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�it is the glory of geometry that from those few principles,

brought from without, it is able to produce so many things.�

Isaac Newton, Newton's Principia, 1687
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Abstract

Probing black hole spacetimes through quasinormal modes, light rings and

shadow images

Zeus Sales Moreira

Advisor: Prof. Dr. Carlos Alberto Ruivo Herdeiro

We begin by analyzing the quasinormal modes of a Schwarzschild black hole modi�ed by

Loop Quantum Gravity, which exhibits a regular global structure. We study massless scalar

�eld perturbations in this quantum corrected spacetime and compute quasinormal modes us-

ing the three methods (WKB, Leaver, and Prony) to ensure consistency. We discuss patterns

emerging from the overtone analysis and obtain the time pro�le of a scalar Gaussian wave

packet. Next, we investigate a Schwarzschild black hole embedded in a rotating background,

known as the swirling universe, which can be obtained through the Ernst formalism. We

analyze the null geodesic �ow, the existence of light rings, and shadows. Our �ndings reveal

that the swirling background displaces the Schwarzschild black hole's light rings outside the

equatorial plane, causing them to counter-rotate relative to each other while co-rotating

with the swirling universe. Using backward ray-tracing, we obtain the black hole's shadow

and lensing e�ects. Notably, for equatorial observers, the shadow exhibits an unusual Z2

(north-south) asymmetry, inherited from the background. Finally, we study a spinning

generalization the Majumdar-Papapetrou multi-black hole spacetime. By analyzing the dy-

namics of null geodesics, we identify various light ring con�gurations, yielding cases with 4,

6, and 8 light rings. Using the backward ray-tracing method, we simulate images of this

binary system, showing that its shadow closely resembles that of the double-Kerr metric.

Keywords: black holes, quasinormal modes, light-rings, shadows

Knowledge areas:1.05.01.03-7, 1.05.03.01-3.

Belém-Pará

2025



Resumo

Sondando espaços-tempos de buracos negros com modos quasinormais e

sombras

Zeus Sales Moreira

Orientador: Prof. Dr. Carlos Alberto Ruivo Herdeiro

Começamos analisando os modos quasinormais de um buraco negro de Schwarzschild modi�-

cado pela Gravidade Quântica em Loop, que exibe uma estrutura global regular. Estudamos

perturbações de campos escalares massivos nesse espaço-tempo corrigido quanticamente e

calculamos os modos quasinormais utilizando três métodos (WKB, Leaver e Prony) para

garantir a consistência. Discutimos padrões emergentes da análise de sobretons e obtemos

o per�l temporal de um pacote de onda Gaussiano escalar. Em seguida, investigamos um

buraco negro de Schwarzschild imerso em um fundo rotacional, conhecido como swirling

universe, que pode ser obtido por meio do formalismo de Ernst. Analisamos o �uxo das

geodésicas nulas, a existência de anéis de luz e as sombras. Nossos resultados revelam que

o fundo rotacional desloca os anéis de luz do buraco negro de Schwarzschild para fora do

plano equatorial, fazendo com que eles sejam contra-girantes entre si e co-girantes com o

swirling universe. Utilizando o método de backward ray-tracing, obtemos a sombra do bu-

raco negro e seus efeitos de lente gravitacional. Notavelmente, para observadores equatoriais,

a sombra exibe uma incomum assimetria Z2 (norte-sul), herdada do espaço de fundo. Por

�m, estudamos uma generalização girante do espaço-tempo de múltiplos buracos negros de

Majumdar-Papapetrou. Ao analisar a dinâmica das geodésicas nulas, identi�camos várias

con�gurações de anéis de luz, resultando em casos com 4, 6 e 8 anéis. Usando o método de

backward ray-tracing, simulamos imagens desse sistema binário, mostrando que sua sombra

se assemelha fortemente à da métrica de double-Kerr.

Palavras-chave: buracos negros, modos quasinormais, anéis de luz, sombras

Áreas de Conhecimento: 1.05.01.03-7, 1.05.03.01-3.
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Chapter 1
The path to General Relativity and

black holes

1.1 Geometry: the language of space(time)

�What can be said at all can be said clearly; and whereof

one cannot speak thereof one must be silent.�

Ludwig Wittgenstein, Tractatus logico-philosophicus, 1921

This quote from Wittgenstein resonates deeply with the essence of theoretical physics.

At its core, theoretical physics seeks to represent our understanding of the physical world

through a precise and logically consistent formalism. To describe the natural world accu-

rately, one must use a language that conveys its phenomena properly. Mathematics is that

language, providing a universal and objective framework for expressing the fundamental laws

of physics.

Geometry originated as a practical science for measuring distances and angles in ancient

civilizations, serving various purposes, and gradually evolving into an abstract mathemat-

ical �eld�a language to talk about space. Euclid's Elements, a compilation of 13 books,

represents one of the earliest axiomatic treatments of geometry, deriving a chain of propo-

sitions from �ve axioms1. While the �rst four postulates appeared self-evident, the �fth

1While Euclid's �rst four postulates lack full compatibility with modern mathematical axiomatizations,
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postulate�often called the parallel postulate�stood out as less intuitive2. For centuries,

mathematicians questioned whether it was truly fundamental or could be derived from the

other axioms. These e�orts, however, ultimately revealed the limitations of Euclidean ge-

ometry's universality and led to the discovery of entirely new geometries, later referred to

by Gauss as non-Euclidean geometries.

