Introduction to Numerical Relativity

Given a manifold M describing a spacetime with 4-metric we want to foliate it via space-like, three-
dimensional hypersurfaces: {X;}. We label such hypersurfaces with the time coordinate ¢, X;. We define
the 1-form

Q, =Vt , (1)

with the normalization

1
Q) = g?V, Vit = - (2)

The function « is called the lapse function and it is strictly positive for spacelike hypersurfaces a(t, z*) > 0.
We define also the unit normal vector to the hypersurface 3;

n® = —ag®Qy = —ag™Vt . (3)

The sign is chosen so that the related unit vector is future directed. i.e. n“n, = —1, n® can be viewed

as the four velocity of an observer moving orthogonally to the hypersurfaces of ¥; Such an observer will

have a four-acceleration, a®

a’ =n*Vnt (4)
With the above vector we can construct the spatial metric induced on the 3 dimensional hypersurface
Yab = Gab + NaNb , (5)

The inverse can be found by raising the indices with g2

Yab = 9°°0"Yea = g** +nn" (6)

The metric v4p is purely spatial, lives within the hypersurface. Its contraction with the normal vector is
Zero
N Yab = N"Gap + nnagnp =np —np =0 . (7)

The projector operator projects a 4-dimensional tensor into a spatial slice,
Y = g% +nnp (8)

in particular the projection of an arbitrary 4-vector v®, y%,v? is purely spatial. In order to project tensors
of higher rank, each free index has to be contracted with the projection operator. Sometimes the notation

1T = 'Yac'deTcd , (9)

is used in the literature.
Any tensor can be decomposed into its spatial and timelike parts,

,Ua = (ngb = (’yab — ’rLa’rLb)’Ub = J_’Ua — nanbvb y (10)

Top = LTy — nan® LTy — npnLToe + nanonn®Tey . (11)



We will need a 3-dimensional covariant derivative D, that maps spatial tensors into spatial tensors.
We also require that this covariant derivate must be compatible with the induced metric, D.v4, = 0. For
a scalar function this derivate is defined as

Daf =7Vf (12)
and for a spacetime tensor:
DaTbc - 'Yda'}/beﬁchvdTef B (13)
then
Dcﬁ)/ab - 'ch'}/faﬁ)/gbvd'yfg

’ch'}/faﬂ)/gbvd(gfg + nfng)
’Vdc’yfanb(nfvdng +ngVany)

where we have used property (7) and the compatibility of g, with the 4-covariant derivative.

Extrinsic curvature
The extrinsic curvature, can be found projecting gradients of the normal vector on ;.

Koy = =7 Vena = =717V enay (14)
also, it can be writen as

Kab - _'-Yca'}/dbvcnd
— (6% 4 1n°nq) (6% + nny)Veng
= —(5ca + nanc)édbvcnd

= =V, — ngap .

Perhaps the most useful expression is

1
Kap = _§£n”yab = (Vany + nanVany). (15)

Gauss-Codazzi equations

Let us consider the definition of 3d Riemann tensor, acting on a pure spatial vector
(D;iD; — D;D;)wi = *Riji'wy. (16)
Using the defintion of 3d covariant derivative

DiDjwr = vV a(Vy0 Viwm)
= AWAEVaViwe + YV (Vart) (Viwm) + 787576 (Vard) (Vieom)
= VfV?VEVavbwc - ”Ygl(”lvlwm)Ki' - KikK;wc )
To prove the last equality, let us consider first
VC’yZ = Vc(gg + nanb) = Vc(nanb) =naVen® + nbVeng
—na(Kg +n.D%In a) — nb(Kac +neDgIna)



Consequently
WfV;VC’VZ = _anij )

and the contraction in second term of the right hand side vag(vawll)) = —anij.
Secondly, since w, is purely spatial n®w, = 0 we rewrote the third term in the second line as

