Chiral Phase Transitions around Black Holes Antonino Flachi, CENTRA - IST

\/ Black Holes Workshop

|9-20 December 20||
Universidade de Aveiro
Portugal

- A. Flachi and T.Tanaka, `Chiral Modulations in Curved Spacetimes I: Formalism’, JHEP 02 (201I) 026
- A. Flachi and T.Tanaka, `Chiral Phase Transitions around Black Holes’, Phys Rev D84 061503 (20II) (Rap. Comm.)
- A. Flachi, `Chiral Modulations in Curved Spacetimes II: Conifolds', to appear JHEP (20 I I)
- A. Flachi, `(De)confinement Transitions and Hadronization Processes around Black Holes', to appear

- Primordial Black Holes

- Mini Black Holes
- QCD

During the evaporation the Black Hole may sweep through critical points

- ...

Black holes evaporate at a temperature $\mathrm{T}_{\mathrm{bh}}=\mathrm{I} /(8 \pi \mathrm{mbh})$

$\mathrm{T}_{\mathrm{BH}} \ll \mathrm{m}_{\mathrm{e}}$ only photons, gravitons and neutrinos are emitted
$T_{B H} \sim m_{e}$
electrons start to be emitted; cross section is small; scattering unfrequent

TBH $\sim 100 \mathrm{MeV}$
first muons and pions, then hadrons copiously produced; local thermal equilibrium;

Evaporation

Black holes evaporate at a temperature $\mathrm{T}_{\mathrm{bh}}=\mathrm{I} /(8 \mathrm{~T} \mathbf{\mathrm { m } b \mathrm { h })}$

$\mathrm{T}_{\mathrm{BH}} \ll \mathrm{me}_{\mathrm{e}}$ only photons, gravitons and neutrinos are emitted

Tвн ~ me
electrons start to be emitted; cross section is small; scattering unfrequent
$T_{\text {BH }} \sim 100 \mathrm{MeV}$
first muons and pions, then hadrons copiously produced; local thermal equilibrium;

```
"'how this happens?
are hadrons directly emitted by the BH ? elementary particles are emitted instead and produce jets?"
```

S. Hawking (198।)
I. Moss, (I 985)
electroweak phase transitions
A. Heckler, (I997)
photosphere formation
J. Cline, M. Mostoslavsky, G. Servant, Phys. Rev. D59 (1999) 063009
J. Kapusta, Phys. Rev. Lett. 86 (200I) I 670
B. Carr, J. MacGibbons, D. Page, Phys. Rev. D78 (2008) 064043
chromosphere?
S. Hawking (198|)
I. Moss, (I 985)
electroweak phase transitions
A. Heckler, (I997)
photosphere formation
J. Cline, M. Mostoslavsky, G. Servant, Phys. Rev. D59 (I999) 063009
J. Kapusta, Phys. Rev. Lett. 86 (200 I) I 670
B. Carr, J. MacGibbons, D. Page, Phys. Rev. D78 (2008) 064043

chromosphere?

how this happens?
are hadrons directly emitted by the BH ? elementary particles are emitted instead and produce jets?

Similar problem occurs in QCD

Lattice QCD

very difficult (even in flat space); currently not viable

Effective Field Theories

- Low-Energy QCD
- Heavy Ion Collisions
- Superconductivity
- Quark Condensation
- Condensed Matter Precursors

share global symmetries of QCD chiral symmetry breaking confinement/deconfinement transitions
amenable of analytical treatment
(mean field; large N)
Inhomgeneous phases
Chiral density Wave Approach
Ginzburg Landau Approximation
Exact Solutions

Strongly Interacting Fermion Effective Field Theories

$$
S=\int d^{4} x \sqrt{g}\left\{\bar{\psi} i \gamma^{\mu} \nabla_{\mu} \psi+\frac{\lambda}{2 N}(\bar{\psi} \psi)^{2}\right\}
$$

$\psi:\left(D \times N_{f} \times N_{c}\right)$-dimensional quark spinor
$N \equiv N_{f} \times N_{c}$
$g=\left|\operatorname{Det} g_{\mu \nu}\right|$

Chiral Symmetry: $\psi \rightarrow \gamma^{5} \psi$
Mass terms cannot appear without breaking the above symmetry.
When this happens, $<\bar{\psi} \psi>$ acquires a non zero $V E V$ and fermion become massive

Dynamics of the condensate $\langle\bar{\psi} \psi\rangle=-N \sigma(x) / \lambda$