The conceptualization of geometry has undergone profound transformations since Eu-

clid's contributions. In the axiomatic structure of Euclidean and non-Euclidean geometries,

the very notion of space is left unde�ned, with its characteristics emerging solely through

the axioms. A major shift occurred with the study of curves and surfaces embedded is some

particular pre-de�ned space (e.g., R2 or R3). Newton, in his famous The Method of Flux-

ions and In�nite Series, was the �rst3 to propose a de�nition of curvature4 of curves on R2.

Later, Gauss in his paper General Investigations of Curved Surfaces, applied this notion to

de�ne the intrinsic curvature5 of surfaces embedded in R3.Furthermore, Gauss's Theorema

Egregium demonstrated that this de�ned surface curvature is a geometric invariant, meaning

it is determined entirely by the intrinsic metric properties [5].

Riemann took an important step toward the abstraction of the underlying space where

geometry takes place. At the faculty of Göttingen University, he delivered his habilitation

lecture titled On the Hypotheses Which Lie at the Foundations of Geometry, one of the most

in�uential works in the entire history of di�erential geometry. Building on Gauss's ideas,

Riemann introduced the concept of manifolds6 as a n-dimensional generalization of smooth

they can be reformulated with greater precision, as demonstrated by Hilbert [1].
2In Playfair's axiom form, the �fth postulates reads: given a line l0 and a point p not on it, there exists

exactly one line l parallel to l0 passing through the point p.
3The �rst published discussion of the curvature of a curve came from Huygens in 1673. In contrast, New-

ton's work on the subject, completed in 1671, remained unpublished during his lifetime and only appeared

posthumously in 1736, several years after his death [2].
4The curvature of plane curves may be de�ned as the reciprocal of the radius of the osculating circle at

that point [3]
5Given the curvatures of all plane curves on the surface passing through a given point, the Gaussian

curvature is de�ned as the product of the maximum and minimum curvatures at that point [4]
6Although the formal notion of topological spaces, which is essential for a rigorous de�nition of manifolds,

was developed later in the 19th century, Riemann's work anticipated many of these ideas while not addressing

the full global nature of manifolds [2].
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surfaces, endowed with its own intrinsically de�ned metric. This innovative framework al-

lowed Riemann to generalize the Gauss curvature to higher dimensions through the Riemann

curvature tensor [6]. His pioneering ideas were later expanded and formalized by Ricci, Levi-

Civita, and Christo�el, who developed proper notions of tensors and connections [2, 7].

�Geometry and Experience� is a paper written by the german physicist Albert Einstein,

based on a lecture he delivered at the Prussian Academy of Sciences in 1921 [8]. The

work discusses the epistemological nature of geometry, exploring the relationship between

mathematics and physical reality. Einstein highlights a fundamental question in this debate:

Why does mathematics, a creation of human thought independent of experience, apply so

e�ectively to reality? Einstein addresses this question with a very clever answer: �As far as

the laws of mathematics refer to reality, they are not certain; and as far as they are certain,

they do not refer to reality�.

According to Ref. [8], in classical geometry, axioms were seen as self-evident truths,

derived from human intuition about space. Nevertheless, in modern axiomatic geometry,

axioms are no longer considered self-evident, but rather arbitrary de�nitions. For example,

consider the Euclidean axiom: �Through two points, there is exactly one straight line�. Tra-

ditionally, this statement was considered a simple fact about space, because we intuitively

�know� what a �point� and a �straight line� are. However, in the modern axiomatic ap-

proach, the terms �point� and �straight line� have no inherent meaning outside the logical

system de�ned by axioms. The Euclidean axiom serves as an implicit de�nition of �point�

and �straight line�. This shift in perspective, in�uenced by modern mathematical logic, helps

clarify that mathematics, by itself, does not describe reality, until its content is associated

with physical objects, e.g. solid bodies behave as objects in Euclidean geometry.

Hence, according to these ideas, all these elegant geometric constructions of manifolds

with arbitrary dimensions, metric structures, connections and so on, are devoid of empirical

value. Even so, motivated by the equivalence principle (which will be discussed in the next

section), Einstein connected geometry with physical reality. Geometry rather than being

merely a language of space, becomes the language of spacetime and forms the mathematical

backbone of General Relativity (GR).
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1.2 General Relativity

�The equations are smarter than we are. Albert Einstein

was pretty smart... but he never knew about black holes, he

never fully understood gravitational waves, and he was

always somewhat uncomfortable with the idea of the Big

Bang. The equations just sat back smugly and said, `You'll

�gure it out eventually.' �

�Sean Carroll, The Secrets of Einstein's Unknown

Equation, Royal Institution Lecture

Newton's Philosophiae Naturalis Principia Mathematica is widely regarded as one of

the most important works in the history of science, laying the theoretical groundwork for

classical mechanics. The preface to Principia re�ects about the relation between mechanics

and geometry, revealing the profound in�uence of earlier geometers on his ideas [9]. In

fact, the concept of Euclidean space E3 (i.e. R3 equipped with the Euclidean distance ds2 =

dx2+dy2+dz2) mathematically formalized his own idea of absolute space�a �xed, immutable

background that neither in�uences the motion of matter nor is in�uenced by it. Alongside

absolute space, Newton also postulated absolute time, a structure that de�nes an observer-

independent notion of simultaneity7. Hence, in Newtonian mechanics, measurements of

length and time intervals do not depend on the observer.

