
Introduction to Numerical Relativity

1 ADM Mass

It is well known that no local expression for the energy density of the gravitational field can exist in

general relativity. However there does exist a well-defined notion of the total energy of an isolated

system as measured by a distant observer. One sees this intuitively; it can be measured by observing the

relative accelerations of geodesics (freely falling masses) in the laboratory, a direct measurement of the

Riemann tensor. The total mass energy of an isolated source was originally calculated in the Hamiltonian

formulation of general relativity by Arnowitt, Deser and Misner (ADM)

The ADM mass measures the total mass-energy of an isolated gravitating system at any instant of

time measured within a spatial surface enclosing the system at infinity. The ADM mass is defined by an

integral over the 2-dimensional surface at infinity St of a spatial slice Σt

MADM = lim
r→∞

1

16π

∫

[Djγij −Di(f
klγkl)]S

i√qd2y . (1)

For this definition it is assumed that the induced metric on Σt is such that γij = fij + O(r−1). fij is

the flat metric and D is the connection associated with f . Si are the components of the unit normal

to St within Σt. ~S is the unit normal to St, q is the induced metric on it and ya = (y1, y2) are some

coordinates on St.

Let us consider Schwarzschild in Boyer-Lindquist coordinates xα = (t, r, θ, φ). Σt is the hypersurface

of constant time and the components of the induced metric on Σt are γij = diag[(1− 2M
r
)−1, r2, r2 sin2 θ]

fij = diag[(1, r2, r2 sin2 θ]. Let be St the sphere r = const in the hypersurface Σt, then ya = (θ, φ),
√
q = r2 sin θ, Si

√
qdy2 = r2 sin θdθdφ(∂r)

i, (∂r)
i = (r, 0, 0). Then the integral (1) becomes

MADM = lim
r→∞

1

16π

∫

[Djγij −Di(f
klγkl)]r

2 sin θdθdφ , (2)

where

Djγij −Di(f
klγkl) =

4M

r2

(

1−
2M

r

)

−1

∼
4M

r2
. (3)

As a result we get

MADM = lim
r→∞

1

16π

∫

4M

r2

(

1− 2M

r

)

−1

r2 sin θdθdφ ∼M . (4)

Conformal form

Let us introduce the conformal metric γ̄ and the conformal factor ψ associated to γ

γij = ψ4γ̄ij , det (γ̄ij) = 1 . (5)

Then the ADM mass can be expressed as

MADM = − lim
r→∞

1

2π

∫

Si(Di −
1

8
Dj γ̄ij)

√
qd2y . (6)
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For Schwarzschild in isotropic coordinates ψ =
(

1 + M
2r

)

, γij = fij and Dj γ̄ij = 0. The ADM mass is

then

MADM = − 1

2π

∫

∂ψ

∂r
r2 sin θdθdφ . (7)

Now, ∂ψ
∂r

= − M
2r2

. Consequently MADM =M as expected.

In numerical applications, the integral is evaluated on a large surface at a finite distance from the

source. In this caseMADM will change in time whenever there is a flux of matter or gravitational radiation

passing across the surface. The rate of change of MADM will reflect the rate at which mass-energy is

carried across the surface by these fluxes.

Sometimes is useful to work in Cartesian type coordinates. In particular if we use Cartesian coordi-

nates in the definition of asymptotic flatness in (1) then Di =
∂
∂xi and fkl = δkl. The ADM mass can be

written as

MADM =
1

16π

∫
(

∂γij

∂xj
− ∂γji

∂xi

)

Si
√
qd2y . (8)

Apparent horizons

The concept of apparent horizon allow us to locate black holes during evolution. The apparent horizon is

defined as the outermost smooth 2-surface embedded in the spatial slice Σt, whose future null geodesics

have zero expansion everywhere. The singularity theorems of GR tell us that if an apparent horizon

exist on a given time slice, it must be inside a black hole event horizon. However the the absence of an

apparent horizon does not necessarily imply that a black hole is absent. If fact it is possible to construct

slicing in Schwarzschild spacetime with no apparent horizons. Also it is possible to show that apparent

horizons do not form during spherical collapse in polar slicings. Thus the apparent horizon has a strong

gauge dependence nature. The usual expectation when performing a black hole simulation is that an

apparent horizon will eventually appear on the slice whenever a black hole is present. Let us consider a

closed 2-dimensional surface S on Σt, S is spatial by construction. Let sa be its outward pointing unit

normal vector lying in Σt, then s
asa = 1 and nasa = 0. The metric on Σt, γab induces a 2-dimensional

metric mab on s given by

mab = γab − sasb = gab + nanb − sasb . (9)

For each point on S we can construct 2 future pointing null geodesics whose projection on Σt is orthogonal

to S. Tangents ka and ℓa to these geodesics on S are

ka =
1√
2
(na + sa) , ℓa =

1√
2
(na − sa) . (10)

Then we have; kak
a = 0, ℓaℓ

a = 0 and mabk
a = 0, mabℓ

a = 0. We have chosen the normalization such

that kaℓa = −1. We can express mab in terms of ka and ℓa as

mab = gab + kaℓb + ℓakb. (11)

The expansion of the outgoing null geodesics orthogonal to S is defined as

Θ = mab∇akb. (12)

The projection with m ensures that only the derivatives tangents to S appear in this expression. Now

we define an outer trapped surface as a 2-dimensional surface S embedded in Σt on which the expansion

Θ of the outgoing null geodesics orthogonal to S is negative everywhere. A trapped region is any region

of Σt that contains outer trapped surfaces. An apparent horizon is the outer boundary of any connected

trapped region. This definition makes the apparent horizon a marginally trapped surface on which the

expansion of outgoing null geodesics vanishes Θ = 0.
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Example in spherical symmetry

The most general metric in spherical symmetry can be written as

ds2 = −(α2 −A2β2)dt2 + 2A2βdrdt +A2dr2 +B2r2(dθ2 + sin θ2dφ2) . (13)

Let us consider a spherical surface S centred on the origin. The spatial normal vector sa to S is then

sa = (0,
1

A
, 0, 0) sa = (Aβ,A, 0, 0) . (14)

The outgoing null normal is

ka =
1√
2
(Aβ − α,A, 0, 0) ka =

1√
2

(

1

α
,
1

A
− β

α
, 0, 0

)

, (15)

and the metric

mab = diag(0, B2r2, B2r2 sin θ2) . (16)

The expansion becomes

Θ =

√
2

rB

(

1

α
∂t(Br) +

(

1

A
−
β

α

)

∂r(Br)

)

. (17)

As an example take Schwarzschild spacetime in isotropic coordinates, then

A = B = ψ2 =

(

1 +
M

2r

)2

, β = 0 ∂t(Br) = 0 , (18)

then the expansion vanishes at

∂r(Br) = 0 , (19)

which happens at r = M
2r
.
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