum at
χ = v. The number of e-folds of inflation depends on the function f(φ) so we will not compute here.

We illustrate the form of the inflaton potential in these three cases in Figure 1.
As mentioned earlier, the list of possible inflationary potentials is not exhausted by these three types of model,

but the main dynamical features of slow-roll inflation are indeed captured in these examples.
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Figure 1: Potential curves for (a) large field models, in particular a quadratic potential; (b) small field models, in
particular a hilltop/Higgs potential; and (c) hybrid models, with f(φ) = 0 for illustrative purposes. In all cases the
motion of the inflaton field during inflation is indicated by an arrow.
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Reheating

Once the slow-roll conditions are violated, the kinetic energy of the inflaton will increase and may eventually dominate,
so that the equation of state parameter may evolve form wφ ' −1 during inflation to wφ ' 1. This kinetic energy-
dominated phase is known as kination, and it is easy to see that ρφ ∝ a−6, so that the energy density of the inflaton
redshifts away quite quickly.

During the kination phase the field generically field evolves towards the minimum of its potential, e.g. at φ = 0
for the quadratic potential, and executes damped oscillations about this minimum. So far we have neglected any
interactions of the inflaton field with other degrees of freedom, but these must be included in order to transfer the
energy of the inflaton field to ordinary particles and exit into the standard cosmology dominated first by radiation
and then by matter. Couplings between different fields are a feature of the Standard Model of particle physics, and
simple interactions with other scalar fields, e.g. g2φ2χ2 as in the hybrid model, or Yukawa interactions with fermions,
gφψ̄ψ, should in principle be included. These couplings make the inflaton field unstable and allow them to decay into
other degrees of freedom. When the field is oscillating about its minimum, the equation of motion is then modified
by the addition of a friction term proportional to the decay width Γφ, which we will take as an arbitrary parameter
but can be computed for each particular interaction:

φ̈+ 3Hφ̇+ Γφφ̇+ V ′(φ) = 0 . (31)

This term is typically negligible during the slow-roll phase if Γφ � H, as the inflaton is moving slowly, although one
may consider models where it may have a significant effect (see problem 10). Moreover, although the derivation of
this contribution in the context of quantum field theory is outside the scope of these lectures, we should note that
in the general case it corresponds to a dissipation coefficient Υφ̇ that may take several different forms depending on
the structure of the interactions and dynamics of the inflaton field, and only in the final phase where the inflaton
oscillates about the minimum of the potential do we obtain Υ = Γφ.

Multiplying Eq. (31) by φ̇, we recover the standard energy-momentum conservation modified by the decay term:

ρ̇φ + 3H(ρφ + pφ) = −Γφφ̇
2 . (32)

Recall that the right hand side of this equation vanished for a perfect fluid, i.e. when no entropy was being created
or destroyed, dS = 0. This means that by decaying into other particles the inflaton will create the entropy required
to exit into the standard cosmology. This period is known as reheating and may be a complex process. Typically, one
assumes that the inflaton decays either directly or indirectly into the Standard Model degrees of freedom through
interactions of the form given above and that the decay products scatter off each other sufficiently quickly (within
a Hubble time) to reach a state of thermal equilibrium. As the dominant contribution to the entropy in thermal
equilibrium corresponds to relativistic degrees of freedom, the energy lost by the inflaton will lead to the formation
of a thermal radiation bath at a temperature T , and the equation for the radiation energy density reads:

ρ̇r + 3H(ρr + pr) = Γφφ̇
2 , (33)

where pr = ρr/3 and ρr = (π2/30)g∗T
4 as we have seen previously. The total energy density ρ = ρφ + ρr and

pressure p = pφ + pr satisfy the standard energy-momentum conservation ρ̇+ 3H(ρ+ p) = 0, since the total entropy
of the coupled inflaton-radiation system is conserved and entropy is simply being transferred between these two
components.

Close to the minimum at φ = φm such that V ′(φm) = 0, we can expand the potential as:

V (φ) = V (φm) +
1

2
V ′′(φm)(φ− φm)2 + . . . , (34)

so that to leading the field behaves as a damped harmonic oscillator whatever the form of the potential. Recall that
for a harmonic oscillator we have 〈V 〉 = 〈φ̇2/2〉 = ρφ/2, so that pφ ' 0 and the oscillating inflaton behaves as non-
relativistic pressureless matter, a period that may be preceded by the above mentioned kination phase. During the
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oscillating phase, the coupled inflaton-radiation system thus obeys the following set of coupled differential equations:

ρ̇φ + 3Hρφ = −Γφρφ

ρ̇r + 4Hρr = Γφρφ

H2 =
ρφ + ρr
3M2

P

. (35)

For simplicity, let us assume the kination phase can be neglected and oscillations begin immediately after inflation
ends. Then, for a constant decay width the inflaton energy density evolves like:

ρφ(t) = ρφ(te)