One of the greatest triumphs of Newtonian mechanics came with Newtonian gravity. This

theory is governed by an elliptic equation. Hence, any change in the position of one mass is

instantaneously re�ected in the gravitational force experienced by another. For example, in

the two-body problem, the gravitational force acting on each mass depends directly on the

instantaneous position of the other.

While Newtonian mechanics is symmetric under the action of the Galilean group, elec-

trodynamics is invariant under Lorentz transformations, a fundamental con�ict related to

the invariance of the speed of light. However, Einstein proposed modifying mechanics to

7The Newtonian concepts of space and time can made more precise in Newton-Cartan theory. See for

instance [10]
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accommodate the Lorentz group as its symmetry group, giving birth to his theory of Special

Relativity (SR). The key to this theory is the relativity of simultaneity, which makes the

invariance of the speed of light possible. As a result, measurements of length and time inter-

vals are observer-dependent. SR can be elegantly formulated using Minkowski spacetime, a

4-dimensional manifold equipped with a �at metric. The Lorentz invariant interval between

events ds in Minkowski spacetime, in rectangular coordinates (xµ) = (t, x, y, z), reads8

ds2 = ηµνdx
µdxν = −dt2 + dx2 + dy2 + dz2, (1.1)

where ηµν = diag(−1, 1, 1, 1) are the components of the Minkowski metric. This interval

is fundamentally di�erent from the Euclidean distance, as it can take zero or negative val-

ues, even when the coordinate displacements are nonzero. In particular, lightlike, or null,

worldlines are characterized by a vanishing spacetime interval, while timelike and spacelike

intervals correspond to negative and positive values, respectively. Causally connected events

are either lightlike or timelike separated, i.e. causal in�uences are constrained to travel at

or below the speed of light.

Hence, Newtonian gravity is not compatible with SR, as was acknowledged by Poincaré in

Ref. [11], who suggested that it should be modi�ed to produce �nite speed interactions (fore-

shadowing aspects of GR)9. Initially, even Einstein considered the possibility of modifying

Newton's theory to align with SR [14]. A natural approach, then, is to explore �eld theories

formulated within Minkowski spacetime. As a pedagogical exercise, Ref. [15] proposes some

�eld theories using scalar, vector, and tensor potentials to model the gravitational �eld, but

all three fail to provide a satisfactory description of gravity10. More solid �eld-theoretic

formulations to gravity may be seen in Refs. [16�22].

Einstein adopted a radically di�erent approach by relating gravitational universal fea-

tures to the geometry of spacetime. A central component of this idea is the Weak Equivalence

Principle (WEP), also known as the universality of the free-fall, which states that test par-

ticles, in a gravitational �eld, behave identically regardless of their internal properties. This

8In this thesis we will be mainly interested in 4-dimensional manifolds and we adopt the signature

(−,+,+,+). We also adopt units such that c = G = 1.
9The idea that gravity should be causally compatible with SR was also conjectured by Lorentz [12,13].
10No bending of light in scalar and vector theories and wrong perihelion precession in all three models.
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principle is re�ected in Newtonian mechanics when one assumes that gravitational and iner-

tial masses are equal. It implies that a gravitational �eld de�nes a set of preferred worldlines

in spacetime, which can be understood as the autoparallel trajectories of a connection. In the

absence of gravity, these worldlines reduce to straight-line motion in Minkowski spacetime,

while in the presence of gravity, the connection becomes curved.

A stronger principle is the (Einstein) Equivalence Principle (EEP): It is impossible to

detect the existence of a gravitational �eld by means of local experiments. Thus, gravity is

not a force like the others fundamental interactions, as it vanishes in certain reference frames,

much like �ctitious forces appear in non-inertial frames, but vanish in inertial ones. Since the

gravitational �eld can disappear in certain frames, it must be described by a non-tensorial

quantity, namely a connection (since a tensor that vanishes in one frame would vanish in

all others), which is consistent with WEP. However, the EEP goes further, as Minkowski

spacetime models physical phenomena in the absence of gravity, the EEP establishes that

spacetime must have a local structure of a Minkowski spacetime. This principle, therefore,

aligns well with the smooth manifold property of being locally Euclidean. As a result,

this requirement imposes a metric structure gµν on spacetime, locally trivializable to the

Minkowski metric. In the standard formulation of GR, the connection must be the Levi-

Civita connection of the metric gµν . This metric must be a solution of the Einstein �eld

equations (EFE)

Rµν −
1

2
gµνR = 8πTµν , (1.2)

where Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the spacetime metric and Tµν is the

energy-momentum tensor. The left-hand side of the equations describes geometric aspects

of spacetime, while the right-hand side is related to the distribution of mass and energy.

