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Motivations

- Primordial Black Holes

- Mini Black Holes

- QCD
During the evaporation the Black Hole 
may sweep through critical points

- ...



Black holes evaporate at a temperature Tbh = 1/(8πmbh)

Evaporation

TBH << me only photons, gravitons and neutrinos are emitted

TBH ~ me
electrons start to be emitted; cross section is small; 
scattering unfrequent

TBH ~ 100 MeV
first muons and pions, then hadrons copiously produced;
local thermal equilibrium; 
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``how this happens ?
are hadrons directly emitted by the BH?

elementary particles are emitted instead and produce jets?’’
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how this happens ?
are hadrons directly emitted by the BH?

elementary particles are emitted instead and produce jets?



QCD

Similar problem occurs in QCD

Effective Field Theories

Lattice QCD

very difficult (even in flat space); 
currently not viable

share global symmetries of QCD
chiral symmetry breaking
confinement/deconfinement transitions

 Low-Energy QCD

 Heavy Ion Collisions

 Superconductivity

 Quark Condensation

 Condensed Matter Precursors

amenable of analytical treatment 
(mean field; large N)

Inhomgeneous phases

Chiral density Wave Approach
Ginzburg Landau Approximation
Exact Solutions

!!

!!

!!

!!

260 280 300 320 340 360 380 4000
20
40
60
80
100

Μq !MeV"

T
!MeV

"

[from Nickel, PRL ’09]



Strongly Interacting Fermion Effective Field Theories

solutions, however, have free energy larger than the corresponding homogeneous phases, and
therefore they can only appear as excited states.

2 Four-fermion Effective Theories

In the following we will consider as a prototype model of 4fET the following D−dimensional
theory:

S =

�
dDx

√
g

�
ψ̄iγµ∇µψ +

G

2N

�
ψ̄ψ

�2
+ · · ·

�
, (2.1)

where ψ is a (D × Nf × Nc)−component quark spinor, with Nf flavors and Nc colors (N ≡
Nf ×Nc), γµ are the gamma matrices in curved space, G is the four-fermion coupling constant
and g = |Detgµν |. The rest of the notation is standard [25]. The dots stand for terms with
higher mass dimension.

Starting from the theory in flat space allows for a direct generalization to curved space by
replacing the flat space metric and ordinary derivatives with the metric tensor and covariant
derivatives. This process of ‘covariantization’ also requires to augment the original action with
all the terms compatible with coordinate invariance. The leading contribution is R(ψ̄ψ)2, and
it is suppressed relative to the four Fermi interaction term by the ratio between the curvature
and the fundamental energy scale squared. Higher order terms are further suppressed by
inverse powers of the fundamental energy scale and/or inverse powers of N . The divergences
in the effective action contain R(ψ̄ψ)2 term but not any subleading term (in the sense defined
above).

Finite temperature will be introduced by means of the imaginary time formalism and finite
density by means of a chemical potential contribution of the form µψ̄γ0ψ. In the following, we
will not consider how the chiral anomaly may be induced by gravitational effects, and thus we
neglect terms of the form

�
ψ̄γ5ψ

�2
.

The above action is invariant under discrete chiral transformations and mass terms cannot
appear without breaking chiral symmetry. On the other hand, if the chiral symmetry is broken
dynamically, the composite operator �ψ̄ψ� acquires a non-zero vacuum expectation value and a
fermion mass term would appear. The action is also invariant under SU(Nf ) flavor symmetry.
In the following, we will stick to the large-N approximation.

The basic formalism will be illustrated for the case of a D = d+1 dimensional, ultra-static
spacetime of the form

ds2 = dt2 − gijdxidxj , (2.2)

where the tensor gij represents the metric on the spatial section M of the spacetime. We stress,
however, that the procedure described below is always possible, with minor modifications, if
the spacetime can be conformally related to an ultra-static one.

Allowing a mean field value �ψ̄ψ� = −Nσ(x)/G for the chiral condensate, after bosoniza-
tion, the partition function can be expressed as a path integral over σ:

Z =

�
[dσ] eiSeff , (2.3)

3
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Chiral Symmetry:  ψ → γ ψ5

Mass terms cannot appear without breaking the above symmetry.

When this happens, < ψ ψ > acquires a non zero VEV and fermion become massive
_
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In this paper we discuss the possibility that chiral phase transitions, analogous to those of QCD,
occur in the vicinity of a black hole. If the black hole is surrounded by a gas of strongly interacting
particles, an inhomogeneous condensate will form. We demonstrate this by explicitly constructing
self-consistent solutions for the condensate. We discuss the relevance of our results in relation to the
possibility of chromosphere formation. We argue that this is not expected, rather the configuration
will be similar to the shock produced by stellar wind.

According to the theory of quantum fields in curved
space, black holes radiate energy at a temperature in-
versely proportional to their mass [1]. As the black hole
evaporates, its temperature rises, and at some point a
bubble of a high temperature phase surrounding the hori-
zon may form, if a phase transition occurs. This was
a particularly interesting phenomena in connection with
the Higgs model of electroweak symmetry breaking and
its study requires the inclusion of interactions, being an
essential feature of the phase transition. A method to
deal with this situation was proposed, but the indication
was that, in the Higgs model, the associated high tem-
perature phase would be too localized around the black
hole, so that symmetry, effectively, would not be restored
[2]. The same problem has been reconsidered by Moss
taking into account the effect of trapped particles, i.e.
particles emitted by the black hole and reflected back
by the walls of the bubble. He indicated that, for some
class of bag models, the picture may change and lead to a
transient equilibrium configuration of restored symmetry
phase, localized around the black hole [3].
A field in which the similar problem of understand-

ing the phase structure is nowadays very topical is that
of QCD at finite temperature and density, in which
phenomena like chiral symmetry breaking and confine-
ment/deconfinement transitions are known to take place.
In this context, the natural way of addressing the prob-
lem would be to use ‘first principle’ non-perturbative lat-
tice methods, but already in flat space, and especially
at high densities, things become prohibitive. In lack of
a first principle approach, approximating QCD with a
strongly interacting fermion effective field theories comes
in handy. The price to pay is that we have to work with a
non-renormalizable effective theory, but with the bonus
of dealing with a simpler one that shares many of the
essential properties of QCD. As a matter of fact, a great
deal of attention is currently paid on mapping various
phases on the temperature-density diagram within such
an effective field theoretical approach, in order to gain
understanding of the vacuum structure of strongly inter-
acting matter (See Ref. [4] for a recent review).
The aim of this work is to use the same simplifica-

tion of degrading QCD to a non-renormalizable, strongly
interacting fermion effective field theory, and study the
interplay with black holes. To begin with, we wish to

consider a little more in detail the issue of phase tran-
sitions that would break or restore chiral symmetry. In
the context of strongly interacting fermionic systems, it
is well known that chiral symmetry breaking takes place,
and this fact is discussed in terms of the appearance of a
fermion condensate. One aspect particularly important
to us is that the ground state is believed to develop inho-
mogeneous phases when the density becomes large. For
instance, Refs. [6] discussed the issue of chiral symme-
try breaking and the related condensate formation, and
mapped the phase diagram for models of the Nambu-
Jona Lasinio class. The description of Refs. [6] indicated
that the fermion condensate at high densities rensembles
a lattice of domain walls.

In the present case, we are lifting the situation to
curved space, where new effects kick in. In a constant
curvature space, the effect of the non-trivial geometry
is something similar to adding chemical potential. The
condensate may or may not be spatially homogeneous.
By contrast, in a black hole spacetime inhomogeneous
configurations for the condensate are inevitable. To keep
the situation as simple as possible, let us concentrate on
the case in which a Schwarzschild black hole of mass m
is surrounded by strongly interacting fermions in ther-
mal equilibrium with the asymptotic temperature given
by TBH = (8πm)−1. Then, the local (Tolman) tempera-
ture is given by Tloc = TBH/

√
f with f = 1 − 2m/r. In

flat space, the strongly interacting fermionic theory has
a critical temperature, Tc, that marks the phase tran-
sitions of chiral symmetry breaking (in QCD Tc # 200
MeV). Therefore it seems evident that in the asymptotic
region chiral symmetry is restored when TBH > Tc while
broken for TBH < Tc. When TBH < Tc, Tloc crosses the
critical temperature at a certain radius. Within this ra-
dius, the symmetry will be restored. This indicates the
possibility that a domain wall structure of the condensate
surrounding the black hole will arise.

