▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Towards the Einstein-A-scalar field system in spherical symmetry

Artur Alho, João L.Costa and José Natário

CMAT - Mathematical Physics Group

IST - Centro de Análise, Geometria e Sistemas Dinâmicos

IV Workshop on Black Holes, Aveiro - December 19th, 2011 arxiv:1107.0802v1[gr-qc]

Weak Cosmic Censorship in Spherical Symmetry

Introduction

- Solutions to the EFEs may develop singularities. In particular gravitational collapse to a singularity must occur.
- What is the nature of the singularities resulting from gravitational collapse?
- Are the singularities hidden in a black hole? Or are they naked? Deterministic breakdown!
- Weak Cosmic Censorship is the conjecture that, generically, singularities arising from gravitational collapse are contained in black holes.
- WCC is a statement about, how assumptions on the initial data for the EFEs relates to properties of the resulting maximal global hyperbolic development of the data.
- Global results for large initial data are only known in 1+1 dimensions.

Spherical Symmetry

- Spherical symmetry: the group SO(3) acts by isometry, $\mathcal{Q} = \mathcal{M}/SO(3)$.
- Metric $ar{g}$ of $\mathcal Q$ is related to the metric to $(\mathcal M,g)$ by

$$ds^2 = \bar{g}_{ab} dx^a dx^b + r^2 d\sigma_{\mathbb{S}^2}^2$$

where $d\sigma_{\mathbb{S}^2}^2$ is the metric on the round \mathbb{S}^2 and r is the *area-radius* function on \mathcal{Q} .

Weak Cosmic Censorship in Spherical Symmetry

Introduction

- Solutions to the EFEs may develop singularities. In particular gravitational collapse to a singularity must occur.
- What is the nature of the singularities resulting from gravitational collapse?
- Are the singularities hidden in a black hole? Or are they naked? Deterministic breakdown!
- Weak Cosmic Censorship is the conjecture that, generically, singularities arising from gravitational collapse are contained in black holes.
- WCC is a statement about, how assumptions on the initial data for the EFEs relates to properties of the resulting maximal global hyperbolic development of the data.
- Global results for large initial data are only known in 1+1 dimensions.

Spherical Symmetry

- Spherical symmetry: the group SO(3) acts by isometry, Q = M/SO(3).
- Metric \bar{g} of \mathcal{Q} is related to the metric to (\mathcal{M},g) by

$$ds^2 = \bar{g}_{ab} dx^a dx^b + r^2 d\sigma_{\mathbb{S}^2}^2$$

where $d\sigma_{\mathbb{S}^2}^2$ is the metric on the round \mathbb{S}^2 and r is the *area-radius* function on \mathcal{Q} .

Penrose diagrams

• The Penrose diagram is the image of a bounded conformal map

$$\mathcal{Q} \to \mathbb{R}^{1+1}$$

$$\bar{g}_{ab}dx^adx^b = -\Omega^2 dudv$$

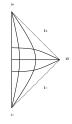
• Boundaries induced by the causal embebeding:

 \mathcal{I}^+ are limit point of future-directed null rays as $r \to +\infty$

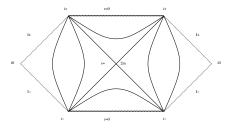
 \mathcal{I}^- are limit point of past-directed null rays as $r \to +\infty$

 $(i^+ i^- \text{future/past timelike infinity}, i^0 \text{spacelike infinity})$

Minkowski diagram



Schwarzschild diagram



The Black Hole Concept

- Using the causal structure of \mathbb{R}^{1+1} , the causal past $\mathcal{J}^-(p)$ of $p \in \mathcal{I}^+$ is well defined.
- Asyptotically flat: \mathcal{I}^+ is a null surface.
- \mathcal{I}^+ is complete: Consider the parallel transport of an ingoing null vector along a fixed outgoing null geodesic that has a limit point on \mathcal{I}^+ . The affine length of its integral curves tends to ∞ as \mathcal{I}^+ is approached.
- Within this completness property we define the Black hole region: $\mathcal{Q}\setminus\mathcal{J}^-(\mathcal{I}^+)$
- The future boundary of *J*[−](*I*⁺) ∈ *Q* is a null hypersurface: the *future event* horizon *H*⁺.
- In Minkowski: $\mathcal{J}^-(\mathcal{I}^+) \bigcap \in \mathcal{Q} = \mathcal{Q}$

イロト 不得 トイヨト イヨト

э

Birkhoff Theorem

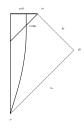
- Solutions of the Spherically symmetric Einstein Vacuum equations are isometrically the the Schwarzschild family. They are static.
- Produce dynamics by adding matter!

