
Introduction to Numerical Relativity

1 Some numerical methods

The simplest example of an hyperbolic system is the advection equation.

∂tu+ a ∂xu = 0 . (1)

The Cauchy problem is defined by this equation in the domain −∞ < x < ∞, t ≥ 0 together with the

initial condition u(0, x) = u0(x). The solution is

u(t, x) = u0(x− at) . (2)

As time evolves, the initial data propagates unchanged to the right if a > 0 or left if a < 0 with velocity a.

The solution is constant along each rays x−at = x0, which are known as the characteristics of the problem.

We will use the advection equation as our working example because in this case the finite differencing

procedure is simpler and the resulting algorithms are easily extended to more complex equations

1.1 Von Newmann stability

The von Neumann stability analysis is a useful tool which allows a first simple validation of a given

numerical scheme. The von Neumann analysis is considered as a local analysis because it does not

take into account boundary effects and assumes that the coefficients of the finite difference equations are

sufficiently slowly varying to be considered constant in time and space. Under this assuption, the solution

can be seen as a sum of eigenmodes. Writting the eigenmode at each grid point un
j as

un
j = ξneiκxj , ξ = ξ(κ) ∈ C , (3)

we can perform a spectral analysis of the finite difference equation. The number ξ in Eq. (3) is the

amplification factor. We can see that un
j = ξun−1

j = ξ2un−2
j ... = ξnu0

j . The dependence of ξ on the wave

number κ can be find by inserting (3) into the finite difference form of the differential equation. The

lesson to be learnt here is that for the scheme to be stable, the magnitude of ξ must be smaller or equal

to unity for all κ.

1.2 The upwind scheme

The upwind scheme is an explicit scheme, the solution at the new time level n + 1 can be calculated

explicitly from the quantities that are already known at the previous time level n.

Let us start making a Taylor expansion to derive a first order finite difference approximation to the

space and time derivatives in the advection equation.

Depending on the direction in which the solution is translated, and hence on the value of the advection

velocity, two different finite difference representations can be given of equation (1), these are
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un+1
j − un

j

k
= −a

(

un
j − un

j−1

h

)

+O(k, h) , if a > 0 , (4)

and
un+1
j − un

j

k
= −a

(

un
j+1 − un

j

h

)

+O(k, h) , if a < 0 . (5)

Solving for determining the solution at the next time level we arrive to

un+1
j = un

j − a
k

h
(un

j − un
j−1) +O(k2, h) , if a > 0 , (6)

un+1
j = un

j − a
k

h
(un

j+1 − un
j ) +O(k2, h) , if a < 0 . (7)

Applying the eigenmode decomposition (3) in (6), (7) the amplification factor can be written as

ξ = 1− |a
∆t

∆x
|(1− cos(κh))− ia

k

h
sin(κh) , (8)

and its modulus

|ξ|2 = 1− 2|a
k

h
|(1 − |a

k

h
|)(1 − cos(κh)) , (9)

which is less than one as long as the Courant-Friedrichs-Lewy condition (CFL condition)

a
k

h
= a

∆t

∆x
≤ 1 , (10)

is satisfied. The quotient a∆t
∆x is refered as the Courant number.

1.3 The Forward in Time Centered in Space scheme

The Forward in Time Centered in Space scheme consist in using a first order approximation for the time

derivative and a second order aproximation for the spatial derivative. The FTCS is then expressed as

un+1
j − un

j

k
= −a

(

un
j+1 − un

j−1

2h

)

+O(k, h2) , (11)

or

un+1
j = un

j − a
k

2h
(un

j+1 + un
j−1) +O(k2, h2) , (12)

Unfortunately the FTCS scheme is unconditionally unstable, the numerical solution will be destroyed

by numerical errors. Applying the mode decomposition to equation (12) and few algebraic steps lead to

an amplification factor

ξ(κ) = 1− ia
k

h
sin(κh) , (13)

and its norm

|ξ|2 = 1+

(

a
k

h
sin(κh)

)2

, (14)

then |ξ|2 > 1 indepently of k and h that is FTCS is unconditionally unstable.
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1.4 Lax-Friedrich scheme

This method arised as a proposal to cure the instability of the FTC scheme. The idea is based on

replacing un
j in the FTCS formula (12) with its spatial average; un

j = (un
j+1 + un

j−1)/2 then

un+1
j =

(un
j+1 + un

j−1)

2
− a

k

2h
(un

j+1 − un
j−1) +O(k2, h2) . (15)

Almost surprisingly, the algorithm (15) is now conditionally stable as can be verified through a von

Neumann stability analysis. Using the mode decomposition in (15) we obtain an amplification factor

|ξ|2 = 1− sin2(κh)

[

1−

(

a
k

h

)2
]

, (16)

then, as long as the CFL condition is satisfied (a k
h < 1) we have |ξ| < 1.

The correction introduced by the Lax-Friedrich scheme is equivalent to the introduction of a numerical

dissipation. Adding and substracting un
j on the right hand side of equation (15) as

un+1
j = un

j +
1

2
(un

j+1 − 2un
j + un

j−1)−
a

2

k

h
(un

j+1 − un
j−1) , (17)

or
un+1
j − un

j

∆t
= −a

(

un
j+1 − un

j−1

2h

)

+
1

2

(

un
j+1 − 2un

j + un
j−1

k

)

, (18)

but this is exactly the finite difference representation of the equation:

∂u

∂t
+ a

∂u

∂x
=

1

2
ε
∂2u

∂x2
, ε =

h2

k
, (19)

i.e. we have added a diffusion term.

