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Abstract

We give a brief overview of naked singularities, how these can form from gravitational
collapse and their possible relevance in astrophysics. We investigate how the black hole
formation process described by the Oppenheimer-Snyder scenario is affected once small
pressures are introduced in the collapsing matter cloud. We show that the presence of
pressures and inhomogeneities, however small, can change drastically the structure of the
apparent horizon and the final fate of collapse.



Gravitational Collapse

- It can describe the final stages of the life of a star and other processes that

happen at bigger scales like those leading to the formation of supermassive

black holes.

- The true nature of the compact objects that result from complete gravitational

collapse remains a mystery.

- These processes involve a broad range of sizes, time scales and densities.
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Some Open Issues in Collapse

Is a black hole necessarily the only possible endstate of complete collapse

of a massive body? If not, what other possibilities are there?

- Naked singularities?

- Compact objects composed of some exotic matter?

- Compact objects composed of ordinary matter?

If naked singularities exist in the universe then interesting astrophysical

questions are:

- How do they form?

- What causes a collapse to end in a black hole rather than a naked singularity?

- What observational features do they have? Can we detect them?

- Is there any way to detect and distinguish them from black holes?



Cosmic Censorship Conjecture

Any singularity that arises as the endstate of physically realistic processes must

be hidden within an horizon.

We know that singularities are a general feature of exact solutions of Einstein’s

field equation.

If the hypothesis is true:

What is the mechanism by which all singular solutions of the field equations be-

come unphysical? (a proof is missing)

If the hypothesis is not true:

What are the naked singularities that might arise from physical processes?

(there exist counterexamples to CCC)

What are naked singularities?

What kind of effects can they have on the outside universe?



Open Problems within Collapse Models

- How generic is the occurrence of naked singularities?

- How stable are these models under perturbation of the initial data?

- What role do pressures, rotation and deformations play in collapse?

- What type of matter fields can we consider?

- What is the nature of compact objects being observed in astrophysics?

- Can the collapse of a massive star lead to the formation of a naked singularity?

- Is there any mechanism by which naked singularity formation can be avoided?

- If naked singularities do exist, what kind on observational signature do they

have?

- Can effects occurring near the singularity reach outside observers?

- In which cases would a naked singularity be distinguishable from a black hole?

- Could these models be used to explain observed phenomena in the universe?



Black Holes

Theory:

- A black hole in General Relativity is a singularity of the spacetime covered by

an event horizon.

- In collapse a black hole results when the infalling matter is trapped by the

formation of the horizon before the singularity forms.

- The first theoretical model to be studied was that of a spherical cloud of

homogeneous dust.

- More realistic models are needed.

Observation:

- Over the past decades we gained more and more evidence that very compact

objects such as black holes exist in the universe.

- We know of black holes as endstate of the life of a star and supermassive black

holes that dwell at the center of galaxies.

- How do these ultracompact objects form?



Black Hole Formation

- The matter cloud collapses un-
der its own gravity.

- The trapped surfaces develop
before the singularity.

- The singularity curve remains
always hidden within the hori-
zon.

- No light ray can escape the sin-
gularity to reach far away ob-
servers.
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Naked Singularities

If collapse doesn’t halt then a singularity must be produced but black holes are

not the only final product of collapse predicted by General Relativity.

Theory:

- A naked singularity is a singularity not covered by an horizon.

- In collapse a naked singularity results when the infalling matter becomes

singular before the formation of the horizon.

- The first theoretical examples to be found in collapse models were those of a

spherical inhomogeneous dust ball.

- Naked singularities are found in many solutions of Einstein equations. The

question is if they can form from physically realistic processes.

Observation:

- Very compact sources in the universe could be naked singularities.

- Naked singularities could be at the core of exploding supernovae.

- If they form how do we detect them?



Naked Singularity Formation

- The matter cloud collapses un-
der its own gravity.

- The singularity forms earlier
than the trapped surfaces.

- Some light ray can escape the
singularity to reach far away
observers.

- The horizon develops at a later
stage and covers the singular-
ity.
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Naked Singularities in Stationary Spacetimes

A naked singularity in astrophysics might be seen as a region of very strong

gravitational field and high curvature not covered by an event horizon, where

quantum-gravity effects might be visible.