Oppenheimer-Snyder model

• Matter content: Homogenous dust ($\rho(t)$, p = 0)

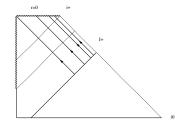
$$T_{\mu\nu} = diag(
ho, 0, 0, 0)$$

- Einstein equations reduces to an ODE.
- Collapses into a black-hole. Penrose diagram:



Christodoulou's inhomogeneous dust ball

- Inhomogeneous dust $\rho(T, R)$. Lead to a PDE.
- Exists a non-empty set of initial conditions which lead to Black Hole formation
- Exists a non-empty set of initial conditions giving rise to Naked Singularities



- \mathcal{I}^+ is incomplete. The affine length is finite.
- Dust Pathologies. Leads to singularities even in flat Minkowski spacetime.
- Well behaved (reasonable) matter models: Scalar field, Vlasov...
- Weak Cosmic Censorship is the conjecture that for generic asymptotically flat initial data for reasonable Einstein-matter system, the maximal globally hyperbolic development possesses a complete *I*⁺ (future null infinity).

Christodoulou's framework for the Einstein-scalar field system ($\Lambda=0)$

Scalar field

$$T_{\alpha\beta} = \partial_{\alpha}\phi\partial_{\beta}\phi - \frac{1}{2}g_{\alpha\beta}g^{\lambda\sigma}\left(\partial_{\lambda}\phi\right)\left(\partial_{\sigma}\phi\right)$$

- Sphericall symmetry. Bondi coordinates (u, r, θ, φ) .
- Main variable:

$$h:=\frac{\partial}{\partial r}\left(r\phi\right)$$

then

$$\phi = \overline{h} = \frac{1}{r} \int_0^r h(u, s) \, ds$$
 or $\frac{\partial \phi}{\partial r} = \frac{\partial \overline{h}}{\partial r} = \frac{h - \overline{h}}{r}$

where the bar denotes the mean value between 0 and r.

• Small data: dispersive solution, asymptotically Minkowski (CMP86)

$$|h(u,r)|\lesssim rac{1}{(1+r+u)^3} \quad,\quad |\partial_r h(u,r)|\lesssim rac{1}{(1+r+u)^4}$$

• Large Data: Collapse into a black hole [] If the final Bondi mass is finite then the exterior is asymptotically schwarzschild

$$r \leq 2M_f$$

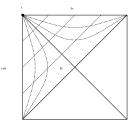
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Spherical linear waves in de Sitter spacetime (arxiv:1107.0802v1[gr-qc])

• De Sitter metric in Bondi coordinates (u, r, θ, φ) :

$$ds^{2} = -\left(1 - \frac{\Lambda}{3}r^{2}\right)du^{2} - 2dudr + r^{2}d\sigma^{2}$$

- Cosmological horizon : $g_{uu} = 0 \Rightarrow r_c = \sqrt{rac{3}{\Lambda}}$
- Local region: 0 ≤ r < r_c
- Cosmological region: $r_c < r < \infty$
- Penrose diagram:



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The evolution equation

• Wave equation: First-order PDE

$$\left[\frac{\partial}{\partial u}-\frac{1}{2}\left(1-\frac{\Lambda}{3}r^2\right)\frac{\partial}{\partial r}\right]h(u,r)=-\frac{\Lambda}{3}(h-\bar{h})$$

• With initial data given in a future light cone

$$h(u=0,r)=h_0(r)$$

• The integral lines of D (infalling light rays) are the characteristics, i.e, the solutions to

$$\frac{dr}{du} = -\frac{1}{2}\left(1 - \frac{\Lambda}{3}r^2\right)$$

• In the local region $(r < r_c)$:

$$r(u) = \sqrt{rac{3}{\Lambda}} \tanh\left(rac{1}{2}\sqrt{rac{\Lambda}{3}}(c-u)
ight)$$

• In the cosmological region (r > r_c):

$$r(u) = \sqrt{\frac{3}{\Lambda}} \coth\left(\frac{1}{2}\sqrt{\frac{\Lambda}{3}}(c-u)\right)$$

