
Introduction to Numerical Relativity

1 Finite difference methods

In numerical analysis one can often approximately solve continuum systems, typically differential equa-

tions, through a process known as discretization. In the continuum case, the unknown functions, will

typically be defined on some interval 0 < x < xmax of the real line and will thus constitute an infinite

number of values. In the discrete case, however, the unknown functions will typically be defined only at

a finite number of values xn, n = 0, 1, 2, 3...N .

Computational resources are finite, then the purpose of discretization is to reduce the infinite number

of degrees of freedom of the continuum system to finite number. This is usually achieved by replacing

differential equations with algebraic equations. The reason for doing this is because we can solve algebraic

equations with computers.

Finite difference approximation

Finite difference approximation (FDA) is one specific approach to the discretization of continuum systems

such as differential equations. The basic idea is that derivatives are replaced with algebraic difference

quotients, very similar in spirit to algebraic expressions that are encountered in the standard definition

of derivatives in ordinary calculus

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)

h
, (1)

we say that f(x+h)−f(x)
h

is a finite difference approximation of the derivative of f in the point x.

In order to find the solution of a differential systems using FDA it is necessary to have a complete

mathematical description of the problem, this includes: The specification of dependent and independent

variables, the domain in terms of independent variables (coordinates), the differential equations governing

dependent variables and the specification of sufficient initial and/or boundary conditions to ensure that

the problem has a unique solution.

The starting point to work with a FDA is to define a finite difference grid that replaces the continuum

domain with a finite set of grid points at which discrete solution will be computed. The grid will be

characterized by a set of spacings between adjacent points in each of the coordinate directions, in the

forthcoming discussion we will assume that these are constants. As we will see, mesh spacings constitute

fundamental parameters that control accuracy of particular FDA.

Once we have defined the numerical domain, we need to replace all the differential operators with

finite difference approximations, this include any derivative involved in the initial or boundary condition.

This process yields a set of algebraic equations for the discrete unknowns. The solution of the algebraic

equations is then performed computationally. Depending on the nature of the differential equations

as well as the FDA used, the complexity of the algorithms required to accomplish this task can vary

substantially.
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Figure 1: schematic of typical uniform Finite Difference Mesh.

One of the most important parts of the solution process is to perform an error analysis. The simplest

one is to repeat calculations using same parameters, initial data, boundary conditions etc., but with

varying mesh sizes. Investigation of behaviour of finite difference solution as a function of mesh size

allows us to estimate the accuracy of the solution, and to establish that the solution is converging to the

desired continuum limit. This is a necessary condition but as we will see is not always sufficient because

this is only a measure of how the discrete operator approaches the continuous one.

Derivation of FDAs

The straightforward procedure is using a Taylor series. Given grid function value fj := f(xj), and two

nearest neighbours, fj−1 := f(xj−1) and fj+1 := f(xj+1). The Taylor expansion about x = xj with the

mesh spacing h = xj+1 − xj is

fj−1 = f(xj−1) = fj − h[f ′]j +
1

2
h2[f ′′]j −

1

6
h3[f ′′′]j +

1

24
h4[f ′′′′]j +O(h5) , (2)

fj+1 = f(xj+1) = fj + h[f ′]j +
1

2
h2[f ′′]j +

1

6
h3[f ′′′]j +

1

24
h4[f ′′′′]j +O(h5) , (3)

We can obtain an approximation for the first derivative from (2) as

[f ′]j =
fj − fj−1

h
+O(h) . (4)

Since the leading order error term is linear in the mesh spacing, the approximation is said to be first

order accurate or simply first order.

We now seek a linear combination of fj−1, fj and fj+1 which yields [f ′]j to O(h2) accuracy. We are

looking constants c−, c0, c+ such that

[f ′]j = c−fj−1 + c0fj + c+fj+1 +O(h2) , (5)

Substituting the Taylor expansion, order by order, results in a system of three linear equations

c− + c0 + c+ = 0 , (6)

−hc− + hc+ = 1 , (7)

h2c− + h2c+ = 0 , (8)

which has the solution c+ = −c− = 1
2h and c0 = 0. Thus, the second order finite difference approximation

for the first derivative is

[f ′]j =
fj+1 − fj−1

2h
+O(h2) , (9)

For this particular example the formula can be obtained by subtracting (2) from (3)

[f ′]j =
fj+1 − fj−1

2h
−

1

6
h2[f ′′′]j +O(h4) . (10)
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The fact that the error of order O(h3) cancels is a typical characteristic of central differences.

Difference approximations for higher derivatives can be obtained in a similar fashion. For example,

the central difference approximation of the second derivative can be obtained adding (2) and (3)

[f ′′]j =
fj+1 − 2fj + fj−1

h
+

1

12
h2[f ′′′′]j +O(h4) . (11)

Higher order approximations, while more accurate for a given grid spacing, in general require more work

both for their evaluation and for the solution of the algebraic solution resulting from their use.

In order to calculate the derivatives with higher accuracy, more points are required. One has to find

linear combinations of the form: afj−2 + bfj−1 + cfj + dfj+1 + efj+2 The relevant Taylor expansions

fj+2 = fj + 2h[f ′]j + 2h2[f ′′]j +
4h3

3
[f ′′′]j +

2h4

3
[f ′′′′]j +O(h5) , (12)

fj−2 = fj − 2h[f ′]j + 2h2[f ′′]j −
4h3

3
[f ′′′]j +

2h4

3
[f ′′′′]j +O(h5) , (13)

Sometimes this method is referred as method of undetermined coefficients.