This implies that curvature in�uences the distribution and motion of matter in the universe,

while matter, in turn, determines the geometry of spacetime, in stark contrast to Newtonian

mechanics.

The EFE are nonlinear, 10 coupled partial di�erential equations for the metric. To obtain

speci�c solutions, certain assumptions are necessary, such as imposing higher symmetries

and constraining the matter �elds. One of the most important classes of solutions of GR is

the so-called black holes (BHs) (e.g. Schwarzschild [23], Reissner-Nordström (RN) [24, 25],
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Kerr [26], Kerr-Newman [27, 28],...). By de�nition, BHs are regions in spacetime where the

gravitational �eld is so intense that not even light can escape. Astronomical observations,

such as the trajectories of stars showing strong deviations due to an extremely massive and

compact object, provide evidence for the presence of a supermassive BH at the center of our

galaxy [29].

1.3 Gravitational waves and black hole imaging

1.3.1 �Hearing� black holes

The mathematician Mark Kac in 1966 published a paper called �Can one hear the shape

of a drum?� [30]. This problem aims to understand whether the eigenvalues of the Laplacian

operator on a given two-dimensional boundary problem uniquely determine the boundary.

In just one dimension with domain length l, this problem is trivial, since the eigenvalues λn

are given by λn = n2π2/l2, which can be solved for l. Carrying this idea into two dimensions

greatly increases the di�culty of the problem. Nonetheless, Kac's question was answered

in 1992 when mathematicians found two boundaries that produce identical eigenvalues [31],

which physically means that a drum is not always uniquely identi�able by sound alone.

However, later it was shown that if one restricts the boundary to be smooth and the domain

to have some symmetries, Kac's question is answered positively [32�35].

Notably, there is a great mathematical similarity between the equations describing the

ripples in a drum with perturbed BHs [36]. If we think of perturbed BHs as analogues of

drums, then gravitational waves (GWs) must be the analogues of sound waves. Einstein

was the �rst to use the linearized GR approximation to show that GWs are related with

small perturbations hµν to the Minkowski metric ηµν , where the full metric is expressed as

gµν = ηµν + hµν , |hµν |≪ 1 [13, 37]. However, for many decades there was no consensus

if such waves could be indeed detected. In an interview on the Mindscape podcast, hosted

by the physicist Sean Carroll, Kip Thorne discusses how the uncertainty surrounding the

detectability of GWs was resolved [38]:

Sean Carroll: �Wasn't there a famous thought experiment by Feynman that was trying to
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show that GWs were physically real?�

Kip Thorne: �That's right. And so that's one of the compelling things, in which he said,

`Let's take a stick and we'll put some beads on the stick, and there's a little bit of friction

between the beads and the stick. And when the GWs go by, they move the beads back and

forth because they can slide. The stick is sti� and it resists being stretched and squeezed, so

it doesn't move hardly at all, because of its resistance. The beads don't resist, so the beads

go back and forth, and they rub on the stick, they heat the stick up. And if you have a

strongly enough wave, they might even start a �re.' �

Sean Carroll (laughs): �I just loved that example for so many reasons. I mean, everyone

else is sitting there with equations, trying to �gure out what the symmetries are and what's

going on, and he has this stick and beads.�

Kip Thorne: �He's relying on a particular equation called the equation of geodesic

deviation. So another physicist, a mathematical physicist, Felix Pirani, who �rst said `Hey,

this is the equation we should be using to discuss GWs'. So Feynman's remark about this

was at a conference in Chapel Hill, north Carolina, 1956... or 7 (...). Anyway, Felix Pirani

was almost that same time, just within a year or so.�

Any orbiting pair of astrophysical objects produces GWs, but only those su�ciently

compact and moving very rapidly can produce detectable signals for the current generation

of GWs detectors. This makes binary BH (BBH) ideal systems for detecting GWs. The

collision of BHs can be divided in three stages: (i) inspiral: The BHs orbit around each

other, getting closer due to loss of energy through GWs; (ii) merger: the actual collision

of the two BHs and (iii) ringdown: The merged BH relaxes to its equilibrium form (widely

believed to be a Kerr BH [26]). The GW signal produced by the binary carries a very

characteristic signature [39�41], which in turn can reveal properties of the BH itself [42�44].

Identifying objects through their characteristic response to perturbations places BHs (and

other compact objects) in a striking parallel with Kac's question about eigenvalues of the

Laplace operator [45].

Various gravitational-wave detectors have been built and improved, culminating in the

current generation of instruments that have reached a sensitivity where there GW signals

may be measured. Recent breakthroughs in this area have been marked by several detections
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of compact binary mergers, made by the LIGO/Virgo/KAGRA collaboration [46�48]. These

observations provide crucial insights into the �nal moments before the coalescence of BBHs,

as well as the properties of the resulting remnant.