"y]l-nmvlwm = —”y]l-wmvlnm = me;” .
Finally (D;D; — D;D;)wy, gives
SRijk'wi = 77’7 k Rave'wi — leJl'Kik +wKyKj .
Then we have the Gauss Codazzi equations
SRiji = v v i kv i Ravea + KK — KinK i
Hamiltonian constraint
if we contract Eq. (20) with v
*Rj = ”Y]Z-”nd(Rbd +nn°Rapea) + Kjn K — KK
where we have used v*¢ = ¢ 4 n%n°. Multipliying again with 7!
R = (R+2Ruann?) + KyK" — K* |
Notice that if we use Einstein’s equations
R+ 2R,qnn® = 2Gaqn®n? = 167 Tqn®n? |
in the previous formula we get p = T,qn®n?
SR+ K% — Ky K" = 16mp
which is known as the Hamiltonian constraint.
Momentum constraint
Let us consider other projections

D;Djn® = iy yiVaDyn® = 40 EV L (1 Van©)

= WYVEVVnE + Y VE(Vard ) Van® + 75k (Vayd) Ven

= wafvaavbnc — vaijndVdnc — waanVbne
= fyf’y;?”yfvavbnc — (D¥Ina) Ky

where we have used D¢Ina = n¢Vyn¢ and n.Vyn® = 0. Then

DiDjnk = ’yz‘-l”y]l-”yfvavbnc - (Dk Ina)K;;
if we rename the index k — ¢

D;Djn’ = v544V,Vyn® — (D' In o) K



or k — j and i <> j to keep the index i on n’
DjDini = ”yj”yi’vavbnc —(D'In a)K; |
we can construct the Riemann tensor using the nonconmutativity of (V,V, — V,V,) as
D;D;n' — D;Din' = ygwj?(vavb -V, Vo)n® = —vﬁvé-’Rabdcnd = Rbd”Y?”d

Taking into account that D;n’ = —K and D;n’ = —K} we get

D;K! — D;K = —Ryqyin",

Using the projected Eintein’s equation Rbd”yé-’nd = 87Tde*y;?nd. We get the Momentum constraint.

DZK; - D]K = 87TSj
where we have defined S; = —de*y;?.
Evolution of the extrinsic curvature
From the contaction of the Gauss-Codazzi equations (21)
*Rjt = vy (Rya + n*n° Rapea) + Ka K| — KKji
the term that involves n®n®R.p.q contains second time derivatives of the metric. Let us consider
Rabcdnd = (vavb - vbva)nc
and

VoVine = Vu(=Kpe —npDeIne)
= —V.Kpe+ (Kap +neDylna)D.Ina — np Vo Delna

where we have used Vyn, = —Kp. — np D, In . Thus the projection of Rapean® = (VaVie — ViVa)ne

VoAt nE Raped = 717000 Rapea = 110" (—V ke + VoKae) + (DjIna)DyIna + D;DyIna .

The first term of the right hand side of the last expression can be rewritten as
— Vo Kye = 74K Van® = —y$Ku(K) + noeD’lna) = —KuKF |
and the second term
VNN Vo Kae = =i (LaKie — KapVen® — Ky Van®) = Lo Kj + 2K, K[
hence we can write the contraction as
a..c b, d k 1
"yj Y1 Rabcdn n- = ﬁnKjl + Kijl + EDleOt .

Let us go back to the term %l?vdebd. Using the Einstein’s equations

1
WY Roa = 8797 (Tha — 596dT) -

(35)



Let us consider the second term

ef

(v = nn )yaiy Tey
= (v —nnf )y Ty
= Ty Tey —vijp

= (S —p),

b d
9oag Tepyi s

with
S = A0S — ~Nidne S e g Nead
TRy =NV Vi def =7 Lef ij = YiVjded
From the Gauss Codazzi equation (21)
1
SRji = 07 Roa + ~D;Dia+ L Kji + 2K K — KKj
and using
b.d 1
5 Roa = 8[Sjt = 575u(S = p)]

we have the evolution for K

1 1
EnKjl = Ble - EDlea + 2Kle]l§ - KKj — 87T[Sjl - E’le(s - P)] .

(45)

(46)

(47)



