#### Nernst Branes in Gauged Supergravity

Gabriel Lopes Cardoso

# with S. Barisch, M. Haack, N. Obers and S. Nampuri arXiv:1108.0296; work in progress

IV Workshop on Black Holes



Gabriel Lopes Cardoso (IST)

Nernst Branes

## Motivation

• Extremal black holes in string theory:

detailed microscopic understanding available.

Systems at T = 0 with  $S \neq 0$ .

• What about black objects satisfying Nernst law?

Systems at T = 0 with S = 0.

Of interest in AdS/CFT applications to condensed matter systems. Examples of Nernst configurations in AdS (with/without a dilaton field): Goldstein et al, 0911.3586; D'Hoker and Kraus, 0911.4518

Systematics?

Aim: Study Nernst brane configurations in the presence of fluxes in D = 4, 5.

N = 2 U(1) gauged supergravity.  $(\Lambda \rightarrow V(Y))$ 

DAGE E VER

### Extremal black branes in D = 4

N = 2 U(1) gauged supergravity:

- prepotential F(Y), complex scalar fields Y'
- superpotential  $W(Y) = h_I Y' h' F_I$ , dyonic fluxes  $(h_I, h')$
- dyonic charges  $(q_l, p^l)$  l = 0, ..., n ,  $U(1)^n$ .

Static brane configurations:

• 
$$ds^2 = -e^{2U} dt^2 + e^{-2U} (dr^2 + e^{2\psi} (dx^2 + dy^2))$$
  
with  $U = U(r)$ ,  $\psi = \psi(r)$ ,  $Y' = Y'(r)$ 

• Extremal: reduced Lagrangian in terms of squares of 'BPS' equations, in the presence of both charges and fluxes,

$$L_{red} = \int dr \left[ \left( U' - \ldots \right)^2 - \left( \psi' - \ldots \right)^2 - \left( Y' - \ldots \right)^2 \right] + T.D.$$

- two additional constraints on solution to first-order flow equations: one is  $q_l h^l - p^l h_l = 0$  Hamiltonian constraint.
- Consistent with analysis for supersymmetric backgrounds Dall'Agata + Gnecchi, arXiv:1012.375

First-order flow equations for the scalars  $Y^{I}(r)$ :  $F_{I} = \partial F(Y) / \partial Y^{I}$ 

$$\begin{pmatrix} (Y' - \bar{Y}')' \\ (F_I - \bar{F}_I)' \end{pmatrix} = -2i e^{-\psi} \operatorname{Im} \begin{pmatrix} e^{i\gamma} N^{IJ} (q_J - F_{JK} p^K) \\ e^{i\gamma} \bar{F}_{IJ} N^{JK} (q_K - F_{KL} p^L) \end{pmatrix}$$
$$+ 2i e^{\psi - 2U} \operatorname{Re} \begin{pmatrix} e^{i\gamma} N^{IJ} (h_J - F_{JK} h^K) \\ e^{i\gamma} \bar{F}_{IJ} N^{JK} (h_K - F_{KL} h^L) \end{pmatrix} .$$

Reminiscent of attractor equations of ungauged supergravity  $(h_l = h^l = 0)$ , but much more complicated to solve. Find:

- can construct  $AdS_2 \times R^2$  backgrounds ((Y')' = 0);
- exact solutions in various models, for instance  $F = -(Y^1)^3/Y^0$ : interpolating solution between  $AdS_4$  and  $AdS_2 \times R^2$ .
- STU-model: Nernst brane solutions (T = 0, S = 0).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

### Nernst brane solutions

STU-model: 
$$F = -Y^1 Y^2 Y^3 / Y^0$$
.  
For simplicity, restrict to:

#### 8 charges + 8 fluxes.

- axion free solutions;
- solution supported by electric  $(q_0; h_1, h_2, h_3)$ .

Near horizon solution (r = 0): only depends on charges and fluxes

- e<sup>2U</sup> = r<sup>5/2</sup>, e<sup>2(ψ-U)</sup> = r<sup>1/2</sup>, infinitely long throat with an unusual fall-off, vanishing area density; extremal solution with vanishing entropy density;
- scalar fields S<sub>2</sub>, T<sub>2</sub>, U<sub>2</sub> = r<sup>-1/2</sup>; solution is a good solution in D = 10 sugra;

Asymptotically: unusual fall-off

$$e^{2U} = r^{3/2}$$
,  $e^{2(\psi - U)} = r^{3/2}$ ,  $S_2, T_2, U_2 = (C_0 r)^{1/2}$ 

Does not interpolate between  $AdS_4$  and  $AdS_2 \times \mathbb{R}^2$ . Unusual solution,

- Explore the space of Nernst solutions in D = 4.
- *D* = 5:
  - find class of extremal static solutions with AdS<sub>2</sub> × R<sup>3</sup> horizons (constant scalars);
  - deformation (non-constant scalars);
  - Nernst solutions?

#### Thanks!

(4) The (b)