In a perturbed physical system, the modes of vibration associated with energy dissipation

are called quasinormal modes (QNMs). Thus, the ringdown phase of the coalescence of

a BBH is essentially characterized by the corresponding QNMs [44, 49]. The BH QNMs

program is fundamentally based on linearized pertubation of �elds on a given BH spacetime.

Due to the energy loss in the form of GWs through the event horizon and in�nity, we

lose the nice properties of self-adjoint problems, such as completeness and normalizability

of the eigenfunctions and the spectrum becomes complex [50, 51]. The real part of the

eigenfrequencies are the standard oscillation frequency, whereas the imaginary part is related

to the wave damping.

The study of BH perturbations began with the work of Regge and Wheeler [36] and

was further developed by Zerilli [52, 53]. The problem of �nding the QNM frequencies was

investigated for the �rst time in a famous paper written by Chandrasekhar and Detweiler as

a (non self-adjoint) boundary problem [54]. Later on, Leaver developed a simple, but very

powerful approach to this problem [55]. Since then, the calculation of (scalar, vector, grav-

itational and spinorial) QNMs for the main BHs in asymptotically �at spacetime, namely:

RN [56�62], Kerr [55, 63, 64] and Kerr-Newman [65�67], has been carried out and cataloged

in tables with great precision.

1.3.2 �Seeing� black holes

�There are no shadows in the dark. Shadows are the

servants of light�

George R. R. Martin, A Clash of Kings

The Scottish physicist James Clerk Maxwell, beyond his fundamental contributions to

Electrodynamics and Statistical Mechanics, was also deeply interested in the study of color

vision [68]. In his work �Experiments on Colour, as Perceived by the Eye, with Remarks on

Colour-Blindness�, Maxwell analyzed how di�erent colors could be combined and perceived
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by the human eye. Among his key �ndings, he identi�ed three primary colors�red, green,

and blue�as the fundamental basis of human color vision, a concept that would later become

essential in modern RGB (red-green-blue) color models [69].

Figure 1.1: Image of a tartan ribbon, presented by Maxwell in his 1861 lecture to the Royal

Institution [70].

In May 1861, Maxwell was invited to lecture at the Royal Institution on color vision [71].

Seeking a visual demonstration, he produced the �rst color photograph ever made. Using a

method based on three black-and-white photographs, each taken with red, green, and blue

�lters. By projecting these �ltered images with white light, and again using the respective

�lters, he reconstructed a full-color image. The photograph presented in the lecture can be

visualized in Fig. 1.1.

Maxwell's experiment provides valuable insights into the process of generating images.

To take a picture we need three key components: (i) The object to be imaged, which re�ects,

absorbs, or emits light to create visual information; (ii) A light source, allowing the object to

be visible; and (iii) An observer, represented by the projecting camera in Maxwell's lecture.

In Fig. 1.2, we present a schematic illustration depicting the interplay between these four

components. For instance, the image observed by a camera positioned inside a sphere (also

called a celestial sphere), emitting radiation isotropically and marked with grid lines, playing

the role of the object, is displayed in Fig. 1.3. We also, for later reference, displayed an image

with the celestial sphere partitioned into four quadrants, each designated by a distinct color:

red, green, blue, and yellow. In addition to dividing the celestial sphere into four colors, we
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Figure 1.2: Schematic representation of the needed components to produce an image.

also insert a white �lled circle on the celestial sphere, right in front of the observer, which

will be behind the BH.

Figure 1.3: Observed pattern of inside a white sphere with grid lines.

In this Thesis, we are particularly interested in images of BHs. Although (classical)

BHs do not emit any form of radiation, surrounding light sources make them observable.

As a result, the 2-dimensional image of a BH illuminated from the back appears as a dark

silhouette against a luminous background. The region in the image plane where no light is

detected, resembling a black disk, is known as the BH's shadow [72].

Technological advancements have enabled us to locate and capture photographs of BHs.
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These images, reported by the Event Horizon Telescope (EHT)11, are of the supermassive

BHs Sgr A* and M87* [73, 74]. A remarkable consequence of the EEP is that light bends

in the presence of a gravitational �eld. Exploring how light bends around compact objects

is a crucial aspect of Einstein's theory. The �rst experimental con�rmation of GR was the

observation of the gravitational de�ection of light during a solar eclipse in 1919 [75,76]. The

phenomenon of gravitational lensing was investigated by Einstein himself. He studied the

case when there is an alignment of the light source, the compact object and the observer,

causing the appearance of a ring-like structure, now called Einstein ring [77]. With the

landmark observations of the EHT [73, 74], the study of the gravitational lensing and the

observational aspects of ultracompact objects, not only BHs but also BH foils such as boson

stars, has become a very active area of research - see e.g. Refs. [78�103]

Near a BH, light can undergo substantial bending, creating circular trajectories called

light rings (LRs). In Refs. [104,105], two theorems concerning the presence of LRs in generic

contexts were established. The �rst of them demonstrates the existence of pairs of LRs

around horizonless ultracompact objects, while the second establishes the existence of LRs

speci�cally for BHs. These theorems do not rely on the Einstein (or other �eld) equa-

tions, but only on appropriate boundary conditions together with a topological technique.