We will now make the above picture quantitative by
using a strongly interacting fermion effective field theory
of the Nambu-Jona Lasinio type. The prototype action
can be written as

S =

∫
d4x

√
g

{
ψ̄iγµ∇µψ +

λ

2N

(
ψ̄ψ

)2
}

.

In the above expression ψ is a spinor field, λ is the cou-
pling constant, g = |Detgµν | is the determinant of the
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Dynamics of the condensate λ



Condensate Effective Action

In order to study the condensate dynamics, we need to compute 
(at finite temperature) and minimize the effective action Γ[σ]

Large - N

2

metric tensor and γµ are the gamma matrices in curved
space. The number of fermion degrees of freedom (equal
to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
bosonization, as

Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+Tr ln (iγµ∇µ − σ) ,

where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
squaring the Dirac operator, we obtain

Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+ Γ̂+ δΓ , (2)

where

Γ̂ =
1

2

∑

ε=±
Tr ln

[
!̂+ A + fσ2

ε

]
. (3)

In the above expression !̂ is the D’Alembertian
in the conformally rescaled spacetime and
σ2
ε := σ2 + εf1/2σ′. The quantity A (n) =

f
(
(n− 2)∆ ln f/4− (n− 2)2(∇ ln f)2/16

)
is deter-

mined so that !̂ + A (n) = f−(n+2)/4!f (2−n)/4 is
satisfied, where n is the spacetime dimensions. In
(3) we have used the notation A ≡ A (4). Notice that
A = R̂/6. Imposing the periodicity in the Euclidean
time with the period β = 2π/TBH , we express Γ̂ as

Γ̂ =
1

2

∑

ε=±

∞∑

n=−∞
Tr ln

[
−∆̂+ ω2

n + A + fσ2
ε

]
,

with ∆̂ being the Laplacian in the conformally rescaled
space and ωn := 2π/β (n+ 1/2).

Using zeta regularization gives

Γ̂ =
1

2

∫
d3x

√
ĝ
[
ζ(0) ln -2 + ζ ′(0)

]
,

where - is a renormalization (length) scale and

ζ(s) :=
1

Γ(s)

∑

n,ε

∫
dtts−1Tr e−t(−∆̂+ω2

n+A +fσ2
ε).

The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is

Γ̂ =
β

2(4π)2

∑

ε

∫
d3x

√
ĝ

{
3σ4

ε

4
−
(
σ4
ε

2
+ aε

)
ln

(
fσ2

ε

-2

)

+ 16
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and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
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ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
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when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
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use the method of [5] to evaluate the effective action in
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tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
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metric tensor and γµ are the gamma matrices in curved
space. The number of fermion degrees of freedom (equal
to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
bosonization, as
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where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
squaring the Dirac operator, we obtain

Γ = −
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In the above expression !̂ is the D’Alembertian
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ε := σ2 + εf1/2σ′. The quantity A (n) =
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(n− 2)∆ ln f/4− (n− 2)2(∇ ln f)2/16

)
is deter-

mined so that !̂ + A (n) = f−(n+2)/4!f (2−n)/4 is
satisfied, where n is the spacetime dimensions. In
(3) we have used the notation A ≡ A (4). Notice that
A = R̂/6. Imposing the periodicity in the Euclidean
time with the period β = 2π/TBH , we express Γ̂ as
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with ∆̂ being the Laplacian in the conformally rescaled
space and ωn := 2π/β (n+ 1/2).
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
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The formulæ we will present below generally apply for
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in the large-N approximation. The effective action (per
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when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
squaring the Dirac operator, we obtain
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ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
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transformation to recover the result in the original space-
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metric tensor and γµ are the gamma matrices in curved
space. The number of fermion degrees of freedom (equal
to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
bosonization, as

Γ = −
∫

d4x
√
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(
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2λ

)
+Tr ln (iγµ∇µ − σ) ,

where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
squaring the Dirac operator, we obtain

Γ = −
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where
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satisfied, where n is the spacetime dimensions. In
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
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symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
bosonization, as

Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+Tr ln (iγµ∇µ − σ) ,

where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
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)
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mined so that !̂ + A (n) = f−(n+2)/4!f (2−n)/4 is
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(3) we have used the notation A ≡ A (4). Notice that
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
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when σ acquires a non-zero vacuum expectation value
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cate the quantities evaluated in this conformally related
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use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
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(3) we have used the notation A ≡ A (4). Notice that
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with ∆̂ being the Laplacian in the conformally rescaled
space and ωn := 2π/β (n+ 1/2).
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,
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
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where Λn = A (n) − (R̂(n) − fR(n))/6 and R̂(n) and
R(n) are the n-dimensional Ricci scalars in the confor-
mally rescaled and original spacetimes, respectively. Us-
ing limn→4 dΛn/dn = (f

′2 − 2ff ′′ + 4ff ′/r)/24, one ar-
rives at the expression for the cocycle function. Com-
bining (4) with the above expression gives the effective
action Γ for the condensate σ.
The problem is now reduced to finding extrema of the

effective action Γ with respect to the condensate σ. Ig-
noring fourth order derivatives of the condensate allows
us to express the equation of motion for the condensate
as a non-linear Schrödinger-like equation of the form

σ′′ + δ1σ
′ + δ2σ

′2 + K = 0 , (5)

where the coefficients δi and K are functions of σ but
independent of its derivatives. The explicit expressions
are rather long and will not be reported here.
Before finding the explicit solution for the condensate,

we will discuss the critical temperature in the asymp-
totic region r → ∞. Denoting the minus of the action
with σ′ = 0 as the potential U(σ), the derivative of the
asymptotic value can be computed exactly as

∂σUas = −
3σ

(
4λσ(4%−1(σ) + βσ ln (σ/')− 2λβσ2 + β

)

2λβ(−4βσ%1(σ)− 6%0(σ) + 3 ln (σ/')− 2)
.

The critical temperature is determined by the equation
∂2
σUas(σ) = 0. Thus, expanding the Bessel functions con-

tained in%ν for small σ, performing exactly the sum over
n, and finally solving a trivial algebraic equation, one ar-
rives at Tc =

√
3λ−1/2. The thermodynamic potential

obtained by numerically integrating ∂σU with respect to
σ is shown in Fig. 1.
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Figure 1. The figure illustrates how, asymptotically, the
potential Uas(σ) changes and symmetry gets restored as
temperature increases (The top (red) curve corresponds to
TBH/Tc = 1.75, while the bottom (orange) curve corresponds
to TBH/Tc = 0.03. The second curve from top (blue) corre-
sponds to T/Tc = 1.). We set " = 106 and λ = 10−2.

Computing the thermodynamic potential locally will
provide further insight on the form of the condensate. In
fact, such a computation shows that starting from a set
of parameters for which asymptotically the potential has
a non vanishing minima, as we move towards the hole,

the minima of the potential will gradually shift towards
a configuration with vanishing σ. We confirm the above
picture by solving Eq. (5) for the condensate with regu-
lar boundary conditions at the horizon. Solving Eq. (5)
can be handled by standard numerical techniques, but it
requires some caution. First of all, we notice that the co-
efficients of Eq. (5) for σ depend on infinite summations
over Bessel functions, whose argument is proportional to
the condensate. When the value of the condensate is
not small, these sums can be truncated due to the ex-
ponential fall-off of the Bessel functions. However, when
the condensate is small, fully resummed expressions have
to be used. Once we expand the Bessel functions for
small values of their arguments, we can perform the full
resummation over n. In the region r < r∗ where σ is
small up to a value r∗, we integrate Eq. (5) using this re-
summed form, and then we switch to the truncated form
for r > r∗, matching the value of σ and its derivative at
the junction. The boundary conditions in the vicinity of
the horizon and in the asymptotically far region are set
by requiring that the condensate is at a minima of the
potential.
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Figure 2. The figure illustrates the condensate profile
found by solving Eq. (5), for four indicative values of
the black hole temperature (Left to right: TBH/Tc =
0.50 (Blue), 0.54 (Green), 0.58 (Red), 0.61 (Black)). The val-
ues of the other parameters are set to " = 103, λ = 10−2. As
we increase the black hole temperature, the region of restored
symmetry phase expands, and the bubble becomes larger and
thicker. The asymptotic value of the condensate becomes
smaller as the asymptotic temperatures increases, and tends
to zero for T → Tc. The small box superposed illustrates
for the rightmost curve (T/Tc = 0.61), the corrected solution
(red, dashed) when fourth order derivative terms are included.

