
Introduction to Numerical Relativity

Given a manifold M describing a spacetime with 4-metric we want to foliate it via space-like, three-

dimensional hypersurfaces: {Σi}. We label such hypersurfaces with the time coordinate t, Σt. We define

the 1-form

Ωa = ∇at , (1)

with the normalization

|Ω|2 = gab∇at∇bt = −
1

α2
, (2)

The function α is called the lapse function and it is strictly positive for spacelike hypersurfaces α(t, xi) > 0.

We define also the unit normal vector to the hypersurface Σt

na = −αgabΩb = −αgab∇bt . (3)

The sign is chosen so that the related unit vector is future directed. i.e. nana = −1, na can be viewed

as the four velocity of an observer moving orthogonally to the hypersurfaces of Σt Such an observer will

have a four-acceleration, ab

ab = na∇an
b , (4)

With the above vector we can construct the spatial metric induced on the 3 dimensional hypersurface

γab = gab + nanb , (5)

The inverse can be found by raising the indices with gab

γab = gacgbdγcd = gab + nanb , (6)

The metric γab is purely spatial, lives within the hypersurface. Its contraction with the normal vector is

zero

naγab = nagab + nananb = nb − nb = 0 . (7)

The projector operator projects a 4-dimensional tensor into a spatial slice,

γa
b = gab + nanb , (8)

in particular the projection of an arbitrary 4-vector va, γa
bv

b is purely spatial. In order to project tensors

of higher rank, each free index has to be contracted with the projection operator. Sometimes the notation

⊥Tab = γa
cγb

dTcd , (9)

is used in the literature.

Any tensor can be decomposed into its spatial and timelike parts,

va = δab v
b = (γa

b − nanb)v
b = ⊥va − nanbv

b , (10)

Tab = ⊥Tab − nan
c⊥Tcb − nbn

c⊥Tac + nanbn
cndTcd . (11)
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We will need a 3-dimensional covariant derivative Da that maps spatial tensors into spatial tensors.

We also require that this covariant derivate must be compatible with the induced metric, Dcγab = 0. For

a scalar function this derivate is defined as

Daf = γb
a∇bf , (12)

and for a spacetime tensor:

DaT
b
c = γd

aγ
b
eγ

f
c∇dT

e
f , (13)

then

Dcγab = γd
cγ

f
aγ

g
b∇dγfg

= γd
cγ

f
aγ

g
b∇d(gfg + nfng)

= γd
cγ

f
aγ

g
b(nf∇dng + ng∇dnf )

= 0 ,

where we have used property (7) and the compatibility of gab with the 4-covariant derivative.

Extrinsic curvature

The extrinsic curvature, can be found projecting gradients of the normal vector on Σt.

Kab = −γc
aγ

d
b∇cnd = −γc

aγ
d
b∇(cnd) (14)

also, it can be writen as

Kab = −γc
aγ

d
b∇cnd

= −(δca + ncna)(δ
d
b + ndnb)∇cnd

= −(δca + nan
c)δdb∇cnd

= −∇anb − naab .

Perhaps the most useful expression is

Kab = −
1

2
Lnγab = (∇anb + nan

d∇dnb). (15)

Gauss-Codazzi equations

Let us consider the definition of 3d Riemann tensor, acting on a pure spatial vector

(DiDj −DjDi)ωk = 3Rijk
lωl. (16)

Using the defintion of 3d covariant derivative

DiDjωk = γa
i γ

b
jγ

c
k∇a(γ

l
bγ

m
c ∇lωm)

= γa
i γ

b
jγ

c
k∇a∇bωc + γa

i γ
b
jγ

m
k (∇aγ

l
b)(∇lωm) + γa

i γ
l
jγ

c
k(∇aγ

m
c )(∇lωm)

= γa
i γ

b
jγ

c
k∇a∇bωc − γm

k (nl∇lωm)Kij −KikK
c
jωc ,

To prove the last equality, let us consider first

∇cγ
b
a = ∇c(g

b
a + nan

b) = ∇c(nan
b) = na∇cn

b + nb∇cna

= −na(K
b
c + ncD

b lnα)− nb(Kac + ncDa lnα)
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Consequently

γc
i γ

a
j∇cγ

b
a = −nbKij , (17)

and the contraction in second term of the right hand side γa
i γ

b
j (∇aγ

l
b) = −nlKij .

Secondly, since ωa is purely spatial naωa = 0 we rewrote the third term in the second line as

γl
jn

m∇lωm = −γl
jωm∇ln

m = ωmKm
j . (18)

Finally (DiDj −DjDi)ωk gives

3Rijk
lωl = γa

iγ
b
jγ

c
kRabc

lωl − ωlK
l
jKik + ωlKilKjk . (19)

Then we have the Gauss Codazzi equations

3Rijkl = γa
iγ

b
jγ

c
kγ

d
lRabcd +KilKjk −KikKjl , (20)

Hamiltonian constraint

if we contract Eq. (20) with γik

3Rjl = γb
jγ

d
l (Rbd + nancRabcd) +KjkK

k
l −KKjl , (21)

where we have used γac = gac + nanc. Multipliying again with γjl

3R = (R+ 2Radn
and) +KilK

il −K2 , (22)

Notice that if we use Einstein’s equations

R+ 2Radn
and = 2Gadn

and = 16πTadn
and , (23)

in the previous formula we get ρ = Tadn
and

3R+K2 −KilK
il = 16πρ , (24)

which is known as the Hamiltonian constraint.