If naked singularities exist they might have observational features very different

from black holes. These are currently being investigated in static and stationary

geometries.

Gravitational lensing by naked singularities.
(G.F.R. Ellis, K.S. Virbhadra).

Properties of accretion disks around a naked singularity.
(Z. Kovack and T. Harko).

Shadows cast by Kerr naked singularities.
(C. Bambi).

Motion of test particles around Kerr naked singularities.
(D. Pugliese, H. Quevedo and R. Ruffini).

Particle acceleration by naked singularities.
(P.S. Joshi and M. Patil).



Naked Singularities in Collapse

There are a lot of models describing naked singularities arising from gravitational

collapse.

Naked singularities arising in the LTB dust collapse.
(Christodoulou, ...).

Naked singularity formation in self-similar gravitational collapse.
(Ori and Piran, Carr, ...).

Naked singularities arising in collapse with tangential stresses.
(Magli, Nakao, ...).

Naked singularities arising in perfect fluid collapse.
(Joshi and Goswami, Giambò, Harada, ...).

Naked singularities in collapse of massless scalar fields.
(Joshi, ...).

The choice of different matter sources does not rule out the possibility that naked

singularities form from collapse with regular initial data.



History of Naked Singularities

1933 Spherically symmetric dynamical dust solution of Einstein’s field equations

(Lemaitre and Tolman).

1939 Homogeneous dust collapse model always ends in a black hole (Oppenheimer

and Snyder ).

1969 Cosmic Censorship Hypothesis (Penrose).

1984 Naked singularities arising in the LTB dust collapse (Christodoulou, Joshi

and Dwivedi).

1987 Naked singularity formation in self-similar collapse (Ori and Piran).

Can they be avoided by the presence of pressures?

’97-’99 Examples of n.s. arising in collapse with tangential stresses (Magli, Piran).

’00-... Examples of n.s. arising in more general models (Joshi and Goswami).

How stable and generic are these examples?



What is a Naked Singularity?

What we mean by naked singularity?

- A naked singularity for us is a region of ultrahigh densities, where quantum-

gravity effect may occur, that is not covered within the horizon.

- Divergence of physical quantities and curvature invariants indicates a break-

down of the model.

Fluid Matter Models

How good are fluid matter models like dust or perfect fluid?

- The fluid approximation for matter has a limit after which microscopic effects

must be considered. Does this happen before or after the quantum-gravity

regime is achieved?

- It has been suggested that close to the singularity matter must behave like

dust.

- Can other type of matter models (like scalar fields or Eistein-Vlasov systems)

resolve the singularity?



The Problem of Genericity

Given the existence of solutions with naked singularities:

- How ‘big’ is the set of initial data leading to naked singularities?

(as compared to the corresponding set for black holes)

- In which space of parameters is this set measured?
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Stability of the Final Outcome

Given a certain matter configuration leading to a BH or a NS:

- What are the parameters that determine the final outcome?

- How stable is it with respect to small changes in the initial data?

Naked Singularity Black Hole
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Space-time

Spherically symmetric interior describing a collapsing matter cloud in comoving

coordinates

ds2 = −e2ν(t,r)dt2 +
R′

G(t, r)
dr2 +R(t, r)2dΩ2

depends on 3 functions ν, G, R and matches smoothly across the boundary to a

known exterior (generalized Vaidya).

Matter

The energy-momentum tensor is composed by

- Energy density: ρ = −T t
t

- Radial pressure: pr = T r
r

- Tangential pressure: pθ = T θ
θ = T ϕ

ϕ

The metric components are related to the energy-momentum tensor via Einstein’s

field equations.



Einstein Equations

pr = − Ḟ

R2Ṙ

ρ =
F ′

R2R′

Ġ = 2ν ′
Ṙ

R′G

ν ′ =
2(pθ − pr)

ρ + pr

R′

R
− p′r

ρ + pr

where F is the Misner-Sharp mass of the system describing the amount of matter

enclosed in the shell r at any given time t and it is given by

F = R(1−G + e−2ν(r,v)Ṙ2)

The first equation implies that for dust (pr = pθ = 0) and tangential pressures

(pr = 0) we must have F = F (r).