We present the results for the condensate profile in
Fig. 3 for sample values of the parameters. The kink-
type configurations of Fig. 3 are bubbles that separate a
region of restored symmetry near the black hole from a
region of broken symmetry surrounding it. The size of
the bubble can also be easily estimated by equating the
local temperature to the critical temperature as

rbubble ∼ rs/
(
1− T 2

BH/T 2
c

)
,

which approximately agrees with the numerical results.
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stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,
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The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
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To analyze the breaking/restoration of chiral symme-
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where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
squaring the Dirac operator, we obtain

Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+ Γ̂+ δΓ , (2)

where

Γ̂ =
1

2

∑

ε=±
Tr ln

[
!̂+ A + fσ2

ε

]
. (3)

In the above expression !̂ is the D’Alembertian
in the conformally rescaled spacetime and
σ2
ε := σ2 + εf1/2σ′. The quantity A (n) =

f
(
(n− 2)∆ ln f/4− (n− 2)2(∇ ln f)2/16

)
is deter-
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with ∆̂ being the Laplacian in the conformally rescaled
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is

Γ̂ =
β

2(4π)2

∑

ε

∫
d3x

√
ĝ
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
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when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
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use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
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condensate to be spherically symmetric, σ = σ(r), and
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n [ĝ]− C(2)
n [g]

)
/(n− 4) .

For an operator of the form O = !+ V , the part of the
heat-kernel coefficient, relevant for our computation, is

C(2)
n [g] =

1

(4π)
n
2

1

2

∫
dnx

√
g

(
V 2 − 1

3
RV + · · ·

)
,

where the dots represent terms that do not depend on V
or disappear upon integration by parts. In the present
case, V = σ2

ε in the original spacetime while V = A +fσ2
ε

in the conformally rescaled spacetime. Simple computa-
tions give

δΓ =
β

2(4π)2

∑

ε=±

∫
d3x

√
g

[
σ4
ε

2
ln f − 2σ2

ε

f
lim
n→4

dΛn

dn

]
,

2

metric tensor and γµ are the gamma matrices in curved
space. The number of fermion degrees of freedom (equal
to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
bosonization, as

Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+Tr ln (iγµ∇µ − σ) ,

where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
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where
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)
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mined so that !̂ + A (n) = f−(n+2)/4!f (2−n)/4 is
satisfied, where n is the spacetime dimensions. In
(3) we have used the notation A ≡ A (4). Notice that
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with ∆̂ being the Laplacian in the conformally rescaled
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
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to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
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The computation of the effective action can be per-

formed using the method described in Ref. [5], although
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ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
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to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
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formed using the method described in Ref. [5], although
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not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
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use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
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Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+ Γ̂+ δΓ , (2)

where

Γ̂ =
1

2

∑

ε=±
Tr ln

[
!̂+ A + fσ2

ε

]
. (3)
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)
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mined so that !̂ + A (n) = f−(n+2)/4!f (2−n)/4 is
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(3) we have used the notation A ≡ A (4). Notice that
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with ∆̂ being the Laplacian in the conformally rescaled
space and ωn := 2π/β (n+ 1/2).
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
in n dimensions:

δΓ = lim
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where the dots represent terms that do not depend on V
or disappear upon integration by parts. In the present
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Conformal rescaling

2

metric tensor and γµ are the gamma matrices in curved
space. The number of fermion degrees of freedom (equal
to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
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Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+Tr ln (iγµ∇µ − σ) ,

where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
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)
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mined so that !̂ + A (n) = f−(n+2)/4!f (2−n)/4 is
satisfied, where n is the spacetime dimensions. In
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with ∆̂ being the Laplacian in the conformally rescaled
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
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to the number of flavors × the number of colours) is N
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stood. The background spacetime is that of a spherically
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ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
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The other term to compute is the cocycle contribution
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metric tensor and γµ are the gamma matrices in curved
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to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
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ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
bosonization, as

Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+Tr ln (iγµ∇µ − σ) ,

where the composite operator σ ≡ − λ
N ψ̄ψ was intro-
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when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
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formed using the method described in Ref. [5], although
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cate the quantities evaluated in this conformally related
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cate the quantities evaluated in this conformally related
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sometimes called cocycle function, to compensate the ef-
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condensate to be spherically symmetric, σ = σ(r), and
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be performed in a straightforward manner following the
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spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
squaring the Dirac operator, we obtain
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In the above expression !̂ is the D’Alembertian
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mined so that !̂ + A (n) = f−(n+2)/4!f (2−n)/4 is
satisfied, where n is the spacetime dimensions. In
(3) we have used the notation A ≡ A (4). Notice that
A = R̂/6. Imposing the periodicity in the Euclidean
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with ∆̂ being the Laplacian in the conformally rescaled
space and ωn := 2π/β (n+ 1/2).

Using zeta regularization gives
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where - is a renormalization (length) scale and
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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where we have defined
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
in n dimensions:

δΓ = lim
n→4
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n [g]

)
/(n− 4) .

For an operator of the form O = !+ V , the part of the
heat-kernel coefficient, relevant for our computation, is
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,

where the dots represent terms that do not depend on V
or disappear upon integration by parts. In the present
case, V = σ2

ε in the original spacetime while V = A +fσ2
ε

in the conformally rescaled spacetime. Simple computa-
tions give
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metric tensor and γµ are the gamma matrices in curved
space. The number of fermion degrees of freedom (equal
to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
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To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
bosonization, as

Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+Tr ln (iγµ∇µ − σ) ,

where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
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Conformal rescaling
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ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
squaring the Dirac operator, we obtain

Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+ Γ̂+ δΓ , (2)

where

Γ̂ =
1

2

∑

ε=±
Tr ln

[
!̂+ A + fσ2

ε

]
. (3)

In the above expression !̂ is the D’Alembertian
in the conformally rescaled spacetime and
σ2
ε := σ2 + εf1/2σ′. The quantity A (n) =

f
(
(n− 2)∆ ln f/4− (n− 2)2(∇ ln f)2/16

)
is deter-

mined so that !̂ + A (n) = f−(n+2)/4!f (2−n)/4 is
satisfied, where n is the spacetime dimensions. In
(3) we have used the notation A ≡ A (4). Notice that
A = R̂/6. Imposing the periodicity in the Euclidean
time with the period β = 2π/TBH , we express Γ̂ as

Γ̂ =
1

2

∑

ε=±

∞∑

n=−∞
Tr ln

[
−∆̂+ ω2

n + A + fσ2
ε

]
,

with ∆̂ being the Laplacian in the conformally rescaled
space and ωn := 2π/β (n+ 1/2).

Using zeta regularization gives

Γ̂ =
1

2

∫
d3x

√
ĝ
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formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
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ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
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some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
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be performed in a straightforward manner following the
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form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
in n dimensions:
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where the dots represent terms that do not depend on V
or disappear upon integration by parts. In the present
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metric tensor and γµ are the gamma matrices in curved
space. The number of fermion degrees of freedom (equal
to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
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where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
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ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
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where the dots represent terms that do not depend on V
or disappear upon integration by parts. In the present
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space. The number of fermion degrees of freedom (equal
to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
bosonization, as
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where the composite operator σ ≡ − λ
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duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
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A = R̂/6. Imposing the periodicity in the Euclidean
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
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where the dots represent terms that do not depend on V
or disappear upon integration by parts. In the present
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Minimization up to 2nd order

3

where Λn = A (n) − (R̂(n) − fR(n))/6 and R̂(n) and
R(n) are the n-dimensional Ricci scalars in the confor-
mally rescaled and original spacetimes, respectively. Us-
ing limn→4 dΛn/dn = (f

′2 − 2ff ′′ + 4ff ′/r)/24, one ar-
rives at the expression for the cocycle function. Com-
bining (4) with the above expression gives the effective
action Γ for the condensate σ.
The problem is now reduced to finding extrema of the

effective action Γ with respect to the condensate σ. Ig-
noring fourth order derivatives of the condensate allows
us to express the equation of motion for the condensate
as a non-linear Schrödinger-like equation of the form

σ′′ + δ1σ
′ + δ2σ

′2 + K = 0 , (5)

where the coefficients δi and K are functions of σ but
independent of its derivatives. The explicit expressions
are rather long and will not be reported here.
Before finding the explicit solution for the condensate,

we will discuss the critical temperature in the asymp-
totic region r → ∞. Denoting the minus of the action
with σ′ = 0 as the potential U(σ), the derivative of the
asymptotic value can be computed exactly as

∂σUas = −
3σ

(
4λσ(4%−1(σ) + βσ ln (σ/')− 2λβσ2 + β

)

2λβ(−4βσ%1(σ)− 6%0(σ) + 3 ln (σ/')− 2)
.

