

Deformation Method and Applications

Laercio Losano

Departamento de Física, Universidade Federal da Paraíba Caixa Postal 5008, 58051-970 João Pessoa, Paraíba, Brasil

E-mail: losano@fisica.ufpb.br

Outline

1. Introduction
2. Deformation Method
3. Extentions and Applications

- Deformed defects for scalar fields with polinomial interactions
- New family of sine-Gordon models
- Construction of topological defect networks with complex scalar fields
- Traveling wave soluitons of nonlinear partial differential equations

1. Introduction

- In standard Field Theory the model is defined by the choice of the field potential.

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-V(\phi)
$$

- The Deformation Method is a procedure that makes it possible to obtain new potentias and the static solutions, straightforwardly from one known potential and its static solutions.

$$
\begin{array}{r}
V(\phi) \rightarrow \tilde{V}(\chi) \\
\phi(x) \rightarrow \chi(x)
\end{array}
$$

- This procedure can be extended to obtain traveling wave solutions of systems described by like-KdV equations, or by high-order partial differential equations.

2. Deformation Method

[D. Bazeia, L. Losano, and J.M.C. Malbouisson, PRD66,101701 (R) (2002)]

1) Let us consider a first system described by the real scalar field $\phi(x, t)$
lagrangean density

$$
\mathcal{L}=\frac{1}{2}\left(\frac{\partial \phi}{\partial t}\right)^{2}-\frac{1}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}-V(\phi)
$$

potential $\mathrm{V}(\phi)$, metrics (+,-) , adimensional field and coordenates.
We suppose that $\quad V^{\prime}(\bar{\phi})=0 \quad$ and $\quad V(\bar{\phi})=0$

The equations of motion $\frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{d V}{d \phi}=0 \quad$ for $\phi=\phi(\mathrm{x}) \quad \frac{d^{2} \phi}{d x^{2}}=\frac{d V}{d \phi}$

$$
\phi(x \rightarrow-\infty) \rightarrow \bar{\phi}
$$

with the boundary condictions

$$
\frac{d \phi}{d x}(x \rightarrow-\infty) \rightarrow 0 \quad \text { is solved by } \quad \frac{d \phi}{d x}= \pm \sqrt{2 V}
$$

2) Let us consider a second system described by the real scalar field, $\chi(x, t)$, whose lagrangian density is

3) Now, doing $\quad \phi=f(\chi) \quad$ (deformation function invertible and differentiable)

If we take in the 2th model

$$
\tilde{V}(\chi)=\frac{V(\phi \rightarrow f(\chi))}{\left(\frac{d f}{d \chi}\right)^{2}}
$$

Its statics solutions are directly obtained by
4) And doing again and again

Example

Starting from (ϕ^{4} model)

$$
V(\phi)=\frac{1}{2}\left(1-\phi^{2}\right)^{2}
$$

$\phi(x)= \pm \tanh (x)$

deforming with

$$
\phi=f(\chi)=2 \chi^{2}-1
$$

$$
\begin{aligned}
& \text { we obtain } \tilde{\left(\chi^{6} \text { model }\right)} \tilde{V}(\chi)=\frac{V(\phi=f(\chi))}{(d f / d \chi)^{2}}=\frac{1}{2} \chi^{2}\left(1-\chi^{2}\right)^{2} \text { and } \chi(x)= \pm \sqrt{\frac{(1 \pm \tanh (x))}{2}} \text {. }
\end{aligned}
$$

Example

starting from (ϕ^{6} model)

$$
V(\phi)=\frac{1}{2} \phi^{2}\left(1-\phi^{2}\right)^{2} \quad \text { and } \quad \phi(x)= \pm \sqrt{\frac{[1 \pm \tanh (x)]}{2}}
$$

deforming again with $\phi=f(\chi)=2 \chi^{2}-1$

we obtain (χ^{10} model)

$$
\tilde{V}(\chi)=\frac{1}{2} \chi^{2}\left(1-\chi^{2}\right)^{2}\left(1-2 \chi^{2}\right)^{2} \quad \text { and } \quad \chi(x)= \pm \sqrt{\frac{(1+\phi(x))}{2}}
$$