Scaling Factor

There is the gauge freedom to fix the scaling factor in the area function R(r, t):

R = rv(r, t)

with

- initial time ti: v(r, ti) = 1

- singularity time ts: v(r, ts) = 0

- collapse: v̇ < 0

Due to its monotonic behaviour we can use v as a time coordinate:

(r, t) 7→ (r, v)

The density diverges along the central shell at R = 0 at all times.

With the choice of the scaling factor it diverges only at the singularity.



Shell Crossing

The density diverges also at R′ = 0.

- Shell crossing singularities are weak

curvature singularities.

- They are due to a breakdown of the

coordinate system.

- Avoidance of shell crossing singulari-

ties implies

R′ = v + rv′ > 0

- This is always satisfied close to the

center.

t

R

Collapsing
shells

boundary



Velocity Profile

We can integrate the equation for Ġ and obtain

G = b(r)e2A(r,v)

where A is defined by

A(r, v),v :=
rν ′

R′

and b(r) is a free function called the velocity profile. The function b(r) is related

to the velocity or the kinetic energy of the infalling particles.

If we define

b(r) = (1 + r2b0(r))

We can divide the evolutions in three possible subcases:

- Unbound model b0 > 0

- Marginally bound model b0 = 0

- Bound model b0 < 0



Perfect Fluids

pr = pθ

The assumption is justified by the fact that near the center matter must behave

like perfect fluid. Perfect fluids are widely used in astrophysics.

There is one free function, F (r, v).

The system becomes closed once an equation of state is provided.

ν ′ = − p′

ρ + p

Tangential Pressures

pr = 0

Can represent a cloud where particles move on circular orbits. The structure of

equations is simpler since F = F (r).

There are two free functions F (r) and pθ(r, v).

A linear equation of state is not allowed since it gives a singular spacetime.

ν ′ = 2
pθ
ρ

R′

R



Initial Data

The free functions (F (r, v) for perfect fluid and F (r), pθ(r, v) for tangential

pressures) must be specified globally.

Through the field equations we can evaluate the evolution of the collapsing cloud

once the initial configuration is provided.

ρi(r) = ρ(r, ti)

pi(r) = p(r, ti)

Ri(r) = R(r, ti)

νi(r) = ν(r, ti)

Gi(r) = G(r, ti)

where

- The free functions at ti may be chosen arbitrarily.

- The choice of v implies Ri = r.

- Einstein equations give the relations between the remaining functions.



Energy Conditions

Realistic matter must obey the weak energy conditions:

ρ ≥ 0 and ρ + p ≥ 0

- The first one implies F ≥ 0 near the center.

- The second one is satisfied near the center whenever |p| ≪ ρ.

Negative pressures that satisfy weak energy conditions are possible.

Regularity Conditions

Regularity near the center of the cloud imposes some conditions:

- regularity of the mass implies F = r3M(r, v)

- regularity of the pressure implies ν = r2g(r, t)

- regularity of the density implies M ′(0, v) = 0

- regularity of the velocity profile implies b(r) = 1 + r2b0(r)



Trapped Surfaces

The apparent horizon is the surface that separates light rays directed outwards

that are outgoing from those directed outwards that are ingoing. In vacuum it

coincides with the event horizon.

1− F

R
= 0

The apparent horizon curve is given by

vah(r) = r2M(r, vah)

The timelike region is given by F
R < 1.

- If M = M(r) then only the central singularity can be visible.

- If M(r, v) = M0 at r = 0 then only the central singularity can be visible.

- If M(r,v)
v −−→

v→0
c < 1

r̄2
then the singularity at r̄ can be visible.



Solving Einstein Equations

Consider the case of perfect fluid collapse:

F = r3M(r, v)

we get {
ρ = 3M+rM ′

v2R′

p = −M,v
v2

Equation for ν implies

A(r, v) =

∫ 1

v

r
M,vrv + (M,vvv − 2M,v)v

′

(3M + rM,r −M,vv)v
dv

From the Misner-Sharp mass equation we get the equation of motion for the

collapsing matter shells:

Ṙ = −eν
√

F

R
+G− 1

Integrating this equation solves the set of Einstein equations.