In order to study the condensate dynamics, we need to compute (at finite temperature) and minimize the effective action Г [σ]

$$
\begin{array}{ll}
\mathrm{BH} \text { geometry } & d s^{2}=f d t^{2}+f^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right) \\
\text { Large - N } & \Gamma=-\int d^{4} x \sqrt{g}\left(\frac{\sigma^{2}}{2 \lambda}\right)+\operatorname{Tr} \ln \left(i \gamma^{\mu} \nabla_{\mu}-\sigma\right)
\end{array}
$$

Computation of functional determinants for inhomogeneous backgrounds on BHs

$$
\begin{array}{cl}
\text { Conformal rescaling } \\
d \hat{s}^{2}=f^{-1} d s^{2}
\end{array} \quad \Gamma=-\int d^{4} x \sqrt{g}\left(\frac{\sigma^{2}}{2 \lambda}\right)+\hat{\Gamma}+\delta \Gamma
$$

Computation of functional determinants for inhomogeneous backgrounds on BH

$$
\begin{array}{cl}
\text { Conformal rescaling } \\
d \hat{s}^{2}=f^{-1} d s^{2}
\end{array} \quad \Gamma=-\int d^{4} x \sqrt{g}\left(\frac{\sigma^{2}}{2 \lambda}\right)+\hat{\Gamma}+\delta \Gamma
$$

$$
\begin{aligned}
\hat{\Gamma}= & \frac{1}{2} \sum_{\epsilon= \pm} \operatorname{Tr} \ln \left[\hat{\square}+\mathscr{A}+f \sigma_{\epsilon}^{2}\right] \\
\sigma_{\epsilon}^{2} & :=\sigma^{2}+\epsilon f^{1 / 2} \sigma^{\prime} \\
\mathscr{A}^{(n)} & =f\left((n-2) \Delta \ln f / 4-(n-2)^{2}(\nabla \ln f)^{2} / 16\right) \\
\hat{\Gamma}= & \frac{1}{2} \int d^{3} x \sqrt{\hat{g}}\left[\zeta(0) \ln \ell^{2}+\zeta^{\prime}(0)\right]
\end{aligned}
$$

$$
\zeta(s):=\frac{1}{\Gamma(s)} \sum_{n, \epsilon} \int d t t^{s-1} \operatorname{Tr} e^{-t\left(-\hat{\Delta}+\omega_{n}^{2}+\mathscr{A}+f \sigma_{\epsilon}^{2}\right)}
$$

Computation of functional determinants for inhomogeneous backgrounds on BHs

$$
\begin{array}{cl}
\text { Conformal rescaling } \\
d \hat{s}^{2}=f^{-1} d s^{2}
\end{array} \quad \Gamma=-\int d^{4} x \sqrt{g}\left(\frac{\sigma^{2}}{2 \lambda}\right)+\hat{\Gamma}+\delta \Gamma
$$

Computation of functional determinants for inhomogeneous backgrounds on BH

$$
\begin{array}{cl}
\text { Conformal rescaling } \\
d \hat{s}^{2}=f^{-1} d s^{2}
\end{array} \quad \Gamma=-\int d^{4} x \sqrt{g}\left(\frac{\sigma^{2}}{2 \lambda}\right)+\hat{\Gamma}+\delta \Gamma
$$

$$
\begin{array}{r}
\hat{\Gamma}=\frac{\beta}{2(4 \pi)^{2}} \sum_{\epsilon} \int d^{3} x \sqrt{\hat{g}}\left\{\frac{3 \sigma_{\epsilon}^{4}}{4}-\left(\frac{\sigma_{\epsilon}^{4}}{2}+a_{\epsilon}\right) \ln \left(\frac{f \sigma_{\epsilon}^{2}}{\ell^{2}}\right)+16 \frac{\sigma_{\epsilon}^{2}}{f \beta^{2}} \varpi_{2}\left(f^{\frac{1}{2}} \sigma_{\epsilon}\right)+4 a_{\epsilon} \varpi_{0}\left(f^{\frac{1}{2}} \sigma_{\epsilon}\right)\right\} \\
\delta \Gamma=\frac{\beta}{2(4 \pi)^{2}} \sum_{\epsilon= \pm} \int d^{3} x \sqrt{g}\left[\frac{\sigma_{\epsilon}^{4}}{2} \ln f-\frac{2 \sigma_{\epsilon}^{2}}{f} \lim _{n \rightarrow 4} \frac{d \Lambda_{n}}{d n}\right] \\
\varpi_{\nu}(u):=\sum_{n=1}^{\infty}(-1)^{n} n^{-\nu} K_{\nu}(n \beta u) \quad a_{\epsilon}:=\frac{1}{180}\left(\hat{R}_{\mu \nu \tau \rho}^{2}-\hat{R}_{\mu \nu}^{2}-\hat{\Delta} \hat{R}\right)+\frac{1}{6} \hat{\Delta}\left(f \sigma_{\epsilon}^{2}\right)
\end{array}
$$