3. Extentions and Applications

1) "Deformed Defects for sacalar fields with Polinomial Interactions"
D. Bazeia, M. A. González León, L. Losano, and J. Mateos Guilarte, PRD73, 105008 (2006)
-The model $\chi^{4}: U(\chi)=\frac{1}{2}\left(1-\chi^{2}\right)^{2} \quad$ is deformed by

$$
U(\chi)=\frac{1}{2}\left(1-\chi^{2}\right)^{2} \quad f(\phi)=\cos (a \arccos (\phi)-m \pi)
$$

[two families of polinomial potential, degree is determinated by the parameter a] sine family - a odd

$$
\begin{aligned}
& V_{\sin }^{a}(\phi)=\frac{1}{2 a^{2}} \prod_{j=1}^{(a+1) / 2}\left(1-\frac{\phi^{2}}{Z_{j}^{a}}\right)^{2} \\
& V_{\sin }^{3}(\phi)=\frac{8}{9}\left(\frac{1}{4}-\phi^{2}\right)^{2}\left(1-\phi^{2}\right)^{2}
\end{aligned}
$$

cosine family - a odd

$$
\begin{aligned}
& V_{\cos }^{a}(\phi)=\frac{1}{2} \phi^{2}\left(1-\phi^{2}\right) \prod_{j=1}^{(a-1) / 2}\left(1-\frac{\phi^{2}}{Z_{j}^{a^{2}}}\right)^{2} \\
& V_{\cos }^{3}(\phi)=\frac{8}{9} \phi^{2}\left(\frac{3}{4}-\phi^{2}\right)^{2}\left(1-\phi^{2}\right)
\end{aligned}
$$

2) "New family of sine-Gordon models",
D. Bazeia, L. Losano, R. Menezes, and M.A.M. Souza, EPL 87, 2101 (2009)
give the same
The model $\chi^{4}: U(\chi)=\frac{1}{2}\left(1-\chi^{2}\right)^{2} \quad \begin{gathered}\text { deformed by } \\ \chi=\mathrm{f}(\phi) \text { or } \chi=1 / \mathrm{f}(\phi) \quad V(\phi)=\frac{1}{2}\left(1-f^{2}\right)^{2} /\left(f^{\prime}\right)^{2}\end{gathered}$
(i) deforming by $f_{1}(\phi)=f=r \tan (\phi)$

$$
f_{2}(\phi)=1 / f=1 / r \cot (\phi)
$$

give double
sine-Gordon

$$
V(\phi)=\frac{1}{2 r^{2}}\left(\left(1+r^{2}\right) \cos ^{2}(\phi)-r^{2}\right)^{2}
$$

(ii) deforming by

$$
\begin{aligned}
& f_{1}(\phi)=f=\tan (s \arctan (r \tan (\phi))) \\
& f_{2}(\phi)=1 / f=\cot (s \arctan (r \tan (\phi))) \\
& f_{3}(\phi)=g=\tan (s \arctan (1 / r \cot (\phi))) \\
& f_{4}(\phi)=1 / g=\cot (s \arctan (1 / r \cot (\phi)))
\end{aligned}
$$

-for $s=1,2,3, \ldots$, give double-sG, triple-sG, quadruple-SG,....

3) "Construction of topological defect networks with complex scalar fields" V.I. Afonso, D. Bazeia, M.A. Gonzalez Leon, L. Losano, and J. Mateos Guilarte, NPB 810, 427(2009), PLB 662, 75(2008).