Both proofs were formulated based on a set of assumptions that encompass a broad range

of spacetimes with physical relevance. An essential assumption is that the spacetime is

asymptotically �at. Subsequently, extensions of the LR theorems for di�erent asymptotics

were put forward, covering cases such as Schwarzschild de Sitter and anti de Sitter [106],

Schwarzschild-Melvin [107], Schwarzschild-dilatonic-Melvin [108] and Kerr-Newman Taub-

NUT [109] spacetimes.

The idea of bound orbits that neither falls into the BHs nor escape to in�nity encompasses

more than just LRs. While LRs are a prominent example, they belong to a broader class

of null trajectories known as fundamental photon orbits (FPOs) [110]. This set of orbits

are associated with points on the shadow edge of a BH. The BH shadow can serve as an

11One of the telescopes used by the EHT collaboration is named the James Clerk Maxwell Telescope.

We may interpret that this name honors not only Maxwell's contributions to electrodynamics, but also his

pioneering work in image generation.
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important signature of its underlying spacetime, potentially enabling the identi�cation of the

speci�c type of BH being observed. The shadow of the Schwarzschild BH observed by a static

observer was obtained by Synge [111]. The shadow of the Kerr BH was �rst investigated by

Bardeen [112]. However, there are cases where the shadows of totally di�erent objects may

exhibit similar patterns or even appear identical [113].

Liouville integrable spacetimes allow separation of variables and analytic expressions for

the shadow's boundary. This is the case of Kerr BHs, which includes a Carter constant in

addition to the conserved energy, angular momentum and particle's mass [114]. In spacetimes

where the geodesic equations cannot be separated, the shadows and gravitational lensing

phenomena can only be analyzed by numerical integration methods. A more computationally

expensive method is based on evolving the light rays from the light sources to the camera.

A more e�cient approach to achieving the same result involves numerically evolving null

geodesics backward in time, starting from the observer's position. This process continues

until the light rays are either absorbed by the BH or scattered toward surrounding light

sources. This method is known as the backward ray-tracing technique [107,108,115�117]. In

this thesis, we only consider the previous described setup of a illuminated celestial sphere.

As an example, we display in Fig. 1.4 an image of a Kerr BH. The observer is chosen to

be the ZAMO frame. By comparing the two images of Fig. 1.4, we conclude that the use

of colors in the celestial sphere greatly enhances the understanding of gravitational lensing

e�ects. For more details on the backward ray-tracing method we refer the reader to [115].

1.4 A brief overview of the thesis

Starting in the 1960s, due to several astronomical discoveries related with pulsar, quasars

and cosmic background radiation, Einstein's theory of GR experienced a new series of ex-

perimental con�rmations [118, 119]. More recently, we had the detection of GWs and the

caption of shadow images of M87* and Sgr A*, as discussed in Sec. 1.3. So GR is an excep-

tionally well-tested theory that establishes a big paradigm in physics. As a result, much of

phenomenological research in gravitation naturally gravitates around GR�either reinforcing

its paradigm or seeking deviations from it, motivated by various theoretical considerations.
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Figure 1.4: Shadow of an extremal Kerr BH using the backward ray-tracing method.

This thesis explores BH models within GR and beyond, with speci�c motivations detailed at

the beginning of each chapter. Our analysis primarily examines QNMs, LRs, and shadows,

each of which provides an indirect signature of the spacetime in examination. The rest of

this Thesis is divided into more 2 parts. Each part has one or more chapters, based on the

results of one or more scienti�c works published, accepted or submitted.

� Part II: Quasinormal modes

� Zeus S. Moreira, Haroldo C. D. Lima Junior, and Luís C. B. Crispino, Quasinor-

mal modes of a holonomy corrected Schwarzschild black hole, Phys. Rev. D 107,

104016 (2023).

In Chap. 2 we analyze the QNMs of a Schwarzschild BH with Loop Quantum Gravity

(LQG) corrections, where a regular black bounce structure replaces the singularity.

Using the WKB, Leaver, and Prony methods, we compute the frequencies and in-

vestigate deviations in high overtones from the Schwarzschild case. The time pro�le

of a Gaussian scalar perturbation reveals that, at late times, the power-law behavior

remains indistinguishable from that of Schwarzschild.

� Part III: Black hole imaging
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� Zeus S. Moreira, Carlos A. R. Herdeiro, and Luís C. B. Crispino, Twisting shad-

ows: Light rings, lensing, and shadows of black holes in swirling universes, Phys.

Rev. D 109, 104020 (2024).

� Zeus S. Moreira, Carlos A. R. Herdeiro, and Luís C. B. Crispino, Spinning gen-

eralizations of Majumdar-Papapetrou multi-black hole spacetimes: light rings,

lensing and shadows, arXiv:2502.01759 [gr-qc] (2025). (Submitted to Phys. Rev.

D)

In Chap. 3 we investigate the null geodesic �ow and, in particular, the existence of

light rings in this vacuum geometry. By evaluating the total topological charge w,

we show that there exists one unstable light ring (w = −1) for each rotation sense of

the background. We observe that the swirling background drives the Schwarzschild

BH light rings outside the equatorial plane, displaying counter-rotating motion with

respect to each other, while (both) co-rotating with respect to the swirling universe.