The critical temperature is determined by the equation
∂2
σUas(σ) = 0. Thus, expanding the Bessel functions con-

tained in%ν for small σ, performing exactly the sum over
n, and finally solving a trivial algebraic equation, one ar-
rives at Tc =

√
3λ−1/2. The thermodynamic potential

obtained by numerically integrating ∂σU with respect to
σ is shown in Fig. 1.
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Figure 1. The figure illustrates how, asymptotically, the
potential Uas(σ) changes and symmetry gets restored as
temperature increases (The top (red) curve corresponds to
TBH/Tc = 1.75, while the bottom (orange) curve corresponds
to TBH/Tc = 0.03. The second curve from top (blue) corre-
sponds to T/Tc = 1.). We set " = 106 and λ = 10−2.

Computing the thermodynamic potential locally will
provide further insight on the form of the condensate. In
fact, such a computation shows that starting from a set
of parameters for which asymptotically the potential has
a non vanishing minima, as we move towards the hole,

the minima of the potential will gradually shift towards
a configuration with vanishing σ. We confirm the above
picture by solving Eq. (5) for the condensate with regu-
lar boundary conditions at the horizon. Solving Eq. (5)
can be handled by standard numerical techniques, but it
requires some caution. First of all, we notice that the co-
efficients of Eq. (5) for σ depend on infinite summations
over Bessel functions, whose argument is proportional to
the condensate. When the value of the condensate is
not small, these sums can be truncated due to the ex-
ponential fall-off of the Bessel functions. However, when
the condensate is small, fully resummed expressions have
to be used. Once we expand the Bessel functions for
small values of their arguments, we can perform the full
resummation over n. In the region r < r∗ where σ is
small up to a value r∗, we integrate Eq. (5) using this re-
summed form, and then we switch to the truncated form
for r > r∗, matching the value of σ and its derivative at
the junction. The boundary conditions in the vicinity of
the horizon and in the asymptotically far region are set
by requiring that the condensate is at a minima of the
potential.
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Figure 2. The figure illustrates the condensate profile
found by solving Eq. (5), for four indicative values of
the black hole temperature (Left to right: TBH/Tc =
0.50 (Blue), 0.54 (Green), 0.58 (Red), 0.61 (Black)). The val-
ues of the other parameters are set to " = 103, λ = 10−2. As
we increase the black hole temperature, the region of restored
symmetry phase expands, and the bubble becomes larger and
thicker. The asymptotic value of the condensate becomes
smaller as the asymptotic temperatures increases, and tends
to zero for T → Tc. The small box superposed illustrates
for the rightmost curve (T/Tc = 0.61), the corrected solution
(red, dashed) when fourth order derivative terms are included.

We present the results for the condensate profile in
Fig. 3 for sample values of the parameters. The kink-
type configurations of Fig. 3 are bubbles that separate a
region of restored symmetry near the black hole from a
region of broken symmetry surrounding it. The size of
the bubble can also be easily estimated by equating the
local temperature to the critical temperature as

rbubble ∼ rs/
(
1− T 2

BH/T 2
c

)
,

which approximately agrees with the numerical results.

with regular boundary conditions

Higher order terms can be included systematically
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metric tensor and γµ are the gamma matrices in curved
space. The number of fermion degrees of freedom (equal
to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
bosonization, as

Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+Tr ln (iγµ∇µ − σ) ,

where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
squaring the Dirac operator, we obtain

Γ = −
∫

d4x
√
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)
+ Γ̂+ δΓ , (2)

where
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In the above expression !̂ is the D’Alembertian
in the conformally rescaled spacetime and
σ2
ε := σ2 + εf1/2σ′. The quantity A (n) =
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(n− 2)∆ ln f/4− (n− 2)2(∇ ln f)2/16

)
is deter-

mined so that !̂ + A (n) = f−(n+2)/4!f (2−n)/4 is
satisfied, where n is the spacetime dimensions. In
(3) we have used the notation A ≡ A (4). Notice that
A = R̂/6. Imposing the periodicity in the Euclidean
time with the period β = 2π/TBH , we express Γ̂ as

Γ̂ =
1

2

∑

ε=±

∞∑

n=−∞
Tr ln

[
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,

with ∆̂ being the Laplacian in the conformally rescaled
space and ωn := 2π/β (n+ 1/2).

Using zeta regularization gives
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,

where - is a renormalization (length) scale and
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ε).

The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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where we have defined

.ν(u) :=
∞∑

n=1

(−1)nn−νKν (nβu) ,

aε :=
1

180

(
R̂2

µντρ − R̂2
µν − ∆̂R̂

)
+

1

6
∆̂
(
fσ2

ε

)
.

The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
in n dimensions:

δΓ = lim
n→4
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where the dots represent terms that do not depend on V
or disappear upon integration by parts. In the present
case, V = σ2

ε in the original spacetime while V = A +fσ2
ε

in the conformally rescaled spacetime. Simple computa-
tions give
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Conformal rescaling
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metric tensor and γµ are the gamma matrices in curved
space. The number of fermion degrees of freedom (equal
to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
bosonization, as

Γ = −
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)
+Tr ln (iγµ∇µ − σ) ,

where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
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be performed in a straightforward manner following the
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n [ĝ]− C(2)
n [g]

)
/(n− 4) .

For an operator of the form O = !+ V , the part of the
heat-kernel coefficient, relevant for our computation, is

C(2)
n [g] =

1

(4π)
n
2

1

2

∫
dnx

√
g

(
V 2 − 1

3
RV + · · ·

)
,

where the dots represent terms that do not depend on V
or disappear upon integration by parts. In the present
case, V = σ2

ε in the original spacetime while V = A +fσ2
ε

in the conformally rescaled spacetime. Simple computa-
tions give

δΓ =
β

2(4π)2

∑

ε=±

∫
d3x

√
g

[
σ4
ε

2
ln f − 2σ2

ε

f
lim
n→4

dΛn

dn

]
,

2

metric tensor and γµ are the gamma matrices in curved
space. The number of fermion degrees of freedom (equal
to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
bosonization, as

Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+Tr ln (iγµ∇µ − σ) ,

where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
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transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
in n dimensions:

δΓ = lim
n→4

(
C(2)

n [ĝ]− C(2)
n [g]

)
/(n− 4) .

For an operator of the form O = !+ V , the part of the
heat-kernel coefficient, relevant for our computation, is

C(2)
n [g] =

1

(4π)
n
2
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2
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√
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V 2 − 1

3
RV + · · ·

)
,

where the dots represent terms that do not depend on V
or disappear upon integration by parts. In the present
case, V = σ2

ε in the original spacetime while V = A +fσ2
ε

in the conformally rescaled spacetime. Simple computa-
tions give

δΓ =
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metric tensor and γµ are the gamma matrices in curved
space. The number of fermion degrees of freedom (equal
to the number of flavors × the number of colours) is N
and summation over color and flavor indices is under-
stood. The background spacetime is that of a spherically
symmetric and asymptotically flat black hole,

ds2 = fdt2 + f−1dr2 + r2(dθ2 + sin2 θdϕ2) . (1)

The formulæ we will present below generally apply for
any function f(r), but the numerical analysis will be car-
ried out for the Schwarzschild case.
To analyze the breaking/restoration of chiral symme-

try, we will use the finite temperature effective action
in the large-N approximation. The effective action (per
fermion degree of freedom), Γ, can be expressed, after
bosonization, as

Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+Tr ln (iγµ∇µ − σ) ,

where the composite operator σ ≡ − λ
N ψ̄ψ was intro-

duced and the determinant acts both on field and coor-
dinate spaces. Chiral symmetry is broken dynamically
when σ acquires a non-zero vacuum expectation value
and then a fermion mass term appears.
The computation of the effective action can be per-

formed using the method described in Ref. [5], although
some modifications are necessary to include the case of
black holes. Since black hole spacetimes are static but
not ultrastatic, we rescale the metric (1) so as to be
ultrastatic, dŝ2 = f−1ds2. We will use a hat to indi-
cate the quantities evaluated in this conformally related
spacetime. After the conformal transformation, one can
use the method of [5] to evaluate the effective action in
the rescaled spacetime, Γ̂, and add a correction term, δΓ,
sometimes called cocycle function, to compensate the ef-
fect of the conformal transformation [7, 8]. Assuming the
condensate to be spherically symmetric, σ = σ(r), and
squaring the Dirac operator, we obtain

Γ = −
∫

d4x
√
g

(
σ2

2λ

)
+ Γ̂+ δΓ , (2)

where
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1
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!̂+ A + fσ2

ε

]
. (3)

In the above expression !̂ is the D’Alembertian
in the conformally rescaled spacetime and
σ2
ε := σ2 + εf1/2σ′. The quantity A (n) =

f
(
(n− 2)∆ ln f/4− (n− 2)2(∇ ln f)2/16

)
is deter-

mined so that !̂ + A (n) = f−(n+2)/4!f (2−n)/4 is
satisfied, where n is the spacetime dimensions. In
(3) we have used the notation A ≡ A (4). Notice that
A = R̂/6. Imposing the periodicity in the Euclidean
time with the period β = 2π/TBH , we express Γ̂ as
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,

with ∆̂ being the Laplacian in the conformally rescaled
space and ωn := 2π/β (n+ 1/2).

