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Motivation

It is well known that, in Einstein's general relativity, the entropy of
a black hole is proportional to the area of the horizon

SBH =
A

4G
, (~ = c = 1)

To give a statistical interpretation to the Beckenstein-Hawking
entropy (SBH) is an old problem in quantum gravity.

Can we describe the black hole as an ensemble of quantum states,
such that the Boltzmann relation holds?

S = lnΩ

Ω: number of accessible microstates.



Motivation

By now there is a good statistical understanding of the
Beckenstein-Hawking entropy in string theory.

Construct a supersymmetric black hole specifying certain
quantum numbers (charges, angular momentum) and then
compute its BH entropy.

Find a microscopic system (branes, strings, other solitonic
objects) with the same quantum numbers. Working in the
weak string coupling regime we can switch o� gravity and
count BPS states. It is possible to compute Ωmicro exactly
(many examples in N = 4, 8 theories).

Supersymmetry ensures that SBH = lnΩmicro , in the
thermodynamic limit.

Microscopic counting



Motivation

For large horizon radius or large charge both computations simplify.

On the Black Hole side we can neglect higher derivative
corrections. The entropy is then given by the area formula.

On the microscopic side we can use an asymptotic
expansion/Cardy limit of the degeneracy.

Both computations match perfectly in the regime of large charges
[Strominger, Vafa]

SBH = lnΩmicro(Q � 1)



Motivation

Our main interest is to compute �nite charge corrections to the
Bekenstein-Hawking entropy.

S =
A

4G
+ a ln(A) +O(A−1)

Since in string theory corrections to Einstein's gravity theory are
di�erent in di�erent phases of the theory, the black hole entropy
can give useful information about the microscopic details of the
phase.

Macroscopic counting.



Motivation

If we have the right tools, we may compute the black hole entropy
exactly by including all perturbative and non-perturbative
corrections.

Equality of both microscopic and macroscopic computations is
equivalent as establishing an exact holography in the context of
AdS2/CFT1 correspondence,

Squantum = lnΩmicro

valid for any value of the charges.



Index VS degeneracy

We use an index to count the BPS states of the microscopic
theory (when gs → 0)

Ωmicro = Tr(−1)F e−βH+iθJ |�xed charges Q,P

Since it is an index it does not depend on β, θ or even on gs !

Ωmicro = Tr(−1)F = n+ − n−

On the black hole side the Wald entropy counts the logarithm
of the degeneracy

Ωmacro = Tr(1)

For black holes that preserve at least four supercharges the
near horizon geometry has spherical symmetry

AdS2 × S2

and therefore
Tr(−1)2J = Tr(1)

Index=Degeneracy



Wald entropy

Once we start including higher derivative corrections the area
formula is not valid anymore. The Wald formalism allows to
compute the entropy by incorporating the contribution from
local terms in the e�ective action. [Wald,Iyer]

However there can be non-local/non-analytic contributions to
the e�ective action from integrating over massless modes.
These contributions are essential for duality covariance.

The inclusion of non-perturbative corrections, is in this context
conceptually more di�cult.

We need some formalism that can account for these issues!



Quantum entropy

We need to use a quantum version of the Wald entropy based on
AdS2/CFT1 correspondence [Sen],

W (q, p) =

〈
exp[−iqI

˛
AI ]

〉�nite

AdS2

In AdS2 the gauge �eld behaves like A ∼ er + c . The electric
�eld is a non-normalizable mode and has to be �xed
(microcanonical ensemble).

AdS2 has in�nite volume which induces IR divergences. We
introduce a cuttof at r = r0 and keep only the cutto�
independent piece.

The observable W (q, p) equals the degeneracy d(q, p). On
the CFT we compute limr0→∞ Tr exp[−2πr0H]. It counts the
number of ground states in a �xed charge sector.

In the classical large charge limit W (q, p) ' exp SWald



Quantum entropy

Our goal is to evaluate W (q, p) by performing the path integral
over the string �elds in AdS2.

This is highly non-trivial and may seem foolish since we don't even
understand well string �eld theory.

Nevertheless we may �nd instructive to use the supergravity action.

Amazingly, localization techniques can simplify the path integral
enormously.



Supergravity
We then need to compute the supergravity action together with the
Wilson lines.

Here is the action:
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Â
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Semiclassical approach is very hard!
Nevertheless there has been some progress [Banerjee, Sen], and
also for non-supersymmetric rotating black holes [Sen].



Localization

Localization means deforming the action by a Q exact term
[Witten, Duistermaat,Heckamn, Schwarz, Zaboronsky]

S → S + tQV

Q is a fermionic generator which squares to a bosonic
symmetry of the theory Q2 = Lφ.
Since V is by construction Lφ invariant, Q2V = 0.

Since QS = 0 and Q2V = 0 we can show that

d

dt

ˆ
e−S−tQV = 0

Then when we send t →∞ the theory localizes into the critical
points of QV and the semiclassical aproximation becomes exact.

ˆ
e−S =

∑
σ∈δ(QV )

e−S(σ)sdet(δ2QV )



Localization

To apply localization in our problem we need to identify a fermionic
symmetry Q.