(
a

ae

)−3

e−Γφ(t−te) , (36)

where ρφ(te) ' V (φe) if the inflaton energy density is not too diluted during the kinetic energy-dominated phase.
This is exactly the behaviour expected for unstable non-relativistic matter redshifting with the volume and decaying
with the usual exponential law. While the oscillating inflaton is still the dominant component and has not decayed
significantly, a(t) ∝ a2/3 as for non-relativistic matter and H(t) = 2/3t. Using this we can solve the radiation
equation, giving:

ρr(t) '
3

5
ρφ

(
t

τφ

)(
1−

(
te
t

)5/3
)
, (37)

where τφ = Γ−1
φ is the inflaton decay time and we used that ρr ' 0 at the end of inflation, since any initial

component would have been exponentially diluted. This implies that the radiation energy density starts growing and
then decreases, reaching a maximum temperature:

Tmax ∼ g−1/4
∗ V (φe)

1/8(MPΓφ)1/4 . (38)

This is illustrated in Figure 2, where one can also see that radiation overcomes the inflaton contribution to the energy
density at t ∼ τφ, i.e. by the time the inflaton has effectively decayed and Γφ & H, and we enter the radiation era.

ΡΦ

Ρr

1�GΦ

1�GΦ

t

Ρ

Figure 2: Evolution of the inflaton and radiation energy densities during the oscillating phase at the end of inflation,
showing that radiation is created and eventually overcomes the inflaton contribution after the latter has decayed at
t ' Γ−1

φ .

We can then estimate the temperature at the start of the radiation era by equating the Hubble parameter at
this stage H ' π/

√
90T 2/MP with the inflaton decay width, which yields the reheating temperature:

TR ∼ 1.7g
−1/2
∗ (MPΓφ)1/2 . (39)
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Note that while the maximum temperature depends on the energy density at the end of inflation, the reheating
temperature only depends on the duration of the reheating period, τφ = Γ−1

φ , with a very long decay time leading
to a lower reheating temperature. While we have so far kept the scale of inflation arbitrary, we will see in the next
lecture how the temperature anisotropies in the CMB can be used to determine this. If the inflaton decays quickly,
most of its energy will be converted into radiation and we have TR ∼ ρφ(te)

1/4. On the other hand we must require
that reheating is complete before the synthesis of light elements begins, so that in general we have:

10 MeV . TR . ρφ(te)
1/4 . (40)

Besides conventional decay, the inflaton also excites Fourier modes of the fields it couples to and that have a
frequency comparable to its oscillating frequency. Although we will not describe the details of this process in this
course, it shares similar features to many other resonant mechanisms found in nature and leads to an exponentially
fast production of particles. This is particularly important in the early stages of the oscillating phase, when the
amplitude of the oscillations is still large, whereas conventional decay becomes the dominant process at later times.
For this reason, this is known as preheating.

In summary, slow-roll inflation provides a simple an elegant mechanism to solve the problems of the standard
Big Bang cosmology. During an initial phase dominated by the potential energy of the inflaton scalar field, the
universe expands in an accelerated fashion, mimicking the effect of a cosmological constant. This period lasts for
50 − 60 e-folds until the potential steepens and the slow-roll conditions are no longer valid. The kinetic energy of
the inflaton becomes comparable and may overcome its potential energy, and the field evolves quickly towards the
minimum of its potential. Before stabilizing at the minimum, the field executes damped oscillations and on average
behaves as non-relativistic matter. While it oscillates, the inflaton decays into relativistic degrees of freedom that
eventually thermalize and become the dominant component, thus reheating the universe and leading to the standard
cosmological evolution.

Problem 10

In warm inflation models, interactions between the inflaton and other fields lead to an effective friction term in the
equation of motion and that acts a source of radiation during inflation:

φ̈+ 3Hφ̇+ Υφ̇+ V ′(φ) = 0 (41)

ρ̇r + 4Hρr = Υφ̇2 ,

where Υ = Υ(φ, T ) is in general distinct from the inflaton decay width Γφ responsible for reheating. For simplicity,
let us consider a constant dissipation coefficient.

(a) Determine the slow-roll equation for the inflaton field and show that the slow-roll conditions are given by:

εφ � (1 +Q) , |ηφ| � 1 +Q , (42)

where Q = Υ/3H, thus alleviating the need for a very flat potential with strong dissipation.

(b) Obtain an expression for the number of e-folds of inflation with a quadratic potential and compare with Eq. (22).

(c) Show that the radiation energy density approaches an almost constant value such that

ρr
V (φ)

' εφ
2

Q

(1 +Q)2
, (43)

so that it is always subdominant in the slow-roll regime but becomes significant at the end of inflation for strong
dissipation.

10



References

[1] A. D. Linde, Phys. Lett. B 129, 177 (1983).

[2] A. D. Linde, Phys. Rev. D 49, 748 (1994) [astro-ph/9307002].

11