Using zeta regularization gives
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The quantities ζ(0) and ζ ′(0) are the analytically contin-
ued values of ζ(s) and its derivative to s = 0. The compu-
tation of the effective action is rather involved, but it can
be performed in a straightforward manner following the
method developed in Ref. [5]. Here we use a resummed
form for the heat-trace and retain all terms that contains
a specified number of spatial differentiations. We invite
the reader to consult Ref. [5] for details and further ref-
erences. In the present case, the result is
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.

The other term to compute is the cocycle contribution
that compensates the difference due to the conformal
transformation to recover the result in the original space-
time. The cocycle function can be expressed in terms of
the heat-kernel coefficients associated to the operator O
in n dimensions:

δΓ = lim
n→4

(
C(2)

n [ĝ]− C(2)
n [g]

)
/(n− 4) .

For an operator of the form O = !+ V , the part of the
heat-kernel coefficient, relevant for our computation, is
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,

where the dots represent terms that do not depend on V
or disappear upon integration by parts. In the present
case, V = σ2

ε in the original spacetime while V = A +fσ2
ε

in the conformally rescaled spacetime. Simple computa-
tions give

δΓ =
β

2(4π)2

∑

ε=±

∫
d3x

√
g

[
σ4
ε

2
ln f − 2σ2

ε

f
lim
n→4

dΛn

dn

]
,

3

where Λn = A (n) − (R̂(n) − fR(n))/6 and R̂(n) and
R(n) are the n-dimensional Ricci scalars in the confor-
mally rescaled and original spacetimes, respectively. Us-
ing limn→4 dΛn/dn = (f

′2 − 2ff ′′ + 4ff ′/r)/24, one ar-
rives at the expression for the cocycle function. Com-
bining (4) with the above expression gives the effective
action Γ for the condensate σ.
The problem is now reduced to finding extrema of the

effective action Γ with respect to the condensate σ. Ig-
noring fourth order derivatives of the condensate allows
us to express the equation of motion for the condensate
as a non-linear Schrödinger-like equation of the form

σ′′ + δ1σ
′ + δ2σ

′2 + K = 0 , (5)

where the coefficients δi and K are functions of σ but
independent of its derivatives. The explicit expressions
are rather long and will not be reported here.
Before finding the explicit solution for the condensate,

we will discuss the critical temperature in the asymp-
totic region r → ∞. Denoting the minus of the action
with σ′ = 0 as the potential U(σ), the derivative of the
asymptotic value can be computed exactly as

∂σUas = −
3σ

(
4λσ(4%−1(σ) + βσ ln (σ/')− 2λβσ2 + β

)

2λβ(−4βσ%1(σ)− 6%0(σ) + 3 ln (σ/')− 2)
.

The critical temperature is determined by the equation
∂2
σUas(σ) = 0. Thus, expanding the Bessel functions con-

tained in%ν for small σ, performing exactly the sum over
n, and finally solving a trivial algebraic equation, one ar-
rives at Tc =

√
3λ−1/2. The thermodynamic potential

obtained by numerically integrating ∂σU with respect to
σ is shown in Fig. 1.
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Figure 1. The figure illustrates how, asymptotically, the
potential Uas(σ) changes and symmetry gets restored as
temperature increases (The top (red) curve corresponds to
TBH/Tc = 1.75, while the bottom (orange) curve corresponds
to TBH/Tc = 0.03. The second curve from top (blue) corre-
sponds to T/Tc = 1.). We set " = 106 and λ = 10−2.

Computing the thermodynamic potential locally will
provide further insight on the form of the condensate. In
fact, such a computation shows that starting from a set
of parameters for which asymptotically the potential has
a non vanishing minima, as we move towards the hole,

the minima of the potential will gradually shift towards
a configuration with vanishing σ. We confirm the above
picture by solving Eq. (5) for the condensate with regu-
lar boundary conditions at the horizon. Solving Eq. (5)
can be handled by standard numerical techniques, but it
requires some caution. First of all, we notice that the co-
efficients of Eq. (5) for σ depend on infinite summations
over Bessel functions, whose argument is proportional to
the condensate. When the value of the condensate is
not small, these sums can be truncated due to the ex-
ponential fall-off of the Bessel functions. However, when
the condensate is small, fully resummed expressions have
to be used. Once we expand the Bessel functions for
small values of their arguments, we can perform the full
resummation over n. In the region r < r∗ where σ is
small up to a value r∗, we integrate Eq. (5) using this re-
summed form, and then we switch to the truncated form
for r > r∗, matching the value of σ and its derivative at
the junction. The boundary conditions in the vicinity of
the horizon and in the asymptotically far region are set
by requiring that the condensate is at a minima of the
potential.
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Figure 2. The figure illustrates the condensate profile
found by solving Eq. (5), for four indicative values of
the black hole temperature (Left to right: TBH/Tc =
0.50 (Blue), 0.54 (Green), 0.58 (Red), 0.61 (Black)). The val-
ues of the other parameters are set to " = 103, λ = 10−2. As
we increase the black hole temperature, the region of restored
symmetry phase expands, and the bubble becomes larger and
thicker. The asymptotic value of the condensate becomes
smaller as the asymptotic temperatures increases, and tends
to zero for T → Tc. The small box superposed illustrates
for the rightmost curve (T/Tc = 0.61), the corrected solution
(red, dashed) when fourth order derivative terms are included.

We present the results for the condensate profile in
Fig. 3 for sample values of the parameters. The kink-
type configurations of Fig. 3 are bubbles that separate a
region of restored symmetry near the black hole from a
region of broken symmetry surrounding it. The size of
the bubble can also be easily estimated by equating the
local temperature to the critical temperature as

rbubble ∼ rs/
(
1− T 2

BH/T 2
c

)
,

which approximately agrees with the numerical results.

Minimization up to 2nd order
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where Λn = A (n) − (R̂(n) − fR(n))/6 and R̂(n) and
R(n) are the n-dimensional Ricci scalars in the confor-
mally rescaled and original spacetimes, respectively. Us-
ing limn→4 dΛn/dn = (f

′2 − 2ff ′′ + 4ff ′/r)/24, one ar-
rives at the expression for the cocycle function. Com-
bining (4) with the above expression gives the effective
action Γ for the condensate σ.
The problem is now reduced to finding extrema of the

effective action Γ with respect to the condensate σ. Ig-
noring fourth order derivatives of the condensate allows
us to express the equation of motion for the condensate
as a non-linear Schrödinger-like equation of the form

σ′′ + δ1σ
′ + δ2σ

′2 + K = 0 , (5)

where the coefficients δi and K are functions of σ but
independent of its derivatives. The explicit expressions
are rather long and will not be reported here.
Before finding the explicit solution for the condensate,

we will discuss the critical temperature in the asymp-
totic region r → ∞. Denoting the minus of the action
with σ′ = 0 as the potential U(σ), the derivative of the
asymptotic value can be computed exactly as

∂σUas = −
3σ

(
4λσ(4%−1(σ) + βσ ln (σ/')− 2λβσ2 + β

)

2λβ(−4βσ%1(σ)− 6%0(σ) + 3 ln (σ/')− 2)
.

The critical temperature is determined by the equation
∂2
σUas(σ) = 0. Thus, expanding the Bessel functions con-

tained in%ν for small σ, performing exactly the sum over
n, and finally solving a trivial algebraic equation, one ar-
rives at Tc =

√
3λ−1/2. The thermodynamic potential

obtained by numerically integrating ∂σU with respect to
σ is shown in Fig. 1.
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Figure 1. The figure illustrates how, asymptotically, the
potential Uas(σ) changes and symmetry gets restored as
temperature increases (The top (red) curve corresponds to
TBH/Tc = 1.75, while the bottom (orange) curve corresponds
to TBH/Tc = 0.03. The second curve from top (blue) corre-
sponds to T/Tc = 1.). We set " = 106 and λ = 10−2.

