
Introduction to Numerical Relativity

The analysis of the initial value problem is based on a particular way of separating the initial data

into freely specifiable and determined from constraints pieces. Part of the motivation is to identify the

dynamical gravitational variables, as those which correspond to the radiative degrees of freedom in a

covariant way. From the point of view of the construction of the initial data the greatest achievement is

that the equations for the initial values can be solved in a more or less straightforward way.

1 Conformal transformations

Our goal is to construct a physical metric γij , extrinsic curvature Kij which satisfy the constraint equa-

tions. Let us begin considering a conformal transformation applied to the spatial metric γij

γij = ψ4γ̄ij , (1)

γ̄ij will be a freely specifiable in the initial data construction. We call ψ the conformal factor and the

conformally related metric. The connection coefficients are related as

Γi
jk = Γ̄i

jk + 2(δijD̄k lnψ + δikD̄j lnψ − γ̄jkγ̄
ilD̄l lnψ) , (2)

and the Ricci tensor

Rij = R̄ij − 2(D̄iDj lnψ + γ̄ij γ̄
lmD̄lD̄m lnψ) + 4((D̄i lnψ)(D̄j lnψ)− γ̄ij γ̄

lm(D̄l lnψ)(D̄m lnψ)) . (3)

For the Ricci scalar we get

R = ψ−4R̄− 8ψ−5D̄2ψ , D̄2 = γ̄ijD̄iD̄j . (4)

The Hamiltonian constraint can be written as

8D̄2ψ − ψR̄− ψ5K2 + ψ5KijK
ij = −16πψ5ρ , (5)

which for a given choice of the conformally related metric γ̄ij can be interpreted as an equation for the

conformal factor. The extrinsic curvature Kij has to satisfy the momentum constraint and will be useful

to rescale it as well. We first split the extrinsic curvature into its trace K, which will be freely specifiable

and a trace free part Aij .

Aij = Kij −
1

3
γijK , (6)

and then conformally transform the trace-free part

Aij = ψ−10Āij Aij = ψ−2Āij , (7)

with this choice the tensor Āij has zero divergence if and only if Aij does. This is not the only possible

choice. Inserting this decomposition into the Hamiltonian constraint we get.

8D̄2ψ − ψR̄−
2

3
ψ5K2 + ψ−7ĀijĀ

ij = −16πψ5ρ , (8)
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and the momentum constraint becomes

D̄jĀ
ij −

2

3
ψ6γ̄ijD̄jK = 8πψ10ji , (9)

Conformal transverse traceless decomposition

Any symmetric, traceless tensor can be split into a transverse-traceless part that is divergence-less and

a longitudinal part that can be written as a symmetric, traceless gradient of a vector. In other words we

can decompose Āij as

Āij = Ā
ij
TT

+ Ā
ij
L
, (10)

where the transverse part Āij
TT

is divergence-less

D̄jĀ
ij
TT

= 0 , (11)

and the longitudinal part Āij
L

satisfies

Ā
ij
L
= (L̄W )ij ≡ D̄iW j + D̄jW i −

2

3
γ̄ijD̄kW

k , (12)

where W k is a vector potential.

We can write the divergence of Āij as

D̄jĀ
ij = D̄jĀ

ij
L = D̄j(L̄W )ij (13)

= D̄2W i +
1

3
D̄i(D̄jW

j) + R̄i
jW

j (14)

= (∆̄LW )i (15)

∆̄L is known as the vector laplacian.

The momentum constraint in terms of the potential becomes

(∆̄LW )i −
2

3
ψ6γ̄ijD̄jK = 8πψ10Si , (16)

We now see that we can freely choose the conformally related metric γ̄ij , the mean curvature K and

the transverse-traceless part of the conformally related extrinsic curvature Āij
TT . Given these choices,

we can solve the Hamiltonian constraint to find ψ and the momentum constraint to find W i. Although

the system of 4 coupled non-linear equations can be solved numerically, in practice there are several

important special cases in which the equations simplify:

If the the slice is maximal (K = 0) then the 4-vector non-linear elliptic constraints decouple into

separate linear 3-vector (momentum constraint) and non-linear (Hamiltonian) equations, which may be

solved separately.

If the slice is vacuum, time-symmetric (Kij = 0), and 3-conformally flat, then the full constraint

equations have an analytical solution, that represents an arbitrary number of momentarily stationary

Schwarzschild black holes.

