
Introduction to Numerical Relativity

Juan Carlos Degollado

jcdaza@.ua.pt

1 Introduction to GR

In General Relativity, space-time is a 4-dimensional manifold of events. The coordinates xα can be any

smooth labeling of events in space-time, and we are free to make arbitrary transformations between

coordinate systems,

xα → x′α = x′α(xα) . (1)

A vector ~V at any point in the manifold can be expressed in terms of its components in some basis:

~V = V α~eα . (2)

Let us restrict ourselves to coordinate basis vectors for simplicity. These are tangent to the coordinate

lines, so we can write them as the differential operators

~eα =
∂

∂xα
= ∂α (3)

A linear, real valued function of one vector defines a 1 form. 1 forms act over vectors producing real

numbers. The space of 1 forms define a vector space. The components of a 1-form are defined as the

value of the form acting on the basis vector

qα = q(~eα) , (4)

We can define a basis for the space of 1-forms ω̃α as those 1-forms such that, when acting on ~eα give us

the identity matrix.

ω̃α(~eβ) = δαβ . (5)

In terms of the basis vectors and 1-forms, the action of an arbitrary 1-form q̃ on a vector ~V can be

represented as

q̃(~V ) = qαω̃
α(V β~eβ)

= qαV
βω̃α(~eβ)

= qαV
βδαβ

= qαV
α .

This operation is called a contraction. In the literature, vectors and 1-forms are called contravariant

vectors and covariant vectors

We can generalize this idea and think of real-valued functions of m 1-forms and n vectors that are

linear in all their arguments. This defines a tensor of rank

(

m

n

)

. The components of a tensor are the

values of the tensor applied to the elements of the basis of vectors and 1-forms for example:

Tαβ
γδ ≡ T (ω̃α, ω̃β, ~eγ , ~eδ) . (6)
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In the given manifold M the notion of distance is given by a symmetric, non-degenerate

(

0

2

)

tensor g. With this tensor we can calculate the magnitude of the displacement vector ~dx between two

infinitesimally close points in the manifold

ds2 = gαβdx
αdxβ . (7)

Where the components of the metric tensor are

g(~eα, ~eβ) = gαβ ≡ ~eα · ~eβ . (8)

For two generic vectors, their scalar product is defined as

g(~V , ~U) = g(V α~eα, U
β~eβ)

= V αUβgαβ

≡ ~V · ~U .

The metric tensor can be used to define a one to one mapping between vectors and 1-forms g(~V , :) defines

a 1-form. Since this form is associated to the vector ~V let us call it Ṽ and its components are

Vα = g(~V ,~eα)

= g(V β~eβ, ~eα)

= gβαV
β .

If we multiply by the inverse of the metric defined such a way that gαβ = (g−1)αβ we get

gαγVα = gαγgβαV
β

= δγβV
β

= V γ

These operations are known as lowering and rising the index of the vector.

The covariant derivative is represented by the operator ∇α which denotes the α component of the

derivative. The covariant derivative of a scalar is simply the usual partial derivative: If f(xβ) is a scalar

function over the manifold, then its covariant derivative is

∇αf =
∂

∂xα
f = ∂αf . (9)

The covariant derivative of a vector field with components V β is defined by

∇αV
β = ∂αV

β + V γΓβ
γα . (10)

The Christoffel coefficients Γβ
γα, can be calculated as

Γγ
αβ =

1

2
gγσ(∂βgσα + ∂αgβσ − ∂σgαβ) . (11)

The covariant derivative for a 1-form is

∇αVβ = ∂αVβ − VγΓ
γ
βα . (12)

The covariant derivative of the metric vanishes once we assume the Christoffel coefficients are symmetric

in the two lower indices.

∇αgµν = ∂αgµν − gσνΓ
σ
µα − gµσΓ

σ
να = 0 . (13)
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Riemann tensor

Covariant derivatives do not commute in general. The no commutativity defines the Riemann tensor

(∇α∇β −∇β∇α)V
µ = Rµ

ναβV
ν . (14)

The components of the Riemann tensor can be written in terms of the connection and its derivatives as

Rµ
ναβ = ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

σαΓ
σ
νβ − Γµ

σβΓ
σ
να . (15)

Several symmetries reduce the number of independent components of the Riemann tensor, in four

dimensions for instance, instead of 44 it has 20.

There are contractions of the Riemann tensor that are very important in GR. For example the Ricci

tensor

Rµν = Rσ
µσν , (16)

and its contraction, the Ricci scalar,

R = Rµ
µ (17)

The Einstein tensor is

Gµν = Rµν −
1

2
gµνR , (18)

One additional property of the Riemann tensor is that

Rα
βµν;λ +Rα

βλµ;ν + Rα
βνλ;µ = 0 , (19)

Where the ; denotes covariant derivative.

Einstein’s equations

Newtonian gravitation can be described as a field theory for a scalar field φ satisfying Poisson’s law:

∇2φ = 4πGρ where ρ is the mass density and G is the Newton’s gravitational constant. The gravi-

tational acceleration of any object in the field is given by −∇φ. Newtonian gravity is governed by an

elliptic equation, changes in the distribution of matter instantaneously change the gravitational potential

everywhere. Propagation of effects at speed greater than the speed of light leads to causality violation

and as a consequence Newtonian gravity is not consistent with Special Relativity.

Einstein’s equations are

Gµν =
8πG

c4
Tµν , (20)

Tµν is the stress energy tensor of matter and fields in the space-time. Einstein’s equations say that matter

and energy dictate how space-time is curved. To solve the equations we must find a metric that satisfies

them at all space locations for all time. How to determine a good choice of coordinates is one of the

major questions in Numerical Relativity.