Existence and uniqueness

• The solution is the fixed point of the operator

$$\mathcal{F}(h)(u_1, r_1) = h_0(r_0)e^{-\frac{\Lambda}{3}\int_0^{u_1} r(v)dv} - \frac{\Lambda}{3}\int_0^{u_1} r(u)\bar{h}(u, r(u))e^{-\frac{\Lambda}{3}\int_u^{u_1} r(v)dv}du$$

• Given
$$U, R > 0$$
, let $C_{U,R}^0$ denote t $\left(C^0([0, U] \times [0, R]), \|\cdot\|_{\mathcal{C}_{U,R}^0} < \infty\right)$, where
 $\|f\|_{\mathcal{C}_{U,R}^0} := \sup_{(u,r) \in [0, U] \times [0, R]} |f(u, r)|,$

• Existence and uniqueness of a fixed point is given by the *contraction mapping theorem*:

$$\|\mathcal{F}(h_1) - \mathcal{F}(h_2)\|_{\mathcal{C}^0_{U,R}} \leq \sup_{\substack{(u_1,r_1) \in [0,U] \times [0,R] \\ :=\sigma}} \left\{ 1 - e^{-\frac{\Lambda}{3} \int_0^{u_1} r(s)ds} \right\} \|h_1 - h_2\|_{\mathcal{C}^0_{U,R}}$$

if $0 \le \sigma < 1$. • $\sigma_{loc}(U) = 1 - \frac{e^{-\sqrt{\frac{\Lambda}{3}}U}}{4}$, $\sigma_{hor}(U) = 1 - e^{-\sqrt{\frac{\Lambda}{3}}U}$, $\sigma_{cosm}(U, R) = 1 - \frac{3}{\Lambda} \frac{e^{-\sqrt{\frac{\Lambda}{3}}U}}{R^2}$

- Uniqueness garantees the existence of a unique global solution.
- If the data is C^k then the solution is C^k .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Boundedness in terms of the data

• If $\|h\|_{\mathcal{C}^0} \le \|h_0\|_{\mathcal{C}^0}$, then

$$\begin{split} |\mathcal{F}(h)(u_{1},r_{1})| &\leq \|h_{0}\|_{\mathcal{C}^{0}} \ e^{-\frac{\Lambda}{3}\int_{0}^{u_{1}}r(s)ds} + \|\bar{h}\|_{\mathcal{C}^{0}} \ \frac{\Lambda}{3}\int_{0}^{u_{1}}r(v)e^{-\frac{\Lambda}{3}\int_{v}^{u_{1}}r(s)ds}dv \\ &\leq \|h_{0}\|_{\mathcal{C}^{0}} \underbrace{\left(e^{-\frac{\Lambda}{3}\int_{0}^{u_{1}}r(v)dv} + \frac{\Lambda}{3}\int_{0}^{u_{1}}r(u)e^{-\frac{\Lambda}{3}\int_{u}^{u_{1}}r(v)dv}du\right)}_{\equiv 1} = \|h_{0}\|_{\mathcal{C}^{0}} \ . \end{split}$$

Now consider the sequence

$$\begin{cases} h_0(u,r) = h_0(r) \\ h_{n+1} = \mathcal{F}(h_n) \end{cases}$$

We have already established that, for any U > 0 and $R \ge r_c$, h_n converges in $C_{U,R}^0$ to h, the solution of our problem. Then the above result tells us that

$$\|h_n\|_{\mathcal{C}^0_{U,R}} \le \|h_n\|_{\mathcal{C}^0} \le \|h_0\|_{\mathcal{C}^0}$$

and so

$$\|h\|_{\mathcal{C}^{0}_{U,R}} = \lim_{n \to \infty} \|h_n\|_{\mathcal{C}^{0}_{U,R}} \le \|h_0\|_{\mathcal{C}^{0}}$$

• We can differentiate

$$D(\partial_r h) = -2\frac{\Lambda}{3}r(\partial_r h)$$

• Integrating the last equation along the (ingoing) characteristics,

$$\partial_r h(u_1, r_1) = \partial_r h_0(r_0) e^{-2\frac{\Lambda}{3} \int_0^{u_1} r(s) ds}.$$
 (1)

It is then clear that initial data controls the supremum norm of $\partial_r h$.