The near horizon geometry of the black hole is invariant under the
supergroup SU(1, 1|2).

Apart from the bosonic generators of SL(2,R)× SU(2) symmetries
of AdS2 × S2 it contains in addition 8 supercharges Q which close
into the 1 + 1 dimensional N = 4 superconformal algebra.

We pick an element which squares to Q2 = L− J. [Banerjee,
Banerjee,Gupta,Mandal, Sen]



Localization in supergravity

We consider the computation of W (q, p) in supergravity coupled to
Nv + 1 vector-multiplets.

To apply localization we need an o�-shell representation of the
fermionic symmetry Q.

In general o�-shell supergravity is notorously complicated but for
N = 2 vector multiplets there is an elegant construction. [de Wit,
Van Proeyen, Van Holten]

The various couplings in the supergravity action are enconded in a
sole function: the prepotential F (X ). This function is di�erent in
di�erent phases of the theory and encodes also higher derivative
corrections.



Localization in supergravity
In the localization procedure we choose V to be of the form

V = (QΨ,Ψ)

where Ψ denotes all fermion �elds in the theory. [Pestun, Banerjee
et. al.]

The bosonic part of the QV action is then

QV |bosonic = (QΨ,QΨ) = (QΨ)†QΨ

which is a sum of perfect squares.

The critical points correspond to the BPS equations in �eld space

QΨ = 0

Since the SUSY variations don't depend on the prepotential, the
localization locus will be independent of the phase we are
considering!



Localization in supergravity

We �nd that the scalars in the vector multiplets are allowed to go
�o�-shell� at the cost of exciting the auxiliary �elds
[Dabholkar,Gomes, Murthy]

ds2AdS2 = dη2 + sinh2 ηdθ2

X I = X I
∗ +

C I

cosh η
, X̄ I = X̄ I

∗ +
C I

cosh η
, K I =

2C I

cosh2 η

We see that the solutions are smooth everywhere inside AdS2 and
respect the boundary conditions.

The scalars are excited above their attractor values at the cost of
exciting the auxiliary �elds.

There is a continuous family of localizing solutions labelled by
Nv + 1 parameters C I .



Localization in supergravity

After removing the divergent piece we get

W (q, p) =

ˆ
DφeSren(φ,q,p)

The �zero mode� φ is basically the value of the scalar at the origin
of AdS2.

The renormalized action is

Sren = −πqIφI − 2πi

[
F (
φI + ipI

2
)− F̄ (

φI − ipI

2
)

]
the OSV [Ooguri,Strominger,Vafa] conjectured integrand!



N = 8 Black holes

1/8 BPS black holes in Type IIB on T 6;

The microscopic degeneracy is given by∑
c(4n − j2)qny j =

ϑ1(τ, z)2

η(τ)6
, q = e2πiτ , y = e2πiz

ϑ1(τ, z) = q
1

8 (y
1

2 − y−
1

2 )
∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn)

η(τ) = q
1

24

∞∏
n=1

(1− qn)

For large charges the Wald entropy gives

SBH = π
√

∆ = π
√
4n − j2

The R2 higher derivative corrections vanish identically in this
background (for T 6). The prepotential has a simple expression

F =
X 1

X 0
CabX

aX b



N = 8 Black holes

The degeneracy can be written as an exact Rademacher expansion

d(∆ = 4n − j2) = (−1)∆+1

ˆ
ϑ1(τ, z)2
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The Kloosterman sums Kl(∆, c) are de�ned as

Kl(∆, c) =
∑

d∈Z∗/Zc

e2πi∆
d

c
− d
−1
c



N = 8 Black holes
We de�ne a measure on the space of X 'sˆ

dX I
√
Ge−

´
Gab(X )Ẋ aẊb

The induce metric Mabon the localization locus reveals crucial for
duality invariance of the degeneracy [Dabholkar, Gomes, Murthy]

W (q, p) =

ˆ
dφ
√
M(p, φ)eSren(q,p,φ)

which generalizes previous works [de Wit, Cardoso, Mahapatra].
After performing the remaining gaussian integrals we recover the
leading Bessel function (c=1)

I7/2(π∆).

This result goes farher beyond the semiclassic approximation!
Moreover, the inclusion of additional Zc orbifolds of AdS2 × S2

reproduces the non-perturbative corrections

I7/2(
π∆

c
) ∼ e

π
√

∆
c , ∆� 1



Conclusions

Localization allows to reduce a very complicated path integral
in AdS2 to a �nite integral.

Integration variables φ correspond to some normalizable mode
that can be excited at the cost of exciting some auxiliary �eld!
Importance of o�-shell gravity!!

For Black holes in theories without gravity corrections it is
possible to reproduce, up to group theoretic numbers, the
microscopic answer for any value of the charges!! Can be seen
as an example of Exact holography!

We see that holography is able to probe the microscopic
details of black holes, going much farther than the
thermodynamic limit!



Thank You!

"Not everything that counts can be counted, and not everything
that can be counted counts.", Albert Einstein