Schwarzschild solution

To solve Einstein’s equations for a static point source the metric should satisfy

• All the components of the metric are independent of t.

• The equations g0,α = gα,0 = 0 must be satisfy.

• The solution is spatially symmetric with respect to the origin of coordinates.

• The metric, at infinity must be g00 = −1, g11 = g22 = g33 = 1.
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Then we propose the following anzats

ds2 = −Fdt2 +G(dx2 + dy2 + dz2) +H(xdx + ydy + zdz)2 , (21)

and using spherical coordinates

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ .

then

ds2 = −Fdt2 +G(dr2 + r2dθ2 + r2 sin2 dφ2) +H(rdr)2

= −Fdt2 + (G+Hr2)dr2 +Gr2(dθ2 + sin2 dφ2) ,

If we require that g = det(gµν) = −1, it turns out that Einstein’s Equations are

∂αΓ
α
µν + Γα

µβΓ
β
να = 0 . (22)

However, even the Minkowski space in spherical coordinates the determinant is not −1 but r2 sin θ. With

the spatial volume element r2dr sin θdθdφ. If we define a set of new coordinates x and ψ as x = r3

3 ,

ψ = − cos θ

r2dr sin θdφ = dxdψdφ , (23)

In these coordinates, the element of line reads

ds2 = −Fdt2 +

(

G

r4
+
H

r2

)

dx2 +Gr2
(

dψ2

1− ψ2
+ (1− ψ2)dφ2

)

, (24)

or

ds2 = −f0dt
2 + f1dx

2 + f2

(

dψ2

1− ψ2
+ (1− ψ2)dφ2

)

, (25)

The Minkowski metric in this coordinates is simply

ds2MK = −dt2 +
1

r4
dx2 + r2

(

dψ2

1− ψ2
+ (1− ψ2)dφ2

)

, (26)

Then, at x→ ∞

f0 → 1 , f1 →
1

r4
, f2 → r2 , (27)

and f0f1f
2
2 = 1. After an integration of the Einstein equations we get

f0 = 1−
2M

(3x+ b)1/3
f1 =

(3x+ b)−4/3

1− 2M
(3x+b)1/3

, f2 = (3x+ b)2/3 . (28)

If we define the variable

rs = (3x+ b)1/3 = (r3 + b)1/3 , (29)

we obtain, replacing again ψ = − cos θ

ds2 = −

(

1−
2M

rs

)

dt2 +
1

1− 2M
rs

dr2s + r2s
(

dθ2 + sin2 dφ2
)

. (30)
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If we decide that the singular point is the location of the point particle r = 0, from f1 we get

2M

b1/3
= 1 ⇒ b = (2M)3 , (31)

but from the definition of rs this point corresponds to rs = 2M . Nowadays we know that is just a

coordinate singularity because there are other coordinate systems in which the metric is regular at that

point. The unusual radial coordinate x was forced by the constraint g = −1, nevertheless it led to a quite

simple derivation of the exact solution.

The high degree of non-linearity in the field equations means that a general solution for an arbitrary

matter distribution is analytically intractable. The problem becomes easier if we look for special solutions,

for instance those representing space-times possessing symmetries. As we shall see, the Schwarzschild

solution represents the space-time geometry outside a spherically symmetric matter distribution.

I will introduce another set of coordinates that is frequently used in numerical relativity. It turns out

that it is possible to rewrite the metric in such a way that the spatial part is conformally flat, that is, the

spatial metric is just the Minkowski metric times a scalar function. In order to do this one must define

a new radial coordinate rc such that

rs = rc

(

1 +
M

2rc

)2

, (32)

A transformation from Schwarzschild coordinates {t, rs} to the coordinates {t, rc}

ds2 = −

(

1−M/2rc
1 +M/2rc

)2

dt2 + ψ4(dr2c + r2cdΩ
2) (33)

with the conformal factor ψ = 1 + M
2rc

. In these coordinates the spatial metric is regular at the horizon,

which now corresponds to rc = M/2. Notice also that far away rc and rs approach each other. The

coordinate rc is usually called the isotropic radius since the spatial metric is just the flat metric(which

is isotropic), times a conformal factor. The metric is singular at rc = 0, however the transformation of

coordinates shows that rc = 0 corresponds to rs = ∞, so this is in fact not the physical singularity at

rs = 0. It turns out that the region rs ∈ [0,M/2] represents the other side of the Einstein-Rosen bridge,

or in other words the whole other universe has been compactified to this finite region.

The isotropic rc does not reach the singularity at rs = 0. For large rc we see that rs → ∞, but for

small rc we see that once again rs → ∞. There is minimum of rs = 2M at rc =M/2. We now have two

copies of the space outside the event horizon, rs > 2M , and the two spaces are connected by a wormhole

with a throat at rs = 2M . This wormhole picture of a black hole forms the basis of the initial data used

in current black-hole simulations. The point rc = 0, which represents the second asymptotically flat end,

is refereed to as the puncture.

The singularity at rc = 0 is then just a coordinate singularity associated with a compactification.

Notice also that this metric has an isometry (i.e. it is invariant) with respect to the transformation

rc → M2/4rc . This isometry corresponds to changing a point in our universe with the corresponding

point on the other side of the throat.

Final remark

I thank Marco Sampaio for sharing the notes he wrote during the lecture, and Mengjie Wang for a

careful reading.
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