- Let $d_0 = \|(1+r)^p \partial_r h_0\|_{\mathcal{C}^0}$. If $0 \le p \le 4$ and $H \le 2\sqrt{\Lambda/3}$, then
- Cosmological region:

$$\sup_{(u_1,r_1)\in[0,U]\times[r_c,R]} \left| (1+r_1)^p e^{Hu_1} \partial_r h(u_1,r_1) \right| \le 2^p (2\alpha+1)^p d_0 \ .$$

local region:

$$\sup_{(u_1,r_1)\in[0,U]\times[0,r_c]} \left| (1+r_1)^p e^{Hu_1} \partial_r h(u_1,r_1) \right| \le 16d_0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

A Price-law: Uniform exponential decay in Bondi time

• Basic estimate:

$$\begin{split} |h(u,r) - \bar{h}(u,r)| &\leq \frac{1}{r} \int_0^r |h(u,r) - h(u,s)| \, ds \\ &\leq \frac{1}{r} \int_0^r \int_s^r |\partial_\rho h(u,\rho)| \, d\rho \, ds \\ &\lesssim \frac{1}{r} \int_0^r \int_s^r \frac{e^{-Hu}}{(1+\rho)^p} d\rho \, ds \lesssim \begin{cases} \frac{e^{-Hu}}{1+r} &, & 2$$

• From the main evolution equation

$$\begin{aligned} |\partial_u h| &= \left| Dh + \frac{1}{2} \left(1 - \frac{\Lambda}{3} r^2 \right) \partial_r h \right| \\ &\leq \left| -\frac{\Lambda}{3} r \left(h - \overline{h} \right) \right| + \frac{1}{2} \left| \left(1 - \frac{\Lambda}{3} r^2 \right) \partial_r h \right| \lesssim (1 + r)^{n(p)} e^{-Hu} , \end{aligned}$$

with

$$n(p) = \begin{cases} 0 & , & 2$$

Now since ∂_uh is integrable with respect to u, by the fundamental theorem of calculus, the limit exists

$$\lim_{u\to\infty}h(u,r)=\underline{h}(r)\;.$$

• On the other hand

$$\begin{split} |\underline{h}(r_2) - \underline{h}(r_1)| &= \lim_{u \to \infty} |h(u, r_2) - h(u, r_1)| \\ &\leq \lim_{u \to \infty} \left| \int_{r_1}^{r_2} |\partial_r h(u, r)| dr \right| \\ &\lesssim \lim_{u \to \infty} |r_2 - r_1| e^{-Hu} = 0 \;, \end{split}$$

and, consequently, there exists $\underline{h} \in \mathbb{R}$ such that

$$\underline{h}(r) \equiv \underline{h}$$
.

• Finally

$$\begin{split} |h(u,r) - \underline{h}| &\leq \int_{u}^{\infty} |\partial_{v} h(v,r)| \, dv \\ &\lesssim \int_{u}^{\infty} (1+r)^{n(p)} e^{-Hv} dv \\ &\lesssim (1+r)^{n(p)} e^{-Hu} \, . \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Einstein- Λ scalar field system in Bondi coordinates

• Sphericallly symmetric metric in Bondi coordinates

$$ds^2 = -g(u, r)\tilde{g}(u, r)du^2 - 2g(u, r)dudr + r^2d\Omega^2$$

- Cosmological radius r_c when $\tilde{g} = 0$ (it is not a null surface!!)
- Einstein Field Equations, $G_{\mu\nu} = \kappa T_{\mu\nu}$:

$$(rr) \qquad \frac{1}{g}\frac{\partial g}{\partial r} = \frac{\kappa}{2}\frac{\left(h-\bar{h}\right)^2}{r}$$
$$(\theta\theta) \qquad \frac{\partial}{\partial r}(r\tilde{g}) = g\left(1-\Lambda r^2\right)$$

• Matter equation: $\nabla^{\alpha} \nabla_{\alpha} \phi = 0$

$$\left[\frac{\partial}{\partial u} - \frac{\tilde{g}}{2}\frac{\partial}{\partial r}\right]h = \left[\frac{g - \tilde{g}}{2r} - g\frac{\Lambda}{2}r\right](h - \bar{h})$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Using the boundary condition g(u, r = 0) = 1 we integrate the ODE (rr)

$$g(u,r) = e^{rac{\kappa}{2}\int_0^r rac{(h-ar{h})^2}{s}ds}$$

• Moreover, integrating equation $(\theta\theta)$, which is also an ODE at each u,

$$\tilde{g}(u,r) = \bar{g} - \frac{\Lambda}{r} \int_0^r g s^2 ds$$

assuming $ilde{g}$ finite. For $ilde{g}=0$ this eq. gives a lower bound for $1/\sqrt{\Lambda} < r_c.$

• Then g is a monotonically nondecreasing function of r at each u, and

$$\tilde{g} \leq \bar{g} \leq g$$
, and $1 \leq g$.

