

Deformation Method and Applications

Laercio Losano

Departamento de Física, Universidade Federal da Paraíba Caixa Postal 5008, 58051-970 João Pessoa, Paraíba, Brasil E-mail: Iosano@fisica.ufpb.br

AVEIRO – fevereiro - 2012

Outline

- 1. Introduction
- 2. Deformation Method
- 3. Extentions and Applications
 - Deformed defects for scalar fields with polinomial interactions
 - New family of sine-Gordon models
 - Construction of topological defect networks with complex scalar fields
 - Traveling wave soluitons of nonlinear partial differential equations

1. Introduction

 In standard Field Theory the model is defined by the choice of the field potential.

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)$$

 The Deformation Method is a procedure that makes it possible to obtain new potentias and the static solutions, straightforwardly from one known potential and its static solutions.

$$egin{aligned} V(\phi) &
ightarrow ilde{V}(\chi) \ \phi(x) &
ightarrow \chi(x) \end{aligned}$$

- This procedure can be extended to obtain traveling wave solutions of systems described by like-KdV equations, or by high-order partial differential equations.

2. Deformation Method

[D. Bazeia, L. Losano, and J.M.C. Malbouisson, PRD66,101701(R) (2002)] 1) Let us consider a first system described by the real scalar field $\phi(x,t)$ lagrangean density $\mathcal{L} = \frac{1}{2} \left(\frac{\partial \phi}{\partial t}\right)^2 - \frac{1}{2} \left(\frac{\partial \phi}{\partial x}\right)^2 - V(\phi)$

potential V(ϕ), metrics (+,-), adimensional field and coordenates.

We suppose that $V'(\overline{\phi}) = 0$ and $V(\overline{\phi}) = 0$

The equations of motion $\frac{\partial^2 \phi}{\partial t^2} - \frac{\partial^2 \phi}{\partial x^2} + \frac{dV}{d\phi} = 0$ for $\phi = \phi(\mathbf{x})$ $\frac{d^2 \phi}{dx^2} = \frac{dV}{d\phi}$

with the boundary condictions

$$\frac{d\phi}{dx}(x \to -\infty) \to \overline{\phi}$$
is solved by
 $\frac{d\phi}{dx} = \pm \sqrt{2V}$

2) Let us consider a second system described by the real scalar field, $\chi(x,t)$, whose lagrangian density is

$$\mathcal{L} = \frac{1}{2} \left(\frac{\partial \chi}{\partial t}\right)^2 - \frac{1}{2} \left(\frac{\partial \chi}{\partial x}\right)^2 - \tilde{V}(\chi) \quad \frac{\text{static}}{\text{obey}} \frac{d^2 \chi}{dx^2} = \frac{d\tilde{V}}{d\chi} \quad \frac{\text{solved by}}{(\text{same b.c})} \frac{d\chi}{dx} = \pm \sqrt{2\tilde{V}}$$

3) Now, doing $\phi = f(\chi)$

(deformation function invertible and differentiable)

in the 2th model $\widetilde{V}(\chi) = \frac{V(\phi \to f(\chi))}{\left(\frac{df}{d}\right)^2}$ Its statics solutions are directly obtained by

 $\chi(x) = f^{-1}(\phi(x))$

4) And doing again and again

Example

starting from
(
$$\phi^6$$
 model)
 $V(\phi) = \frac{1}{2}\phi^2(1-\phi^2)^2$ and $\phi(x) = \pm \sqrt{\frac{[1\pm \tanh(x)]}{2}}$

deforming again with $\phi = f(\chi) = 2\chi^2 - 1$

we obtain
(
$$\chi^{10}$$
 model) $\widetilde{V}(\chi) = \frac{1}{2} \chi^2 (1 - \chi^2)^2 (1 - 2\chi^2)^2$ and $\chi(x) = \pm \sqrt{\frac{(1 + \phi(x))}{2}}$

3. Extentions and Applications

 "Deformed Defects for sacalar fields with Polinomial Interactions"
 D. Bazeia, M. A. González León, L. Losano, and J. Mateos Guilarte, PRD73, 105008 (2006)

-The model
$$\chi^4$$
: $U(\chi) = \frac{1}{2}(1-\chi^2)^2$ is deformed by $f(\phi) = \cos(a \arccos(\phi) - m\pi)$

[two families of polinomial potential, degree is determinated by the parameter a]

2) "New family of sine-Gordon models",
 D. Bazeia, L. Losano, R. Menezes, and M.A.M. Souza,
 EPL 87, 2101 (2009)
 give the same