One has to be careful while using this algorithm because, the scheme is stable but may suffers from

a considerable dissipation.

1.5 Leap frog

This scheme consist in taking a second order finite difference in time and space of the form

un+1
j − un−1

j

2k
= −a

un
j+1 − un

j−1

2h
+O(k2, h2) , (20)

then the time advancing algorithm is

un+1
j = un−1

j − a
k

h
(un

j+1 − un
j−1) +O(k3, h2) , (21)

The Leapfrog scheme is von Neumann stable. After substituting the mode decomposition into (21)

we find that amplification factor is

ξ = −iα sin(κh)±
√

1− (α sin(κh))2 α = a
k

h
, (22)

consequently

|ξ|2 = α2 sin2(κh) + [1− α2 sin2(κh)] = 1 (23)
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1.6 Lax-Wendroff

The Lax Wendroff method for the advection equation can be obtained from a Taylor expansion of the

form

u(t+ k, x) = u(t, x) +
∂u(t, x)

∂t
k +

1

2

∂2u(t, x)

∂t2
k2 + ... , (24)

and then using the equation of motion to substitute the time derivatives

u(t+ k, x) = u(t, x)− a
∂u(t, x)

∂x
k + a2

1

2

∂2u(t, x)

∂x2
(k)2 + ... , (25)

Approximating now the spatial derivatives using centered differences we get

un+1
j = un

j − a
k

2h
(un

j+1 − un
j−1) +

a2

2

(

k

h

)2
(

un
j+1 − 2un

j + un
j−1

)

(26)

1.7 Iterative Crank Nicholson

The idea behind the iterative Crank Nicholson scheme (ICN) is that of transforming a stable implicit

method like the Crank-Nicholson scheme into an explicit one through a series of iterations.

The first iteration of ICN scheme starts by calculating an intermediate variable 1ũ using

(1)ũn+1
j − un

j

k
= −a

un
j+1 − un

j−1

2h
(27)

then another intermediate variable 1u

1u
n+1/2
j =

1

2
((1)ũn+1

j + un
j ) (28)

The time step is completed using u

un+1
j − un

j

k
= −a

(

(1)u
n+1/2
j+1 − (1)u

n+1/2
j−1

2h

)

, (29)

Iterated Crank Nicholson with two iterations is carried following after calculating 1u
n+1/2
j in (28)

2ũn+1
j − un

j

k
= −a

(

(1)u
n+1/2
j+1 − (1)u

n+1/2
j−1

2h

)

(30)

2u
n+1/2
j =

1

2
((2)ũn+1

j + un
j ) , (31)

and the final step

un+1
j − un

j

k
= −a

(

(2)u
n+1/2
j+1 − (2)u

n+1/2
j−1

2h

)

, (32)

While the magnitude of the amplification factor for iterated Crank-Nicholson does approach 1 as the

number of iterations becomes infinite, the convergence is not monotonic. The magnitude oscillates above

and below 1 with ever decreasing oscillations. In particular iterations 3 and 4 are stable.

It is important to notice that the truncation error is not modified by the number of iterations and is

always O(k2, h2) then, a number of iterations larger than two is not very useful and surely increase the

amount of computational work.
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1.8 Numerical dissipation

Let us consider the advection equation, but now discretize only in space using a centered difference

approximation
∂u

∂t
= −a

uj+1 − uj−1

2h
, (33)

and look for a normal mode solution of the form u = eiκ(x−v′t) around x 1 where the discrete phase speed

v′ is to be determined. Subtituting this mode solution into the advection equation gives

iκv′u = a
2i sin(κh)

2h
u , (34)

and solving for v′ gives

v′ = a
sin ν

ν
(35)

where ν := κh is a dimensionless wave number. In the low frequency limit, ν → 0 we have

v′ = a
sin ν

ν
→ a (36)

so that low frequency components propagate with the phase speed v. However, in the high frequency

limit, ν → π

v′ = a
sin ν

ν
→ 0 , (37)

that is the high frequency components do not propagate at all. This is a typical behaviour of FDAs of

hyperbolic type equations particularly for low-order schemes.

Some schemes are naturally dissipative as the Lax Wendroff scheme, while others, like leap frog are

not. In order to ameliorate the troubles might arise because of the non propagating modes, one has to

add dissipative terms in such a way as to mantain the original accuracy of the scheme. Let consider the

Leap frog scheme applied to the advection equation.

un+1
j = un−1

j − a
k

h
(un

j+1 − un
j−1) +O(k3, h2) , (38)

We add dissipation to the scheme by modifying it as follows

un+1
j = un−1

j − α(un
j+1 − un

j−1)−
ε

16
(un−1

j+2 − 4un−1
j+1 + 6un−1

j−1 + un−1
j−2 ) (39)

where ε is a non-negative parameter.

What we have done is to add

(un−1
j+2 − 4un−1

j+1 + 6un−1
j−1 + un−1

j−2 ) = h4

(

∂4u

∂x4

)n−1

j

+O(h6) ,∼ O(h4) (40)

so that the term wich we added does not change the leading order truncation error.

1with xj+1 = x+ h and xj−i = x− h.
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