Initial model

$$
\chi(x, t)=\chi_{1}(x, t)+i \chi_{2}(x, t)
$$

where

$$
V(\chi, \bar{\chi})=\frac{1}{2} W^{\prime}(\chi) \overline{W^{\prime}(\chi)}
$$

Deformed model
$\mathcal{L}_{D}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \bar{\phi}-\frac{V(f(\phi), \overline{f(\phi)})}{f^{\prime}(\phi) \overline{f^{\prime}(\phi)}}$ where $\phi(x, t)=\phi_{1}(x, t)+i \phi_{2}(x, t)$
related to Inicial model by $\quad \chi=f(\phi)=f_{1}\left(\phi_{1}, \phi_{2}\right)+i f_{2}\left(\phi_{1}, \phi_{2}\right)$
then for $\mathcal{V}(\phi, \bar{\phi})=\frac{V(f(\phi), \overline{f(\phi)})}{\left|f^{\prime}(\phi)\right|^{2}}=\frac{1}{2} \frac{W^{\prime}(f(\phi))}{\overline{f^{\prime}(\phi)}} \frac{\overline{W^{\prime}(f(\phi))}}{f^{\prime}(\phi)}=\frac{1}{2} \mathcal{W}^{\prime}(\phi) \overline{\mathcal{W}^{\prime}(\phi)}$
the kink BPS soluiton is $\phi^{K}(x)=f^{-1}\left(\chi^{K}(x)\right)$

Deformation of symmetric Wess-Zumino models $W(\chi)=\chi(x, t)-\frac{\chi^{N+1}(x, t)}{N+1}$ taking

$$
\begin{array}{ll}
f(\phi)=\mathcal{W}(\phi) & \begin{array}{l}
\text { constrains } \\
f(\phi) \text { to obey }
\end{array}
\end{array}
$$

$$
f^{\prime}(\phi) \overline{f^{\prime}(\phi)}=\sqrt{2 V(f(\phi), \overline{f(\phi)})}
$$

In the $N=3$ case, we have
separated eqs. of constrain

$$
W(\chi)=\chi-\frac{1}{4} \chi^{4}, \quad V(\chi, \bar{\chi})=\frac{1}{2}\left(1-\chi^{3}\right)\left(1-\bar{\chi}^{3}\right) \quad \begin{aligned}
& f^{\prime}(\phi)^{2}=f(\phi)^{3}-1 \\
& f^{\prime}(\phi)^{2}
\end{aligned}=\overline{f(\phi)^{3}}-1 .
$$

give holomorphic solution
$\mathcal{W}(\phi)=f(\phi)=4^{\frac{1}{3}} \mathcal{P}\left(4^{-\frac{1}{3}} \phi ; 0,1\right) \quad$ deformed potential : $\mathcal{V}(\phi, \bar{\phi})=\frac{1}{2} \mathcal{P}_{01}^{\prime}\left(4^{-\frac{1}{3}} \phi\right) \overline{\mathcal{P}_{01}^{\prime}}\left(4^{-\frac{1}{3}} \phi\right)$ (Weierstrass P function)

4) "Traveling wave soluitons of nonlinear partial differential equations",
D. Bazeia, Ashok Das, L. Losano, and M.J. Santos, App. Math. Lett. 23, 681 (2010)
We propose a simple algebraic method for generating classes of traveling wave solutions for a variety of partial differential equations
g-Rosenau equation

> trial wave
map
$v_{t}+(P(v))_{x}+\left(Q(v) v_{x x}\right)_{x}=0 \quad u(x, t)=\cos (k x-\omega t)$
$u=a+v^{p}$,
solutions $v= \begin{cases}\left(\cos p\left(x-\alpha_{1} t\right)-a\right)^{\frac{1}{p}}, & \text { for }\left|p\left(x-\alpha_{1} t\right)\right| \leq \pi \\ -(1+a)^{\frac{1}{p}}, \quad \text { - compactons(no tail) } \\ -\quad \text { doble compactons }\end{cases}$

Thank you!