Computing the thermodynamic potential locally will
provide further insight on the form of the condensate. In
fact, such a computation shows that starting from a set
of parameters for which asymptotically the potential has
a non vanishing minima, as we move towards the hole,

the minima of the potential will gradually shift towards
a configuration with vanishing σ. We confirm the above
picture by solving Eq. (5) for the condensate with regu-
lar boundary conditions at the horizon. Solving Eq. (5)
can be handled by standard numerical techniques, but it
requires some caution. First of all, we notice that the co-
efficients of Eq. (5) for σ depend on infinite summations
over Bessel functions, whose argument is proportional to
the condensate. When the value of the condensate is
not small, these sums can be truncated due to the ex-
ponential fall-off of the Bessel functions. However, when
the condensate is small, fully resummed expressions have
to be used. Once we expand the Bessel functions for
small values of their arguments, we can perform the full
resummation over n. In the region r < r∗ where σ is
small up to a value r∗, we integrate Eq. (5) using this re-
summed form, and then we switch to the truncated form
for r > r∗, matching the value of σ and its derivative at
the junction. The boundary conditions in the vicinity of
the horizon and in the asymptotically far region are set
by requiring that the condensate is at a minima of the
potential.
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Figure 2. The figure illustrates the condensate profile
found by solving Eq. (5), for four indicative values of
the black hole temperature (Left to right: TBH/Tc =
0.50 (Blue), 0.54 (Green), 0.58 (Red), 0.61 (Black)). The val-
ues of the other parameters are set to " = 103, λ = 10−2. As
we increase the black hole temperature, the region of restored
symmetry phase expands, and the bubble becomes larger and
thicker. The asymptotic value of the condensate becomes
smaller as the asymptotic temperatures increases, and tends
to zero for T → Tc. The small box superposed illustrates
for the rightmost curve (T/Tc = 0.61), the corrected solution
(red, dashed) when fourth order derivative terms are included.

We present the results for the condensate profile in
Fig. 3 for sample values of the parameters. The kink-
type configurations of Fig. 3 are bubbles that separate a
region of restored symmetry near the black hole from a
region of broken symmetry surrounding it. The size of
the bubble can also be easily estimated by equating the
local temperature to the critical temperature as

rbubble ∼ rs/
(
1− T 2

BH/T 2
c

)
,

which approximately agrees with the numerical results.

with regular boundary conditions

Higher order terms can be included systematically
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where Λn = A (n) − (R̂(n) − fR(n))/6 and R̂(n) and
R(n) are the n-dimensional Ricci scalars in the confor-
mally rescaled and original spacetimes, respectively. Us-
ing limn→4 dΛn/dn = (f

′2 − 2ff ′′ + 4ff ′/r)/24, one ar-
rives at the expression for the cocycle function. Com-
bining (4) with the above expression gives the effective
action Γ for the condensate σ.
The problem is now reduced to finding extrema of the

effective action Γ with respect to the condensate σ. Ig-
noring fourth order derivatives of the condensate allows
us to express the equation of motion for the condensate
as a non-linear Schrödinger-like equation of the form

σ′′ + δ1σ
′ + δ2σ

′2 + K = 0 , (5)

where the coefficients δi and K are functions of σ but
independent of its derivatives. The explicit expressions
are rather long and will not be reported here.
Before finding the explicit solution for the condensate,

we will discuss the critical temperature in the asymp-
totic region r → ∞. Denoting the minus of the action
with σ′ = 0 as the potential U(σ), the derivative of the
asymptotic value can be computed exactly as

∂σUas = −
3σ

(
4λσ(4%−1(σ) + βσ ln (σ/')− 2λβσ2 + β

)

2λβ(−4βσ%1(σ)− 6%0(σ) + 3 ln (σ/')− 2)
.

The critical temperature is determined by the equation
∂2
σUas(σ) = 0. Thus, expanding the Bessel functions con-

tained in%ν for small σ, performing exactly the sum over
n, and finally solving a trivial algebraic equation, one ar-
rives at Tc =

√
3λ−1/2. The thermodynamic potential

obtained by numerically integrating ∂σU with respect to
σ is shown in Fig. 1.
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Figure 1. The figure illustrates how, asymptotically, the
potential Uas(σ) changes and symmetry gets restored as
temperature increases (The top (red) curve corresponds to
TBH/Tc = 1.75, while the bottom (orange) curve corresponds
to TBH/Tc = 0.03. The second curve from top (blue) corre-
sponds to T/Tc = 1.). We set " = 106 and λ = 10−2.

Computing the thermodynamic potential locally will
provide further insight on the form of the condensate. In
fact, such a computation shows that starting from a set
of parameters for which asymptotically the potential has
a non vanishing minima, as we move towards the hole,

the minima of the potential will gradually shift towards
a configuration with vanishing σ. We confirm the above
picture by solving Eq. (5) for the condensate with regu-
lar boundary conditions at the horizon. Solving Eq. (5)
can be handled by standard numerical techniques, but it
requires some caution. First of all, we notice that the co-
efficients of Eq. (5) for σ depend on infinite summations
over Bessel functions, whose argument is proportional to
the condensate. When the value of the condensate is
not small, these sums can be truncated due to the ex-
ponential fall-off of the Bessel functions. However, when
the condensate is small, fully resummed expressions have
to be used. Once we expand the Bessel functions for
small values of their arguments, we can perform the full
resummation over n. In the region r < r∗ where σ is
small up to a value r∗, we integrate Eq. (5) using this re-
summed form, and then we switch to the truncated form
for r > r∗, matching the value of σ and its derivative at
the junction. The boundary conditions in the vicinity of
the horizon and in the asymptotically far region are set
by requiring that the condensate is at a minima of the
potential.
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Figure 2. The figure illustrates the condensate profile
found by solving Eq. (5), for four indicative values of
the black hole temperature (Left to right: TBH/Tc =
0.50 (Blue), 0.54 (Green), 0.58 (Red), 0.61 (Black)). The val-
ues of the other parameters are set to " = 103, λ = 10−2. As
we increase the black hole temperature, the region of restored
symmetry phase expands, and the bubble becomes larger and
thicker. The asymptotic value of the condensate becomes
smaller as the asymptotic temperatures increases, and tends
to zero for T → Tc. The small box superposed illustrates
for the rightmost curve (T/Tc = 0.61), the corrected solution
(red, dashed) when fourth order derivative terms are included.

We present the results for the condensate profile in
Fig. 3 for sample values of the parameters. The kink-
type configurations of Fig. 3 are bubbles that separate a
region of restored symmetry near the black hole from a
region of broken symmetry surrounding it. The size of
the bubble can also be easily estimated by equating the
local temperature to the critical temperature as

rbubble ∼ rs/
(
1− T 2

BH/T 2
c

)
,

which approximately agrees with the numerical results.

The solution has a kink profile 
that vanishes near the horizon

A region of chirally restored 
symmetry is separated from 
one of broken symmetry
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where Λn = A (n) − (R̂(n) − fR(n))/6 and R̂(n) and
R(n) are the n-dimensional Ricci scalars in the confor-
mally rescaled and original spacetimes, respectively. Us-
ing limn→4 dΛn/dn = (f

′2 − 2ff ′′ + 4ff ′/r)/24, one ar-
rives at the expression for the cocycle function. Com-
bining (4) with the above expression gives the effective
action Γ for the condensate σ.
The problem is now reduced to finding extrema of the

effective action Γ with respect to the condensate σ. Ig-
noring fourth order derivatives of the condensate allows
us to express the equation of motion for the condensate
as a non-linear Schrödinger-like equation of the form

σ′′ + δ1σ
′ + δ2σ

′2 + K = 0 , (5)

where the coefficients δi and K are functions of σ but
independent of its derivatives. The explicit expressions
are rather long and will not be reported here.
Before finding the explicit solution for the condensate,

we will discuss the critical temperature in the asymp-
totic region r → ∞. Denoting the minus of the action
with σ′ = 0 as the potential U(σ), the derivative of the
asymptotic value can be computed exactly as

∂σUas = −
3σ

(
4λσ(4%−1(σ) + βσ ln (σ/')− 2λβσ2 + β

)

2λβ(−4βσ%1(σ)− 6%0(σ) + 3 ln (σ/')− 2)
.