Using backwards ray-tracing, we obtain the shadow and gravitational lensing e�ects,

revealing a novel feature for observers on the equatorial plane: the BH shadow displays

an odd Z2 (north-south) symmetry, inherited from the same type of symmetry of the

spacetime itself: a twisted shadow.

In Chap. 4 we explore the dynamics of null geodesics on this geometry, focusing on the

two-center solution. Using the topological charge formalism, we show that various light

ring arrangements arise from di�erent choices of individual angular momenta: light

rings with opposite topological charges can merge and annihilate each other, resulting

in con�gurations with a total of 4, 6, or 8 light rings. Using backward ray-tracing,

we obtained the shadow and lensing of these spacetimes. The former, in particular,

closely resembles those for the double-Kerr metric.
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Quasinormal modes



Chapter 2
Quasinormal modes of a loop quantum

corrected black hole

2.1 E�ective models of quantum black holes

One of the most fundamental and longstanding issues in GR is the inevitability of space-

time singularities in physically relevant solutions of the EFE. Most relativists believe that

GR is not the �nal theory of gravity and should be replaced by some quantum theory. It is

widely belived that in a �nal quantum gravity theory, spacetime will not be plagued with

singularities. The very early universe [120], the interior of BHs [121] and the last stages

of BH evaporation [121] are examples of physical scenarios where quantum e�ects play a

fundamental role, and GR can no longer give a precise description of the gravitational �eld.

While all available observational data remain in strong agreement with the predictions of

GR, these unresolved theoretical challenges strongly indicate the presence of new physics.

However, despite substantial e�orts and progress over the past few decades, a de�nitive

theory of quantum gravity does not yet exist. This is one of the biggest open questions in

theoretical physics to date, i.e. how to reconcile gravity with quantum mechanics.

The idea of canonically quantizing gravity, considering the spatial metric and its con-

jugate momentum as canonical variables, led to some problems [122]. Since the constraint

equations are non-polynomial functions of the canonical variables, their corresponding oper-

ator equations in the quantum formulation are not well-de�ned [123]. Due to Sen, Ashtekar
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and Barbero, a new set of coordinates was found, the Ashtekar-Barbero connection variables,

such that the constraints equations were reduced to polynomial expressions [124�126]. By

writing GR in terms of the Ashtekar-Barbero variables, it is possible to put the theory in a

framework very similar to other quantum �eld theories, where quantization techniques have

already been developed [127]. The early construction of Loop Quantum Gravity (LQG) was

based on the quantization of GR, in terms of a smeared version of the connection variables in

a background independent fashion. As some of the important results of LQG, we can mention

the construction of singular-free cosmological models [128], the quantization of spherically

symmetric vacuum spacetime [129], as well as the derivation of the Hawking-Bekenstein

entropy [130].

Working within the full machinery of LQG is very challenging and some e�ective models

have proven to be useful in understanding how quantum gravity e�ects might look like. There

are several works applying modi�cations to GR for cosmological models [131,132] and also for

spherically symmetric spacetimes, such as Schwarzschild [133�135] and RN solutions [136].

In Refs. [137,138] an e�ective spherically symmetric spacetime is proposed, which is non-

singular and presents a global structure of a black bounce whose radius is hidden by an event

horizon. Here we calculate the scalar QNMs of this quantum corrected BH, investigating

how its spectrum deviates from the well-known Schwarzschild case.

The remainder of this chapter is organized as follows. In Sec. 2.2 we review some aspects

of the solution obtained in Refs. [137, 138], highlighting its main properties. In Sec. 2.3 we

investigate the dynamics of a massless scalar �eld over the quantum corrected spacetime and

review the corresponding boundary problem of QNMs. In Sec. 2.4 we revisit two methods

for calculating QNM frequencies, namely the third order Wentzel-Kramers-Brillouin (WKB)

approximation, as well as the Leaver's continued fraction method. In Sec. 2.5 we exhibit a

selection of our numerical results. We �rst compare, as a consistency check, the third order

WKB results and the ones obtained via continued fraction calculations. We also compute,

with the Leaver method, the �rst 30 overtones for the modes l = 0 and l = 1. We present

some remarks regarding this chapter in Sec. 2.6.
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2.2 E�ective quantum corrected Schwarzschild spacetime

The authors of Ref. [137,138] reported the following line element:

ds2 = −f(r)dt2 +
[(

1− r0
r

)
f(r)

]−1

dr2 + r2dΩ2, (2.1)

where r0 < 2M is a LQG parameter, also called the holonomy parameter, f(r) ≡ 1− 2M/r

and dΩ2 is the line element of the 2-sphere. This metric represents a static, spherically

symmetric and asymptotically �at spacetime. The horizon is located at the hypersurface

r = rh = 2M , similarly to what we have in Schwarzschild spacetime. Nonetheless, the

quantityM cannot be simply interpreted as the mass of the BH. As pointed out in Ref. [138],

the di�erent geometric de�nitions of mass, namely, the Komar, ADM and Misner-Sharp

masses, need to be taken into account. These quantities are given by

MK =M

√
1− r0

r
, (2.2a)

MADM =M +
r0
2
, (2.2b)

MMS =M +
r0
2
− Mr0

r
, (2.2c)

where MK, MADM and MMS are the Komar, ADM and Misner-Sharp mass, respectively.