Momentum constraint

Let us consider other projections

DiDjn
k = γa

i γ
b
jγ

k
c∇aDbn

c = γa
i γ

b
jγ

k
c∇a(γ

d
b γ

c
e∇dn

e)

= γa
i γ

b
jγ

k
c∇a∇bn

c + γa
i γ

b
jγ

k
c (∇aγ

d
b )∇dn

c + γa
i γ

b
jγ

k
c (∇aγ

c
e)∇bn

e

= γa
i γ

b
jγ

k
c∇a∇bn

c − γk
cKijn

d∇dn
c − γb

jK
k
i ne∇bn

e

= γa
i γ

b
jγ

k
c∇a∇bn

c − (Dk lnα)Kij

where we have used Dc lnα = nd∇dn
c and ne∇bn

e = 0. Then

DiDjn
k = γa

i γ
b
jγ

k
c∇a∇bn

c − (Dk lnα)Kij (25)

if we rename the index k → i

DiDjn
i = γa

c γ
b
j∇a∇bn

c − (Di lnα)Kij , (26)
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or k → j and i ↔ j to keep the index i on ni

DjDin
i = γa

j γ
b
c∇a∇bn

c − (Di lnα)Kij , (27)

we can construct the Riemann tensor using the nonconmutativity of (∇a∇b −∇b∇a) as

DiDjn
i −DjDin

i = γa
c γ

b
j (∇a∇b −∇b∇a)n

c = −γa
c γ

b
jRabd

cnd = Rbdγ
b
jn

d (28)

Taking into account that Din
i = −K and Djn

i = −Ki
j we get

DiK
i
j −DjK = −Rbdγ

b
jn

d, (29)

Using the projected Eintein’s equation Rbdγ
b
jn

d = 8πTbdγ
b
jn

d. We get the Momentum constraint.

DiK
i
j −DjK = 8πSj (30)

where we have defined Sj = −Tbdγ
b
j .

Evolution of the extrinsic curvature

From the contaction of the Gauss-Codazzi equations (21)

3Rjl = γb
jγ

d
l (Rbd + nancRabcd) +KilK

i
j −KKjl , (31)

the term that involves nancRabcd contains second time derivatives of the metric. Let us consider

Rabcdn
d = (∇a∇b −∇b∇a)nc (32)

and

∇a∇bnc = ∇a(−Kbc − nbDc lnα) (33)

= −∇aKbc + (Kab + naDb lnα)Dc lnα− nb∇aDclnα (34)

where we have used ∇bnc = −Kbc − nbDc lnα. Thus the projection of Rabcdn
d = (∇a∇b −∇b∇a)nc

γb
jγ

d
l n

ancRabcd = γa
j γ

c
l n

bndRabcd = γa
j γ

c
l n

b(−∇aKbc +∇bKac) + (Dj lnα)Dl lnα+DjDl lnα . (35)

The first term of the right hand side of the last expression can be rewritten as

−γa
j γ

c
l n

b∇aKbc = γa
jKbl∇an

b = −γa
jKbl(K

b
a + naD

blnα) = −KklK
k
j , (36)

and the second term

γa
j γ

c
l n

b∇bKac = −γa
j γ

c
l (LnKbc −Kab∇cn

b −Kbc∇an
b) = LnKjl + 2KjkK

k
l , (37)

hence we can write the contraction as

γa
j γ

c
lRabcdn

bnd = LnKjl +KjkK
k
l +

1

α
DjDlα . (38)

Let us go back to the term γb
i γ

d
jRbd. Using the Einstein’s equations

γb
i γ

d
jRbd = 8πγb

i γ
d
j (Tbd −

1

2
gbdT ) . (39)

4



Let us consider the second term

gbdg
efTefγ

b
i γ

d
j = (γef − nenf )γdiγ

d
j Tef (40)

= (γef − nenf )γijTef (41)

= γefγijTef − γijρ (42)

= γij(S − ρ) , (43)

with

S = γijSij = γijγe
i γ

f
j Tef = γefTef , Sij = γc

i γ
d
j Tcd , (44)

From the Gauss Codazzi equation (21)

3Rjl = γb
jγ

d
l Rbd +

1

α
DjDlα+ LnKjl + 2KklK

k
j −KKjl (45)

and using

γb
jγ

d
l Rbd = 8π[Sjl −

1

2
γjl(S − ρ)] , (46)

we have the evolution for Kjl

LnKjl =
3Rjl −

1

α
DjDlα+ 2KklK

k
j −KKjl − 8π[Sjl −

1

2
γjl(S − ρ)] . (47)
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