The critical temperature is determined by the equation
∂2
σUas(σ) = 0. Thus, expanding the Bessel functions con-

tained in%ν for small σ, performing exactly the sum over
n, and finally solving a trivial algebraic equation, one ar-
rives at Tc =

√
3λ−1/2. The thermodynamic potential

obtained by numerically integrating ∂σU with respect to
σ is shown in Fig. 1.
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Figure 1. The figure illustrates how, asymptotically, the
potential Uas(σ) changes and symmetry gets restored as
temperature increases (The top (red) curve corresponds to
TBH/Tc = 1.75, while the bottom (orange) curve corresponds
to TBH/Tc = 0.03. The second curve from top (blue) corre-
sponds to T/Tc = 1.). We set " = 106 and λ = 10−2.

Computing the thermodynamic potential locally will
provide further insight on the form of the condensate. In
fact, such a computation shows that starting from a set
of parameters for which asymptotically the potential has
a non vanishing minima, as we move towards the hole,

the minima of the potential will gradually shift towards
a configuration with vanishing σ. We confirm the above
picture by solving Eq. (5) for the condensate with regu-
lar boundary conditions at the horizon. Solving Eq. (5)
can be handled by standard numerical techniques, but it
requires some caution. First of all, we notice that the co-
efficients of Eq. (5) for σ depend on infinite summations
over Bessel functions, whose argument is proportional to
the condensate. When the value of the condensate is
not small, these sums can be truncated due to the ex-
ponential fall-off of the Bessel functions. However, when
the condensate is small, fully resummed expressions have
to be used. Once we expand the Bessel functions for
small values of their arguments, we can perform the full
resummation over n. In the region r < r∗ where σ is
small up to a value r∗, we integrate Eq. (5) using this re-
summed form, and then we switch to the truncated form
for r > r∗, matching the value of σ and its derivative at
the junction. The boundary conditions in the vicinity of
the horizon and in the asymptotically far region are set
by requiring that the condensate is at a minima of the
potential.
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Figure 2. The figure illustrates the condensate profile
found by solving Eq. (5), for four indicative values of
the black hole temperature (Left to right: TBH/Tc =
0.50 (Blue), 0.54 (Green), 0.58 (Red), 0.61 (Black)). The val-
ues of the other parameters are set to " = 103, λ = 10−2. As
we increase the black hole temperature, the region of restored
symmetry phase expands, and the bubble becomes larger and
thicker. The asymptotic value of the condensate becomes
smaller as the asymptotic temperatures increases, and tends
to zero for T → Tc. The small box superposed illustrates
for the rightmost curve (T/Tc = 0.61), the corrected solution
(red, dashed) when fourth order derivative terms are included.

We present the results for the condensate profile in
Fig. 3 for sample values of the parameters. The kink-
type configurations of Fig. 3 are bubbles that separate a
region of restored symmetry near the black hole from a
region of broken symmetry surrounding it. The size of
the bubble can also be easily estimated by equating the
local temperature to the critical temperature as

rbubble ∼ rs/
(
1− T 2

BH/T 2
c

)
,

which approximately agrees with the numerical results.

Radius of the bubble
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where Λn = A (n) − (R̂(n) − fR(n))/6 and R̂(n) and
R(n) are the n-dimensional Ricci scalars in the confor-
mally rescaled and original spacetimes, respectively. Us-
ing limn→4 dΛn/dn = (f

′2 − 2ff ′′ + 4ff ′/r)/24, one ar-
rives at the expression for the cocycle function. Com-
bining (4) with the above expression gives the effective
action Γ for the condensate σ.
The problem is now reduced to finding extrema of the

effective action Γ with respect to the condensate σ. Ig-
noring fourth order derivatives of the condensate allows
us to express the equation of motion for the condensate
as a non-linear Schrödinger-like equation of the form

σ′′ + δ1σ
′ + δ2σ

′2 + K = 0 , (5)

where the coefficients δi and K are functions of σ but
independent of its derivatives. The explicit expressions
are rather long and will not be reported here.
Before finding the explicit solution for the condensate,

we will discuss the critical temperature in the asymp-
totic region r → ∞. Denoting the minus of the action
with σ′ = 0 as the potential U(σ), the derivative of the
asymptotic value can be computed exactly as

∂σUas = −
3σ

(
4λσ(4%−1(σ) + βσ ln (σ/')− 2λβσ2 + β

)

2λβ(−4βσ%1(σ)− 6%0(σ) + 3 ln (σ/')− 2)
.

The critical temperature is determined by the equation
∂2
σUas(σ) = 0. Thus, expanding the Bessel functions con-

tained in%ν for small σ, performing exactly the sum over
n, and finally solving a trivial algebraic equation, one ar-
rives at Tc =

√
3λ−1/2. The thermodynamic potential

obtained by numerically integrating ∂σU with respect to
σ is shown in Fig. 1.
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Figure 1. The figure illustrates how, asymptotically, the
potential Uas(σ) changes and symmetry gets restored as
temperature increases (The top (red) curve corresponds to
TBH/Tc = 1.75, while the bottom (orange) curve corresponds
to TBH/Tc = 0.03. The second curve from top (blue) corre-
sponds to T/Tc = 1.). We set " = 106 and λ = 10−2.

Computing the thermodynamic potential locally will
provide further insight on the form of the condensate. In
fact, such a computation shows that starting from a set
of parameters for which asymptotically the potential has
a non vanishing minima, as we move towards the hole,

the minima of the potential will gradually shift towards
a configuration with vanishing σ. We confirm the above
picture by solving Eq. (5) for the condensate with regu-
lar boundary conditions at the horizon. Solving Eq. (5)
can be handled by standard numerical techniques, but it
requires some caution. First of all, we notice that the co-
efficients of Eq. (5) for σ depend on infinite summations
over Bessel functions, whose argument is proportional to
the condensate. When the value of the condensate is
not small, these sums can be truncated due to the ex-
ponential fall-off of the Bessel functions. However, when
the condensate is small, fully resummed expressions have
to be used. Once we expand the Bessel functions for
small values of their arguments, we can perform the full
resummation over n. In the region r < r∗ where σ is
small up to a value r∗, we integrate Eq. (5) using this re-
summed form, and then we switch to the truncated form
for r > r∗, matching the value of σ and its derivative at
the junction. The boundary conditions in the vicinity of
the horizon and in the asymptotically far region are set
by requiring that the condensate is at a minima of the
potential.
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Figure 2. The figure illustrates the condensate profile
found by solving Eq. (5), for four indicative values of
the black hole temperature (Left to right: TBH/Tc =
0.50 (Blue), 0.54 (Green), 0.58 (Red), 0.61 (Black)). The val-
ues of the other parameters are set to " = 103, λ = 10−2. As
we increase the black hole temperature, the region of restored
symmetry phase expands, and the bubble becomes larger and
thicker. The asymptotic value of the condensate becomes
smaller as the asymptotic temperatures increases, and tends
to zero for T → Tc. The small box superposed illustrates
for the rightmost curve (T/Tc = 0.61), the corrected solution
(red, dashed) when fourth order derivative terms are included.

We present the results for the condensate profile in
Fig. 3 for sample values of the parameters. The kink-
type configurations of Fig. 3 are bubbles that separate a
region of restored symmetry near the black hole from a
region of broken symmetry surrounding it. The size of
the bubble can also be easily estimated by equating the
local temperature to the critical temperature as

rbubble ∼ rs/
(
1− T 2

BH/T 2
c

)
,

which approximately agrees with the numerical results.
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σ′′ + δ1σ
′ + δ2σ

′2 + K = 0 , (5)

where the coefficients δi and K are functions of σ but
independent of its derivatives. The explicit expressions
are rather long and will not be reported here.
Before finding the explicit solution for the condensate,

we will discuss the critical temperature in the asymp-
totic region r → ∞. Denoting the minus of the action
with σ′ = 0 as the potential U(σ), the derivative of the
asymptotic value can be computed exactly as

∂σUas = −
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(
4λσ(4%−1(σ) + βσ ln (σ/')− 2λβσ2 + β

)

2λβ(−4βσ%1(σ)− 6%0(σ) + 3 ln (σ/')− 2)
.

The critical temperature is determined by the equation
∂2
σUas(σ) = 0. Thus, expanding the Bessel functions con-

tained in%ν for small σ, performing exactly the sum over
n, and finally solving a trivial algebraic equation, one ar-
rives at Tc =

√
3λ−1/2. The thermodynamic potential

obtained by numerically integrating ∂σU with respect to
σ is shown in Fig. 1.
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Figure 1. The figure illustrates how, asymptotically, the
potential Uas(σ) changes and symmetry gets restored as
temperature increases (The top (red) curve corresponds to
TBH/Tc = 1.75, while the bottom (orange) curve corresponds
to TBH/Tc = 0.03. The second curve from top (blue) corre-
sponds to T/Tc = 1.). We set " = 106 and λ = 10−2.

