
CONSTRAINED HAMILTONIAN SYSTEMS EXAMPLES

1 Particle on a circle

Consider the following Lagrangian on the 3D configuration space (q1, q2, q3):

L =
1

2
m(q̇21 + q̇22) −

1

2
q3(q

2
1 + q22 − r2) . (1)

1. Obtain the equations of motion, write down the general solution and interpret it. What is
the meaning of q3?

2. Write down the Hamiltonian. Are there any primary constraints?

3. Obtain the equations of motion from the Hamiltonian. Are there any secondary constraints?

4. Show that the total Hamiltonian can be written as

HT =
1

2
r2q3 + uαψ

α , (2)

where ψα ≈ 0, for some uα that you must specify. Hence conclude that HT ≈ E.

2 An example with too many coordinates

Consider the Lagrangian

L =
1

2
(q̇1 + q̇2)

2 − V (q1 + q2) . (3)

1. Obtain the conjugate momenta. Is there any primary constraint?

2. Write down the most general Hamiltonian and show that there are no secondary constraints.

3. What is the meaning of the Hamiltonian evaluated on the constraint surface?

4. Show that this first-class constraint generates a symmetry

δq1 = ε , δq2 = −ε , δp1 = δp2 = 0 , (4)

which leaves the physical state unchanged.

3 The electromagnetic field

Consider the action for the Maxwell field Aµ

S =

∫

d4x − 1

4
FµνFµν , Fµν = ∂µAν − ∂νAµ . (5)

1. By choosing x0 as the time coordinate, show that the Lagrangian can be written as

L =
1

2
F0iF0i −

1

4
FijFij , (6)

where F0i = Vi − ∂iA0 and Vi ≡ ∂0Ai is the ’velocity’ field.

2. Obtain the conjugate momenta obeying {Aµ(x), Eν(y)} = ηµνδ
(3)(x−y). Is there any primary

constraint?
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3. Show that the Hamiltonian is

H =

∫

d3x
1

2
EiEi +

1

4
FijFij + Ei∂iA0 + uE0 , (7)

where u is arbitrary, and obtain the equations of motion.

4. Show that there is only one secondary constraint, and interpret it.

5. Show that both constraint are first-class. Hence they should generate gauge transformations.
Consider a general linear combination

φ[u] =

∫

d3xu1(x)φ1(x) + u2(x)φ2(x) , (8)

and compute the variations it induces on the phase space variables. Is this what you expected?

6. Write the total Hamiltonian as

HT =

∫

d3x
1

2
EiEi +

1

4
FijFij + u1E0 − u2∂iEi . (9)

Show that the electric and magnetic fields are the non-trivial observables, and that the energy
is given by the value of the Hamiltonian on the constraint surface.

4 Relativistic point particle

The action for a relativistic point particle moving in flat Minkowski space coupled to an external
electromagnetic field is

S =

∫

dτ m

√

−q̇µ(τ)q̇µ(τ) − eq̇µ(τ)Aµ(q(τ)) , (10)

which is invariant under τ → f(τ).

1. Compute the conjugate momentum pµ. Is there any primary constraint?

2. Show that the Hamiltonian vanishes on the constraint surface. Why is this not surprising?

3. Consider a general action S =
∫

dτL(q, q̇) with this property. Show that both the Lagrangian
and the Hamiltonian are homogeneous in q̇, and conclude that H ≈ 0 is a general property
of these systems.

4. Obtain the equations of motion for the canonical variables.

5. Take Aµ = 0 from now on. Show that the class of equivalence of the gauge transformation
induced by the constraint is actually the particle’s worldline.

6. Show that Pi and C, defined by

Pi = pi , p0 = C
√

pipi +m2 , (11)

are observables and conserved charges. Conclude that another property of such systems is
that every observable is automatically a conserved charge.
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7. We should also be able to measure the particles’s position. If we make a gauge transformation
such that q′0 = t, then q′i gives the space point we want. The function

Qi(t) ≈ qi +
t− q0

p0
pi (12)

gives a different phase space function for each value of t. For a state on the constraint surface,
it gives the space point where the particle is, was or will be when q0 = t. Check that it is an
observable.

5 General Relativity

Consider the Einstein-Hilbert action

S =

∫

d4x
√−g R . (13)

After ADM decomposition

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (14)

the Lagrangian density is
L = N

√
h

(

R+KijK
ij −K2

)

, (15)

where R is the 3-dimensional Ricci scalar and Kij is the extrinsic curvature defined by

Kij =
1

2N

(

ḣij −∇iNj −∇jNi

)

. (16)

1. Compute the conjugate momenta obeying

{hkl(x), π
ij(y)} =

1

2

(

δi
kδ

j
l + δi

lδ
j
k

)

δ(3)(x− y) , (17)

{N(x), π(y)} = δ(3)(x− y) , (18)

{Ni(x), p
i(y)} = δi

jδ
(3)(x− y) . (19)

Are there any primary constraints?

2. Show that, up to a total divergence, the Hamiltonian density can be written as

H = −2
√
h

(

NH +NiMi
)

, (20)

where

H =
1

2

(

R+K2 −KijK
ij
)

, (21)

Mi = ∇j

(

Kij − hijK
)

. (22)

3. Add the primary constraints to the Hamiltonian and compute all secondary constraints. Show
that they are all first class. How many degrees of freedom has the graviton?

4. Show that
√
hMiξi(x) induces spatial diffeomorphisms.
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