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Motivation
Extremal black holes in string theory:

detailed microscopic understanding available.

Systems at T = 0 with S 6= 0.

What about black objects satisfying Nernst law?

Systems at T = 0 with S = 0.

Of interest in AdS/CFT applications to condensed matter systems.
Examples of Nernst configurations in AdS
(with/without a dilaton field):
Goldstein et al, 0911.3586;

D’Hoker and Kraus, 0911.4518

Systematics?
Aim: Study Nernst brane configurations in the presence of fluxes
in D = 4,5.

N = 2 U(1) gauged supergravity. (Λ→ V (Y ))
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Extremal black branes in D = 4

N = 2 U(1) gauged supergravity:
prepotential F (Y ) , complex scalar fields Y I

superpotential W (Y ) = hI Y I − hI FI , dyonic fluxes (hI ,hI)

dyonic charges (qI ,pI) I = 0, . . . ,n , U(1)n.
Static brane configurations:

ds2 = −e2U dt2 + e−2U (dr2 + e2ψ(dx2 + dy2)
)

with U = U(r) , ψ = ψ(r) , Y I = Y I(r)

Extremal: reduced Lagrangian in terms of squares of ’BPS’
equations, in the presence of both charges and fluxes,

Lred =

∫
dr
[(

U ′ − . . .
)2 −

(
ψ′ − . . .

)2 −
(
Y ′ − . . .

)2
]

+ T .D.

two additional constraints on solution to first-order flow equations:
one is qI hI − pI hI = 0 Hamiltonian constraint.
Consistent with analysis for supersymmetric backgrounds
Dall’Agata + Gnecchi, arXiv:1012.375
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Flow equations

First-order flow equations for the scalars Y I(r): FI = ∂F (Y )/∂Y I

(
(Y I − Ȳ I)′

(FI − F̄I)
′

)
= −2i e−ψ Im

(
eiγ N IJ (qJ − FJK pK )

eiγ F̄IJ NJK (qK − FKL pL)

)
+2i eψ−2U Re

(
eiγ N IJ (hJ − FJK hK )

eiγ F̄IJ NJK (hK − FKL hL)

)
.

Reminiscent of attractor equations of ungauged supergravity
(hI = hI = 0), but much more complicated to solve. Find:

can construct AdS2 × R2 backgrounds ((Y I)′ = 0);
exact solutions in various models, for instance F = −(Y 1)3/Y 0:
interpolating solution between AdS4 and AdS2 × R2.
STU-model: Nernst brane solutions (T = 0,S = 0).
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Nernst brane solutions

STU-model: F = −Y 1Y 2Y 3/Y 0. 8 charges + 8 fluxes.
For simplicity, restrict to:

axion free solutions;
solution supported by electric (q0; h1,h2,h3).

Near horizon solution (r = 0): only depends on charges and fluxes

e2U = r5/2 , e2(ψ−U) = r1/2 , infinitely long throat with an
unusual fall-off, vanishing area density;
extremal solution with vanishing entropy density;
scalar fields S2,T2,U2 = r−1/2 ;
solution is a good solution in D = 10 sugra;

Asymptotically: unusual fall-off

e2U = r3/2 , e2(ψ−U) = r3/2 , S2,T2,U2 = (C0 r)1/2

Does not interpolate between AdS4 and AdS2 × R2. Unusual solution.
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Work in progress

Explore the space of Nernst solutions in D = 4.
D = 5:

I find class of extremal static solutions with AdS2 × R3 horizons
(constant scalars);

I deformation (non-constant scalars);
I Nernst solutions?

Thanks!
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