Computation of functional determinants for inhomogeneous backgrounds on BH

$$
\begin{array}{cl}
\text { Conformal rescaling } \\
d \hat{s}^{2}=f^{-1} d s^{2}
\end{array} \quad \Gamma=-\int d^{4} x \sqrt{g}\left(\frac{\sigma^{2}}{2 \lambda}\right)+\hat{\Gamma}+\delta \Gamma
$$

$$
\begin{array}{r}
\hat{\Gamma}=\frac{\beta}{2(4 \pi)^{2}} \sum_{\epsilon} \int d^{3} x \sqrt{\hat{g}}\left\{\frac{3 \sigma_{\epsilon}^{4}}{4}-\left(\frac{\sigma_{\epsilon}^{4}}{2}+a_{\epsilon}\right) \ln \left(\frac{f \sigma_{\epsilon}^{2}}{\ell^{2}}\right)+16 \frac{\sigma_{\epsilon}^{2}}{f \beta^{2}} \varpi_{2}\left(f^{\frac{1}{2}} \sigma_{\epsilon}\right)+4 a_{\epsilon} \varpi_{0}\left(f^{\frac{1}{2}} \sigma_{\epsilon}\right)\right\} \\
\delta \Gamma=\frac{\beta}{2(4 \pi)^{2}} \sum_{\epsilon= \pm} \int d^{3} x \sqrt{g}\left[\frac{\sigma_{\epsilon}^{4}}{2} \ln f-\frac{2 \sigma_{\epsilon}^{2}}{f} \lim _{n \rightarrow 4} \frac{d \Lambda_{n}}{d n}\right] \\
\varpi_{\nu}(u):=\sum_{n=1}^{\infty}(-1)^{n} n^{-\nu} K_{\nu}(n \beta u) \quad a_{\epsilon}:=\frac{1}{180}\left(\hat{R}_{\mu \nu \tau \rho}^{2}-\hat{R}_{\mu \nu}^{2}-\hat{\Delta} \hat{R}\right)+\frac{1}{6} \hat{\Delta}\left(f \sigma_{\epsilon}^{2}\right)
\end{array}
$$

Computation of functional determinants for inhomogeneous backgrounds on BHs

$$
\begin{gathered}
\text { Conformal rescaling } \\
d \hat{s}^{2}=f^{-1} d s^{2}
\end{gathered} \quad \Gamma=-\int d^{4} x \sqrt{g}\left(\frac{\sigma^{2}}{2 \lambda}\right)+\hat{\Gamma}+\delta \Gamma
$$

$$
\begin{array}{r}
\hat{\Gamma}=\frac{\beta}{2(4 \pi)^{2}} \sum_{\epsilon} \int d^{3} x \sqrt{\hat{g}}\left\{\frac{3 \sigma_{\epsilon}^{4}}{4}-\left(\frac{\sigma_{\epsilon}^{4}}{2}+a_{\epsilon}\right) \ln \left(\frac{f \sigma_{\epsilon}^{2}}{\ell^{2}}\right)+16 \frac{\sigma_{\epsilon}^{2}}{f \beta^{2}} \varpi_{2}\left(f^{\frac{1}{2}} \sigma_{\epsilon}\right)+4 a_{\epsilon} \varpi_{0}\left(f^{\frac{1}{2}} \sigma_{\epsilon}\right)\right\} \\
\delta \Gamma=\frac{\beta}{2(4 \pi)^{2}} \sum_{\epsilon= \pm} \int d^{3} x \sqrt{g}\left[\frac{\sigma_{\epsilon}^{4}}{2} \ln f-\frac{2 \sigma_{\epsilon}^{2}}{f} \lim _{n \rightarrow 4} \frac{d \Lambda_{n}}{d n}\right] \\
\varpi_{\nu}(u):=\sum_{n=1}^{\infty}(-1)^{n} n^{-\nu} K_{\nu}(n \beta u) \quad a_{\epsilon}:=\frac{1}{180}\left(\hat{R}_{\mu \nu \tau \rho}^{2}-\hat{R}_{\mu \nu}^{2}-\hat{\Delta} \hat{R}\right)+\frac{1}{6} \hat{\Delta}\left(f \sigma_{\epsilon}^{2}\right)
\end{array}
$$

Minimization up to 2 nd order

$$
\sigma^{\prime \prime}+\delta_{1} \sigma^{\prime}+\delta_{2} \sigma^{\prime 2}+\mathscr{K}=0
$$

with regular boundary conditions
Higher order terms can be included systematically