Also from continuity of g and the fact that $\lim_{r\to 0} r^2 g(u,r) = 0$, it follows that

$$\lim_{r\to 0}\tilde{g}(u,r)=\lim_{r\to 0}\bar{g}(u,r)=g(u,0)=1.$$

The mass equation

• We introduce the local mass function defined by: (Renormalized Hawking mass)

$$m(u,r) = \frac{r}{2} \left(1 - \frac{\tilde{g}}{g} - \frac{\Lambda}{3}r^2 \right)$$
(2)

which is the mass contained within the sphere of radius r at retarded time u. It is zero at r = 0 and positive or zero $m(u, r) \ge 0$, for r > 0 if and only if

$$\frac{\tilde{g}}{g} \le 1 - \frac{\Lambda}{3}r^2 \tag{3}$$

Thus for all u, the cosmological radius, r_c , is bounded by

$$\sqrt{\frac{1}{\Lambda}} < r_c(u) \le \sqrt{\frac{3}{\Lambda}} \tag{4}$$

in particular $r_c = \sqrt{3/\Lambda}$ if and only if the mass vanishes. So for $0 < r \le r_c < \sqrt{3/\Lambda}$ the mass is nonnegative and m < r/2.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Differentiating the mass function

$$\frac{\partial m}{\partial r} = \frac{\kappa}{2} \frac{\tilde{g}}{2g} (h - \bar{h})^2$$
$$\frac{\partial m}{\partial u} = -\frac{r}{2} \frac{\partial}{\partial u} \left(\frac{\tilde{g}}{g}\right)$$

and the mass derivative along the incoming light rays is

$$Dm = -rac{\kappa}{2g}r^2(Dar{h})^2$$

Thus for $r \leq r_c(u)$, we have m(u, r) is a monotonically nondecreasing function of r at each u, and m(u, r) is monotonically nonincreasing function along the incoming light rays.

• Now, let **v** be a vector-field tangent to the curve $r_c(u)$, i.e.

$$\mathbf{v}[\tilde{g}] = 0 \quad \Rightarrow \quad (\partial_u \tilde{g}) v^u + (\partial_r \tilde{g}) v^r = 0$$

We have that $\partial_r \tilde{g} < 0$ at r_c , then in order to **v** be future-oriented we write

$$\mathbf{v} := -(\partial_r \tilde{g}) \frac{\partial}{\partial u} + (\partial_u \tilde{g}) \frac{\partial}{\partial r}$$

it follows that its norm is given by

$$\mathbf{g}(\mathbf{v},\mathbf{v}) = 2g(\partial_r \tilde{g})(\partial_u \tilde{g}) \leq 0$$

and **v** is time-like (or null if $\partial_u \tilde{g} = 0$).

Also

$$\mathbf{v}[r] = \partial_u \tilde{g} = \kappa r (\partial_u \phi)^2 \ge 0$$

and

$$\mathbf{v}[m] = \frac{\kappa}{2} r^2 \frac{(D\bar{h})^2 (\partial_r \tilde{g})}{g} < 0$$

Thus

$$\frac{d}{du}r_c(u)\geq 0$$

and the cosmological horizon is a nondecreasing function of u. This implies that the limit

$$\lim_{u\to\infty}r_c(u):=r_1$$

exists, and $r_1 \leq \sqrt{3/\Lambda}$, while

$$\frac{d}{du}m(u,r_c(u))\leq 0$$

and $m(u, r_c)$ is monotonically nonincreasing function of u. Then since m(u, r) is nonnegative for $r \leq r_c$, the limit

$$\lim_{u\to\infty} m(u,r_c(u)) := M_1 = \frac{r_1}{2} \left(1 - \frac{\Lambda}{3}r_1^2\right)$$

exists, with $M_1 < 1/(3\sqrt{\Lambda})$. If $r_1 = \sqrt{3/\Lambda}$ then $M_1 = 0$ and we have asymptotically the trivial solution (de Sitter), otherwise we get a Schwarzschild-de Sitter solution.