Collapse Evolution and Final Fate

The equation of motion can be rewritten as

v̇ = −eν(r,v)
√

M(r, v)

v
+

b(r)e2A(r,v) − 1

r2

Inverting the equation of motion and solving for t(r, v) we get the time at which

the shell r reaches the ‘event’ v:

t(r, v) =

∫ 1

v

e−ν√
M
v̄ + be2A−1

r2

dv̄

The time curve of the singularity becomes:

ts(r) = t(r, 0)

Since t(r, v) is in general C2 we can expand it near the center:

t(r, v) = t(0, v) + rχ1(v) + r2χ2(v) + o(r3)



Singularity and Apparent Horizon

Performing the expansion of ts(r) near the center we get

ts(r) = t0 + χ1(0)r + χ2(0)r
2 + o(r3)

- Nakedness of the singularity will be de-

cided by the sign of the first non vanishing

χi(0)

- If the first non vanishing χi(0) is positive

then tah ≥ t0.

- The apparent horizon is future directed

from the central singularity outwards.

t

t (r)ah

t (r)s

t0

The apparent horizon curve is not necessarily null and future directed.

The time curve of the apparent horizon

tah(r) = ts(r)−
∫ vah

0

e−ν√
M
v + be2A−1

r2

dv



Outgoing Geodesics

The singularity forms at the time

t0 = t(0, 0)

Outer shells are trapped at tah(r) > t0, leaving the possibility for null geodesics

originated at t0 to escape.

Future directed outgoing radial null geodesics are given by

dt = +
R′e−ν

√
G

dr

If outgoing null geodesics terminate at the singularity in the past with a definite

tangent and tng(r) < tah(r) for r → 0 then the singularity is locally visible.

tng(r) = t0 + x0u

with u = rα (take α = 5/3). Then

x0 = lim
t→ts

lim
r→0

R

u
=

(
3

2

√
M0χ1(0)

)3
2

χ1 > 0 ⇒ the singularity at r = 0 is locally naked.

Same reasoning applies to χ2 if χ1 = 0



Black Hole vs. Naked Singularity

In the general case

χ1(0) = −1

2

∫ 1

0

M ′(0,v)
v + b′0(0) + 2a′(0, v)(

M(0,v)
v + b0(0) + 2a(0, v)

)3
2

dv

where a(r, v) is given by A(r, v) = r2a(r, v). The final outcome in terms of black

hole or naked singularity is governed by:

- Mass profile M(r, v).

- Velocity profile b0(r).

- Pressure profile, related to a(r, v).



Black Hole vs. Naked Singularity II

Typically we choose pressure profiles with only quadratic terms:

p = p0 + p2r
2 + ...

This implies that χ1(0) = 0. Therefore visibility of the singularity is decided by

the next non vanishing term:

χ2(0) =

∫ 1

0

38 (M ′(0, v) + 2a′(0, v) + b′0(0))
2(

M(0,v)
v + b0(0) + 2a(0, v)

)5
2

− 1

2

ν ′′(0, v)√
M(0,v)

v + b0(0) + 2a(0, v)
+

− 1

2

M ′′(0,v)
v + 2a′′(0, v) + 2a(0, v)2 + 2b0(0)a(0, v) + b′′0(0, v)(

M(0,v)
v + b0(0) + 2a(0, v)

)3
2

 dv



Genericity

For any mass function M and velocity profile b that must be specified globally

we have an initial data sets for collapse near the center leading to black holes

(χj < 0) and naked singularities (χj > 0).

I = INS ∪ IBH

with

INS := {(Mj, b0j, pj) s.t. χj > 0} and IBH := {(Mj, b0j, pj) s.t. χj < 0}

- Mj initial mass profile

- b0j initial velocity profile

- pj initial pressure profile

The critical surface is given by χj = 0.

For points on the critical surface consider the next order χj+1.

We say that a collapse to a naked singularity (black hole) is generic if INS (IBH)

is an open subset of I with non-zero measure.



Stability

Given x = (Mj, b0j, pj), x ∈ INS we say that the naked singularity is stable if

∃U(x) s.t. x̄ ∈ INS ∀ x̄ ∈ U(x)

Given x = (Mj, b0j, pj), x ∈ IBH we say that the black hole is stable if

∃U(x) s.t. x̄ ∈ IBH ∀ x̄ ∈ U(x)

- Points away from the critical surface are stable.