Computation of functional determinants for inhomogeneous backgrounds on BH

$$
\begin{array}{cl}
\text { Conformal rescaling } \\
d \hat{s}^{2}=f^{-1} d s^{2}
\end{array} \quad \Gamma=-\int d^{4} x \sqrt{g}\left(\frac{\sigma^{2}}{2 \lambda}\right)+\hat{\Gamma}+\delta \Gamma
$$

$$
\begin{array}{r}
\hat{\Gamma}=\frac{\beta}{2(4 \pi)^{2}} \sum_{\epsilon} \int d^{3} x \sqrt{\hat{g}}\left\{\frac{3 \sigma_{\epsilon}^{4}}{4}-\left(\frac{\sigma_{\epsilon}^{4}}{2}+a_{\epsilon}\right) \ln \left(\frac{f \sigma_{\epsilon}^{2}}{\ell^{2}}\right)+16 \frac{\sigma_{\epsilon}^{2}}{f \beta^{2}} \varpi_{2}\left(f^{\frac{1}{2}} \sigma_{\epsilon}\right)+4 a_{\epsilon} \varpi_{0}\left(f^{\frac{1}{2}} \sigma_{\epsilon}\right)\right\} \\
\delta \Gamma=\frac{\beta}{2(4 \pi)^{2}} \sum_{\epsilon= \pm} \int d^{3} x \sqrt{g}\left[\frac{\sigma_{\epsilon}^{4}}{2} \ln f-\frac{2 \sigma_{\epsilon}^{2}}{f} \lim _{n \rightarrow 4} \frac{d \Lambda_{n}}{d n}\right] \\
\varpi_{\nu}(u):=\sum_{n=1}^{\infty}(-1)^{n} n^{-\nu} K_{\nu}(n \beta u) \quad a_{\epsilon}:=\frac{1}{180}\left(\hat{R}_{\mu \nu \tau \rho}^{2}-\hat{R}_{\mu \nu}^{2}-\hat{\Delta} \hat{R}\right)+\frac{1}{6} \hat{\Delta}\left(f \sigma_{\epsilon}^{2}\right)
\end{array}
$$

Minimization up to 2 nd order

$$
\sigma^{\prime \prime}+\delta_{1} \sigma^{\prime}+\delta_{2} \sigma^{\prime 2}+\mathscr{K}=0
$$

with regular boundary conditions
Higher order terms can be included systematically

Solutions

Critical Configuration

The solution has a kink profile that vanishes near the horizon

A region of chirally restored symmetry is separated from one of broken symmetry \longrightarrow

Radius of the bubble

$$
r_{\text {bubble }} \sim r_{s} /\left(1-T_{B H}^{2} / T_{c}^{2}\right)
$$

Thickness of the bubble increases as the temperature approaches T_{c}

Asymptotic Potential
$\partial_{\sigma} U_{a s}=-\frac{3 \sigma\left(4 \lambda \sigma\left(4 \varpi_{-1}(\sigma)+\beta \sigma \ln (\sigma / \ell)-2 \lambda \beta \sigma^{2}+\beta\right)\right.}{2 \lambda \beta\left(-4 \beta \sigma \varpi_{1}(\sigma)-6 \varpi_{0}(\sigma)+3 \ln (\sigma / \ell)-2\right)}$
Critical Temperature

$$
T_{c}=\sqrt{3} \lambda^{-1 / 2} .
$$

Chromosphere

Whether the emission of strongly interacting particles may produce a chromosphere Inside the bubble

In the present situation scattering occurs only in the radial direction and angular quantum numbers do not change

Particles stay almost massless and there are no processes that randomize the particle motion inside the bubble
Only the gradient of the effective local temperature is important, and particle simply stream away to infinity reducing their velocity due to the gravitational attraction of the black hole
This configuration will be similar to the shock produced by stellar wind

Bubble interface

Scattering occurs non-trivially and particles with energy smaller than the VEV of the condensate outside of the bubble will be reflected back

Outside the Bubble

Only hadrons exist

(De)Confinement Transitions and Hadronization

Some open questions

Are there other possible inhomogeneous configuration that the condensate may take ?

How does the scattering at the interface occurs and how much of the radiation can actually escape to infinity?

Does the presence of gauge degree of freedom may change the picture?

We completely ignored back-reaction effects. Does back-reaction change anything ?
What happens to the propagation of particles coupled to quarks when further interactions are added?

What happens in AdS ?

We know that fermions do not super-radiate. Do interactions change anything ?

Merry Christmas!