The model
$$\chi^4$$
: $U(\chi) = \frac{1}{2}(1-\chi^2)^2$ deformed by
 $\chi = f(\phi)$ or $\chi = 1/f(\phi)$ $V(\phi) = \frac{1}{2}(1-f^2)^2/(f')^2$

(i) deforming by
$$f_1(\phi) = f = r \tan(\phi)$$

 $f_2(\phi) = 1/f = 1/r \cot(\phi)$

give double sine-Gordon $V(\phi) = \frac{1}{2r^2} \left((1+r^2)\cos^2(\phi) - r^2 \right)^2$

(ii) deforming by

 $f_1(\phi) = f = \tan(s \arctan(r \tan(\phi)))$ $f_2(\phi) = 1/f = \cot(s \arctan(r \tan(\phi)))$ $f_3(\phi) = g = \tan(s \arctan(1/r \cot(\phi)))$ $f_4(\phi) = 1/g = \cot(s \arctan(1/r \cot(\phi)))$

-for s= 1,2,3,..., give double-sG, triple-sG, quadruple-SG,....

 $1/f(\phi)$

f(\$)

 "Construction of topological defect networks with complex scalar fields"
 V.I. Afonso, D. Bazeia, M.A. Gonzalez Leon, L. Losano, and J. Mateos Guilarte, NPB 810, 427(2009), PLB 662, 75(2008).

Initial model

$$\chi(x,t) = \chi_1(x,t) + i \chi_2(x,t)$$

where

 $\mathcal{L} = \frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \bar{\chi} - V(\chi, \bar{\chi})$

$$V(\chi, \bar{\chi}) = \frac{1}{2} W'(\chi) \overline{W'(\chi)}.$$

Deformed model

$$\mathcal{L}_D = \frac{1}{2} \partial_\mu \phi \partial^\mu \bar{\phi} - \frac{V(f(\phi), \overline{f(\phi)})}{f'(\phi) \overline{f'(\phi)}} \text{ where } \phi(x, t) = \phi_1(x, t) + i\phi_2(x, t)$$

related to Inicial model by $\chi = f(\phi) = f_1(\phi_1, \phi_2) + i f_2(\phi_1, \phi_2)$

then for
$$\mathcal{V}(\phi, \bar{\phi}) = \frac{V(f(\phi), \overline{f(\phi)})}{|f'(\phi)|^2} = \frac{1}{2} \frac{W'(f(\phi))}{\overline{f'(\phi)}} \frac{\overline{W'(f(\phi))}}{f'(\phi)} = \frac{1}{2} \mathcal{W}'(\phi) \overline{\mathcal{W}'(\phi)}$$

the kink BPS soluiton is $\phi^{K}(x) = f^{-1}(\chi^{K}(x))$

 $W(\chi) = \chi(x, t) - \frac{\chi^{N+1}(x, t)}{N+1}$ **Deformation of symmetric Wess–Zumino models** constrains $f'(\phi)\overline{f'(\phi)} = \sqrt{2V(f(\phi), \overline{f(\phi)})}$ taking $f(\phi) = \mathcal{W}(\phi)$ $f(\phi)$ to obey separated eqs. of constrain In the N = 3 case, we have $W(\chi) = \chi - \frac{1}{4}\chi^4, \qquad V(\chi, \bar{\chi}) = \frac{1}{2}(1 - \chi^3)(1 - \bar{\chi}^3) \qquad \qquad \frac{f'(\phi)^2}{f'(\phi)^2} = \frac{f(\phi)^3 - 1}{f(\phi)^3 - 1}$ give holomorphic solution $\mathcal{W}(\phi) = f(\phi) = 4^{\frac{1}{3}} \mathcal{P}(4^{-\frac{1}{3}}\phi; 0, 1)$ deformed potential : $\mathcal{V}(\phi, \bar{\phi}) = \frac{1}{2} \mathcal{P}'_{01} \left(4^{-\frac{1}{3}}\phi\right) \overline{\mathcal{P}'_{01}} \left(4^{-\frac{1}{3}}\phi\right)$ (Weierstrass P function) $\sqrt{3}\omega_{2}$ 40 20 $-2\omega_2$ 2w $-\sqrt{3}\omega$

4) "Traveling wave soluitons of nonlinear partial differential equations",
D. Bazeia, Ashok Das, L. Losano, and M.J. Santos,
App. Math. Lett. 23, 681 (2010)

We propose a simple algebraic method for generating classes of traveling wave solutions for a variety of partial differential equations

Thank you!

III Workshop: Modern trends on Field Theory – Porto - 2010