- Simultaneous collapse: x ∈ IBH such that χj = 0 for all j is unstable.

- Oppenheimer-Snyder: xOS ∈ IBH is unstable.



Stability and Genericity

For every choice of the free function(s) in principle the initial data set can have a

final outcome to be stable or non stable, generic or non generic.
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Oppenheimer-Snyder

The Oppenheimer-Snyder model is obtained for homogeneous dust:

- Dust implies p = 0.

- Homogeneity implies ρ = ρ(t).

From which follow the conditions:

(i) M(r) = M0

(ii) v = v(t)

(iii) b0(r) = k

the line element becomes

ds2 = −dt2 + v2
[

dr2

1 + kr2
+ r2dΩ2

]
and

χi(0) = 0

Collapse is simultaneous and the singularity is covered at all times.



Lemaitre-Tolman-Bondi

The Lemaitre-Tolman-Bondi dust model describes the collapse of a spherical ball

of inhomogeneous dust and is obtained for p = 0, which implies ν = A = 0.

ds2 = −dt2 +
R′2

1 + r2b0(r)
dr2 +R2dΩ2

b
02

M
2

OSD

NS

BH

(i) M = M(r) = M0 +M2r
2 + ...

(ii) v = v(r, t)

(iii) b0 = b0(r) = b00 + b02r
2 + ...

b0(r) = k ⇒ χ2 = −1
3
M2

M
3
2
0

χ1(0) = −1

2

∫ 1

0

M ′(0)
v + b′0(0)(

M(0)
v + b0(0)

)3
2

dv; χ2(0) = −1

2

∫ 1

0

M ′′(0)
v + b′′0(0)(

M(0)
v + b0(0)

)3
2

dv

The singularity is covered or naked depending on M(r) and b0(r).



Simultaneous Singularity

The condition for simultaneous collapse is

ts(r) = t0 ⇔ χi = 0 for every i

Given a density profileM(r), once we choose b00, we must choose every b0i suitably

in order to have χi = 0

b01 = −α1

β1

with α1 =
∫ 1

0
M1

√
v

(M0+b00v)
3
2
dv and β1 =

∫ 1

0
v
3
2

(M0+b00v)
3
2
dv.

Similarly for b02 and the same reasoning applies to every order.

Then the velocity profile b0(r) for which collapse ends in a black hole is given by

b0(r) =

+∞∑
i=0

b0i
i!
ri



Small Tangential Pressure Perturbation of OS

Two free functions:

M(r) = M0 +M1r +M2r
2 + ...

and

ν(r, v) = r2g(r, v) = g0(v)r
2 + g1(v)r

3 + ...

that give

pθ =
r2

vR′2

(
3M0g0 + 4M1g0r +

9

2
M0g1r + ...

)
Note that the cloud must behave like dust at r = 0 (pθ → 0 as r → 0).

In general we get

χ1(0) = −1

2

∫ 1

0

M1 + b01v + g1(v)v

(M0 + b00v + g0(v)v)
3
2

√
vdv

and the final outcome is decided by M(r), b0(r) and pθ(r, v)



Small Tangential Pressure Perturbation of OS II

From the conditions that give the OS model we drop (ii) and keep (i) and (iii).

For simplicity take g0(v) = 0. Then

pθ =
9

2

M0g1
vR′2 r

3

with g1(v) bounded and small.

χ1(0) = −1

2

∫ 1

0

v
3
2g1(v)

(M0 + kv)
3
2

dv

All those pressure profiles for which the function g1 gives χ1(0) > 0 will cause

the collapse to produce a naked singularity.

The line element near the center becomes

ds2 = −(1− 2g1r
3)dt2 +

R′2

1 + kr2 − 2g1r3
dr2 +R2dΩ2



Profiles With Only Quadratic Terms

For more physically reasonable matter models we can require:

- ρ to have no cusps at the center. This implies M1 = 0

- Perfect fluid.

- Pressure and density to have only quadratic terms in r.