Computing the thermodynamic potential locally will
provide further insight on the form of the condensate. In
fact, such a computation shows that starting from a set
of parameters for which asymptotically the potential has
a non vanishing minima, as we move towards the hole,

the minima of the potential will gradually shift towards
a configuration with vanishing σ. We confirm the above
picture by solving Eq. (5) for the condensate with regu-
lar boundary conditions at the horizon. Solving Eq. (5)
can be handled by standard numerical techniques, but it
requires some caution. First of all, we notice that the co-
efficients of Eq. (5) for σ depend on infinite summations
over Bessel functions, whose argument is proportional to
the condensate. When the value of the condensate is
not small, these sums can be truncated due to the ex-
ponential fall-off of the Bessel functions. However, when
the condensate is small, fully resummed expressions have
to be used. Once we expand the Bessel functions for
small values of their arguments, we can perform the full
resummation over n. In the region r < r∗ where σ is
small up to a value r∗, we integrate Eq. (5) using this re-
summed form, and then we switch to the truncated form
for r > r∗, matching the value of σ and its derivative at
the junction. The boundary conditions in the vicinity of
the horizon and in the asymptotically far region are set
by requiring that the condensate is at a minima of the
potential.
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Figure 2. The figure illustrates the condensate profile
found by solving Eq. (5), for four indicative values of
the black hole temperature (Left to right: TBH/Tc =
0.50 (Blue), 0.54 (Green), 0.58 (Red), 0.61 (Black)). The val-
ues of the other parameters are set to " = 103, λ = 10−2. As
we increase the black hole temperature, the region of restored
symmetry phase expands, and the bubble becomes larger and
thicker. The asymptotic value of the condensate becomes
smaller as the asymptotic temperatures increases, and tends
to zero for T → Tc. The small box superposed illustrates
for the rightmost curve (T/Tc = 0.61), the corrected solution
(red, dashed) when fourth order derivative terms are included.

We present the results for the condensate profile in
Fig. 3 for sample values of the parameters. The kink-
type configurations of Fig. 3 are bubbles that separate a
region of restored symmetry near the black hole from a
region of broken symmetry surrounding it. The size of
the bubble can also be easily estimated by equating the
local temperature to the critical temperature as

rbubble ∼ rs/
(
1− T 2

BH/T 2
c

)
,

which approximately agrees with the numerical results.
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where Λn = A (n) − (R̂(n) − fR(n))/6 and R̂(n) and
R(n) are the n-dimensional Ricci scalars in the confor-
mally rescaled and original spacetimes, respectively. Us-
ing limn→4 dΛn/dn = (f

′2 − 2ff ′′ + 4ff ′/r)/24, one ar-
rives at the expression for the cocycle function. Com-
bining (4) with the above expression gives the effective
action Γ for the condensate σ.
The problem is now reduced to finding extrema of the

effective action Γ with respect to the condensate σ. Ig-
noring fourth order derivatives of the condensate allows
us to express the equation of motion for the condensate
as a non-linear Schrödinger-like equation of the form

σ′′ + δ1σ
′ + δ2σ

′2 + K = 0 , (5)

where the coefficients δi and K are functions of σ but
independent of its derivatives. The explicit expressions
are rather long and will not be reported here.
Before finding the explicit solution for the condensate,

we will discuss the critical temperature in the asymp-
totic region r → ∞. Denoting the minus of the action
with σ′ = 0 as the potential U(σ), the derivative of the
asymptotic value can be computed exactly as

∂σUas = −
3σ

(
4λσ(4%−1(σ) + βσ ln (σ/')− 2λβσ2 + β

)

2λβ(−4βσ%1(σ)− 6%0(σ) + 3 ln (σ/')− 2)
.

The critical temperature is determined by the equation
∂2
σUas(σ) = 0. Thus, expanding the Bessel functions con-

tained in%ν for small σ, performing exactly the sum over
n, and finally solving a trivial algebraic equation, one ar-
rives at Tc =

√
3λ−1/2. The thermodynamic potential

obtained by numerically integrating ∂σU with respect to
σ is shown in Fig. 1.
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Figure 1. The figure illustrates how, asymptotically, the
potential Uas(σ) changes and symmetry gets restored as
temperature increases (The top (red) curve corresponds to
TBH/Tc = 1.75, while the bottom (orange) curve corresponds
to TBH/Tc = 0.03. The second curve from top (blue) corre-
sponds to T/Tc = 1.). We set " = 106 and λ = 10−2.

Computing the thermodynamic potential locally will
provide further insight on the form of the condensate. In
fact, such a computation shows that starting from a set
of parameters for which asymptotically the potential has
a non vanishing minima, as we move towards the hole,

the minima of the potential will gradually shift towards
a configuration with vanishing σ. We confirm the above
picture by solving Eq. (5) for the condensate with regu-
lar boundary conditions at the horizon. Solving Eq. (5)
can be handled by standard numerical techniques, but it
requires some caution. First of all, we notice that the co-
efficients of Eq. (5) for σ depend on infinite summations
over Bessel functions, whose argument is proportional to
the condensate. When the value of the condensate is
not small, these sums can be truncated due to the ex-
ponential fall-off of the Bessel functions. However, when
the condensate is small, fully resummed expressions have
to be used. Once we expand the Bessel functions for
small values of their arguments, we can perform the full
resummation over n. In the region r < r∗ where σ is
small up to a value r∗, we integrate Eq. (5) using this re-
summed form, and then we switch to the truncated form
for r > r∗, matching the value of σ and its derivative at
the junction. The boundary conditions in the vicinity of
the horizon and in the asymptotically far region are set
by requiring that the condensate is at a minima of the
potential.
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Figure 2. The figure illustrates the condensate profile
found by solving Eq. (5), for four indicative values of
the black hole temperature (Left to right: TBH/Tc =
0.50 (Blue), 0.54 (Green), 0.58 (Red), 0.61 (Black)). The val-
ues of the other parameters are set to " = 103, λ = 10−2. As
we increase the black hole temperature, the region of restored
symmetry phase expands, and the bubble becomes larger and
thicker. The asymptotic value of the condensate becomes
smaller as the asymptotic temperatures increases, and tends
to zero for T → Tc. The small box superposed illustrates
for the rightmost curve (T/Tc = 0.61), the corrected solution
(red, dashed) when fourth order derivative terms are included.

We present the results for the condensate profile in
Fig. 3 for sample values of the parameters. The kink-
type configurations of Fig. 3 are bubbles that separate a
region of restored symmetry near the black hole from a
region of broken symmetry surrounding it. The size of
the bubble can also be easily estimated by equating the
local temperature to the critical temperature as

rbubble ∼ rs/
(
1− T 2

BH/T 2
c

)
,

which approximately agrees with the numerical results.

Critical Temperature

Asymptotic Potential

Thickness of the bubble increases 
as the temperature approaches Tc



Chromosphere

Whether the emission of strongly interacting particles may produce a chromosphere

In the present situation scattering occurs only in the radial 
direction and angular quantum numbers do not change

Inside the bubble

Particles stay almost massless and there are no processes that 
randomize the particle motion inside the bubble

Only the gradient of the effective local temperature is important, 
and particle simply stream away to infinity reducing their velocity 
due to  the gravitational attraction of the black hole

This configuration will be similar to the shock produced by stellar 
wind

Bubble interface

Scattering occurs non-trivially and particles with energy smaller 
than the VEV of the condensate outside of the bubble will be 
reflected back

Outside the Bubble

Only hadrons exist



(De)Confinement Transitions and Hadronization

BH

quark
E>σ

B := Bubble surrounding a region 
of restored chiral symmetry

quark
E<σ

Hadronization region

σ:	 VEV	 of	 the	 condensate	 
outside	 the	 bubble

Deconfined
region



Some open questions

Are there other possible inhomogeneous configuration that the condensate may take ?

How does the scattering at the interface occurs and how much of the radiation can actually 
escape to infinity?

Does the presence of gauge degree of freedom may change the picture ?

We completely ignored back-reaction effects. Does back-reaction change anything ?

What happens to the propagation of particles coupled to quarks when further interactions 
are added ?

What happens in AdS ?

We know that fermions do not super-radiate. Do interactions change anything ?
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