Polynomial interpolation

A systematic way to construct FDAs with an arbitrary distribution of points -which are centred or one

sided, and any desired convergence order is through interpolation. The idea is to use a local polynomial

interpolant to approximate the function f at the desired points. For this purpose we use the Lagrange

polynomials. For a given set of distinct points xj and values of fj , the Lagrange polynomial is the

polynomial of the least degree that at each point xj the polynomial and the function coincide.

LN [f(x)] =

N
∑

j=0

f(xj)l
N
j (x) , (14)

where lNj (x) is a polynomial of degree (at most) N such that

lNj (xi) = δij . (15)

The FDA is defined as the exact derivative of the interpolant. For instance the first order derivative is

[f ′](x) =
d

dx
LN [f ](x) =

N
∑

i=1

f(xi)
d

dx
lNi (x) . (16)

The explicit form of the Lagrange basis polynomials is

lNj (x) =
∏

0≤m≤N,m 6=j

x− xm

xj − xm

=
x− x0

xj − x0
. . .

(x− xj−1)

xj − xj−1

(x − xj+1)

(xj − xj+1)
...

(x − xN )

(xj − xN )
. (17)

Here we show a couple of examples.

Using two points xj−1, xj , the first degree interpolant allow us to construct a first order FDA for f ′(x)

at x = xj

L1[f ](x) = fj−1l
1
j−1(x) + fj l

1
j (x) , (18)

with

l1j−1(x) =
x− xj

xj−1 − xj

, l1j =
x− xj−1

xj − xj−1
, (19)
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then

[f ′]j =
d

dx
L1[f ](x) |x=xj

=
fj − fj−1

h
, h = xj − xj−1. (20)

Using a second order interpolant with three points {xj−1, xj , xj+1}

L2[f ](x) = fj
(x− xj+1)(x − xj−1)

(xj − xj+1)(xj − xj−1)
+ fj−1

(x− xj)(x− xj+1)

(xj−1 − xj)(xj−1 − xj+1)
+ fj+1

(x − xj−1)(x− xj)

(xj+1 − xj−1)(xj+1 − xj)
.

(21)

The derivative of L2[f ](x) and can be evaluated at the desired point to obtain the approximate derivative

of f(x).

[f ′]j−1 =
d

dx
L2[f ](x) |x=xj−1

=
−3fj−1 + 4fj − fj+1

2h
+O(h2) ,

[f ′]j =
d

dx
L2[f ](x) |x=xj

=
fj+1 − fj−1

2h
+O(h2) ,

[f ′]j+1 =
d

dx
L2[f ](x) |x=xj+1

=
3fj+1 − 4fj + fj−1

2h
+O(h2) .

After a renaming of variables we get the one sided-derivatives

[f ′]k =
−3fk + 4fk+1 − fk+2

2h
+O(h2) ,

[f ′]k =
3fk − 4fk−1 + fk−2

2h
+O(h2) .

These are the usual expressions for the centred and one-sided second order derivatives. One can

proceed in this way to systematically construct any FDA to any derivative with any desired convergence

order and distribution of points.

Fornberg algorithm

Classical techniques for determining weights in finite difference formulas might be slow computationally.

Surprisingly, simple recursions exist for calculating the weights in finite difference formulas for any order

of derivative and to any order of accuracy well suited to generate tables of weights.

The Fornberg algorithm was introduced in the 80’s and improved in the late 90’s. It is based on the

Padé approximation of a function 1.

With the following example we will illustrate both, how this algorithm works and how it is used.

The basic idea is to find the coefficients which make the stencil

b1f
′′(x) ≈ c0f(x− h) + c1f(x) + c2f(x+ h) , (22)

as accurate as possible. Substituting f(x) = eiωx gives

−ω2 ( b1 )e
iωx ≈ (c0e

−iωh + c1 + c2e
iωh)eiωx , (23)

The goal is to make the approximation accurate if expanded locally around h = 0. Substituting z = eiωh

and cancelling the factors eiωx

(

ln z

h

)2

(b1) ≈
c0

z
+ c1 + c2z , ⇒

(

ln z

h

)2

≈
c0 + c1z + c2z

2

b1z
. (24)

1The Padé approximation of order [m,n] to an analytic function f(x) at x0 is the rational function R(x) =
p(x)
q(x)

where

p(x) is a polynomial of degree m , q(x) is a polynomial of degree n, such that f(x0) = R(x0), f ′(x0) = R′(x0)...f(n+m)(x0) =

R(n+m)(x0).
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Padé approximation of
(

ln z
h

)2
around z = 1 to order [2, 1] yields

(

ln z

h

)2

≈
1− 2z + z2

h2z
, (25)

thus, c0 = 1, c1 = −2, c2 = 1 and b1 = h2. Substituting these results in (22) we finally get

f ′′(x) ≈
f(x− h)− 2f(x) + f(x+ h)

h2
. (26)

As we will see, this approach and it generalizations can be implemented in Mathematica in straight-

forward way.
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