Assuming that we can write

M(r, v) = M0(v) +M2(v)r
2 + .. we get A(r, v) = a2(v)r

2 + a4(v)r
4 + ...

with

a2 =

∫ 1

v

2M2,v

3M0 −M0,vv
dv

Then

χ2(0) = −1

2

∫ 1

0

M2(v)
v + 2a4 + 2a22 + 2ka2 + a2,vv

(
M0(v)

v + k + 2a2

)
(
M0(v)

v + k + 2a2

)3
2

dv

with b0(r) = k.



Small Perfect Fluid Perturbation of LTB

For simplicity take b0 = 0. Then take

M(r, v) = M0 + (C + ε(v)) r2

with ε(1) = 0.

Small perturbation: take the pressure such that at all times

M0 ≫ M2(v)

The density and pressure become

p = −ε,v
v2

r2 and ρ = ρLTB − p +
5ϵ− ϵ,vv

v2(v + rv′)
r2

- The model is dust at the initial time

- ε = 0 implies LTB dust

- ε = 0 and C = 0 implies OS



Small Perfect Fluid Perturbation of LTB II

- ε ↑ ⇒ ε < 0 ⇒ p < 0

- ε ↓ ⇒ ε > 0 ⇒ p > 0

χ2(0) = −
∫ 1

0

C +
(
ε + 2

3ε,vv
)
+ 8

9
εv
M2

0
(ε + ε,vv)(

M0 +
4
3
εv
M0

)3
2

√
vdv

Consider the case where ε is decreasing and p is positive.

It is possible to set some conditions on ε(v) and M0 so that the final outcome of

collapse is a naked singularity.

Therefore the introduction of an arbitrarily small positive perfect fluid pressure

perturbation can turn the final fate of the Oppenheimer-Snyder collapse from

black hole to naked singularity.



Small Perfect Fluid Perturbation of LTB III

Y (v) =

(
ε +

2

3
ε,vv

)

v

Y

10

²

v

C

D1

D2

black hole

naked singularity



Energy Emission From the Vicinity of a Naked Singularity

Non central singularities: Models with non vanishing pressures in the form of a

perfect fluid show that it is possible for the shells located at r ̸= 0 to be visible

when becoming singular, thus leaving space for new scenarios.

Consider p to be related to ρ via

p

ρ
= λ(r, v) = λ0(v) + λ2(v)r

2 + ...

Einstein equations for ρ and p give

3λM + λrM,r + [v + (λ + 1)rv′]M,v = 0

that can be solved to second order for a suitable choice of λ2.

M(r, v) = C1e
−3

∫ 1
v

λ0(v)
v dv + r2C2e

−5
∫ 1
v

λ0(v)
v dv + ...



Energy Emission From the Vicinity of a Naked Singularity II
If we take λ0(v) such that

λ0 −−→
v→0

d0 ≤ −1

3
and λ0 −−→

v→1
d1 > 0

then the pressure turns negative during collapse, the mass is radiated away and

the singularity curve can be timelike.
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-1/3

0

-1

M(r, v) −−→
v→0

0 such that
r2M(r, v)

v
< 1 and p < 0 near v = 0



Discussion

There is more to collapse then the black hole paradigm:

- Black holes:

Effects in the ultradense region near the singularity are hidden.

- Naked singularities:

Effects in the region surrounding the singularity might be visible.

- Static models and bouncing models:

For certain choices of the initial data it is possible for collapse to halt before

all matter falls into the singularity and for the outer shells to bounce back.

The general formalism to analyze collapse developed here can be applied to many

different scenarios.

Naked singularities are a ‘generic’ feature in collapse with pressures.

The Oppenheimer-Snyder model leading to the formation of a black hole is not

stable under small pressure perturbations.

Still a lot needs to be done.



Future Developments

- Do naked singularities of any kind exist in the universe or are they only

mathematical examples?

- What are the conditions for global visibility in collapse models?

- What kind of matter fields are physically more ‘realistic’?

- How can rotation and deformations affect this picture?

- If naked singularities exist can they be observed and what would distinguish

them from black holes?

- Can these model constitute the basis towards an explanation of some of the

observed high energy phenomena in the universe?

If naked singularities exist then some new physics could be hiding in

theoretical models and astrophysical observations.