If the slice is vacuum (ρ = Si = 0), maximal (K = 0), and 3-conformally flat (γ̄ij is a flat metric),

the equations simplify still further. In particular, for this case has found the analytical general solution

for the linear momentum constraint equation. This means that only the Hamiltonian constraint need be

solved numerically.

Black hole solutions

Let us consider vacuum solutions ρ = 0, Si = 0 and focus on a moment of time symmetry, at which all

2



the derivatives of γij are zero, β
i = 0,Kij = 0 and K = 0. On such a time slice the momentum constraint

is satisfied trivially and the Hamiltonian constraint reduces to

D̄2ψ =
1

8
ψR̄ , (17)

Let us choose the conformally related metric to be flat γ̄ij = ηij then R̄ij = 0 and R̄ = 0 hence

D̄2ψ = 0 . (18)

We will be interested in asymptotically flat solutions that satisfy

ψ → 1 +O

(

1

r

)

r → ∞ (19)

the solution is then ψ = 1+M
2r

that is the spatial part of the Schwarzschild solution in isotropic coordinates.

dl2 =

(

1 +
M

2r

)4

(dr2 + r2dθ2 + r2 sin2 θdφ2) . (20)

Furthermore, since D̄2ψ is linear we can obtain an arbitrary number of black holes at a moment of time

symmetry.

ψ = 1 +
∑

α

M

2rα
, rα = |xi − ciα| , (21)

rα is the coordinate separation from the centre ciα of the αth black hole.

The solution to the constraint equations for two black holes instantaneously at rest at a moment of

time symmetry can be used as initial data for head-on collisions of black holes.

Let us focus on vacuum solutions and assume a maximal slicing K = 0 which amounts to assuming

that the initial slice Σ has a certain shape that maximizes its volume. Then the momentum constraint

decouples from the Hamiltonian constraint and becomes

(∆̄LW )i = 0 (22)

that can be solved independently. If we assume conformal flatness γ̄ij = ηij the vector laplacian in

Cartesian coordinates reduces to

∂j∂jW
i +

1

3
∂i∂jW

j = 0 , (23)

The solutions of this equation are called Bowen-York solutions. In the following we will present two

different solutions, one representing a spinning black hole and other representing a boosted black hole.

Spinning black hole

Let us start writing the vector W i as

Wi = Vi + ∂iU , (24)

then the equation for W i splits into a coupled set of Poisson equations

∂j∂jVi +
1

3
∂i∂jVj + ∂j∂j∂iU +

1

3
∂i∂

j∂jU = Si (25)

We can choose U in such a way that the two terms involving U satisfy

∂j∂jU = −
1

4
∂jV

j (26)

(27)
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and then

∂j∂jVi = Si , (28)

If we assume Si = 0 and Vi = 0 the general spherically symmetric for U is given by

U = a−
b

r
(29)

with a and b two constants and r =
√

x2 + y2 + z2. Then

W i = ηij∂jU = b
xi

r3
= b

li

r2
= bX i , (30)

where

li =
xi

r
, X i =

li

r2
. (31)

We can generalize the solution to

W i = ǫijkXjJk (32)

assuming that Jk is a vector with constant coefficients when expressed in Cartesian coordinates. In

spherical polar coordinates the non vanishing component of W i is Wφ = − J
r3

where J is the magnitude

of J i aligned with the polar axis. Furthermore, we have

ĀL
rφ =

3J

r2
sin2 θ (33)

and

ĀijĀ
ij =

18J2

r2
sin2 θ , (34)

Boosted black hole

In an alternative approach we can decompose W i as

Wi =
7

8
Vi −

1

8
(∂iU + xk∂iVk) (35)

with ∂j∂jU = 0 and ∂j∂jVi = 0.

Now by assuming U = 0 and writing the solution for Vi as Vi = −2Pi

r
with Pi an arbitrary vector

with constant coefficients when expressed in Cartesian coordinates we get

W i = −
1

4r
(7P i + lilkP

k) , (36)

and consequently

Ā
ij
L = (L̄W )ij =

3

2r2
(P ilj + P j li − (ηij − lilj)lkP

k) . (37)

By virtue of the linearity of the momentum constraint we can add several terms of this form to obtain a

solution describing multiple, boosted black holes and in fact we can allow these black holes to have spin.
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