The Komar and Misner-Sharp masses do not need to coincide, since the quantum corrected

spacetime is not a solution of the EFE [139]. However, in the limit that r goes to in�nity,

for spherically symmetric and asymptotically �at spacetimes, the ADM and Misner-Sharp

masses must be equal [140], what is indeed the case. The BH parameters, M and r0 can be

rede�ned in a geometric invariant way, according to

M = lim
r→∞

MK, (2.3a)

r0 = 2 lim
r→∞

(MMS −MK). (2.3b)

In FIG.2.1 we display the Penrose diagram of the spacetime maximal extension [138].

Region I stands for the asymptotically �at region in which r ∈ (rh,∞). This patch have the

usual conformal in�nities, namely, the timelike in�nities, i− and i+, the null in�nities, J −

and J + and the spatial in�nity i0. Region II stands for the BH region and corresponds to r ∈

(r0, rh). The remaining regions III and IV, which cannot be covered by the coordinate system
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(t, r, θ, φ), are the white hole region and another asymptotically �at region, respectively. The

bottom and upper regions in blank with dashed contour are copies of the middle structure

[138].

The hypersurface r = r0 is not a wormhole throat, since r is a time-like coordinate in

the region r0 < r < rh. In fact, it corresponds to a bounce surface, analogous to the ones

studied, for instance, in Refs. [141, 142]. Hence, this spacetime has a global structure of a

black bounce (see FIG. 2.1). The authors of Refs. [137,138] reported that the bounce radius

r0 arises from the procedure called polymerization procedure

r0 = 2M
λ2

λ2 + 1
, (2.4)

where λ is a positive dimensionless parameter. From Eq. (2.4) we note that the bounce

is hidden by the event horizon (r0 < rh). Therefore, as shown in Sec. 2.5, the bounce

does not reveal itself in the QNMs, except for the fact that the metric tensor components

depend on r0. This is a particular feature of the loop quantum corrected Schwarzschild

spacetime. In other models of black bounce, the surface r = r0 can be located outside the

event horizon [141, 142]. In such cases, there is a transition to a wormhole spacetime and

echoes appear in the QNM spectrum (for instance, Refs. [143�145]). The e�ective quantum

Schwarzschild spacetime, di�erently from the Schwarzschild BH, is regular everywhere, as

can be veri�ed by computing the curvature scalar of this spacetime.

2.3 Scalar perturbations

The dynamics of a massless scalar �eld Φ is determined by the Klein-Gordon equation

∇µ∇µΦ =
1√
−g

∂µ
(√

−ggµν∂νΦ
)
= 0, (2.5)

where g is the metric determinant and gµν are the contravariant components of the metric

tensor. Due to spherical and time translation symmetries, the scalar �eld admits the product

decomposition given by

Φ(xµ) =
ψωl(r)

r
Ylm(θ, φ)e

−iωt, (2.6)

where Ylm(θ, φ) are the spherical harmonics.
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Figure 2.1: Penrose diagram representing the global structure of the spacetime proposed in

Refs. [137,138], which corresponds to a black bounce solution with radius r0.
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Figure 2.2: E�ective potential given in Eq. (2.8) as a function of the tortoise coordinate for

various values of r0 and l = 0.

Inserting the metric components given in Eq. (2.1), as well as the �eld decomposition

given in Eq. (2.6), into Eq. (2.5), we obtain a Schrödinger-like equation for the radial part,

which is given by
d2ψωl

dr2∗
+
(
ω2 − Vl,r0 [r(r∗)]

)
ψωl = 0, (2.7)

where the e�ective potential Vl,r0(r) is de�ned by

Vl,r0(r) = f(r)

(
l(l + 1)

r2
+

4M + r0
2r3

− 3Mr0
r4

)
, (2.8)

and r∗ is the tortoise coordinate:

dr∗ =
dr

f(r)
√
1− r0/r

. (2.9)

The e�ective potential is illustrated in FIG. 2.2, where we see that the maximum value of

the potential decreases as we increase the LQG parameter r0.

To calculate the scalar QNMs of the loop quantum corrected Schwarzschild spacetime we

have to solve Eq. (2.7), imposing the boundary conditions

ψωl(r∗) ≈

e
−iωr∗ ≈ (r − 2M)

−2iωM√
1− r0

2M r∗ → −∞

e+iωr∗ ≈ eiωrr2iωM+
iωr0
2 r∗ → +∞

. (2.10)

Eqs. (2.7) and (2.10) de�ne an eigenvalue problem for ψωl with eigenvalue ω in the domain

r ∈ (2M,∞). We expect that the spectrum is a countable in�nite set {ωn| n = 0, 1, ...},

where n enumerates the eigenfrequencies in increasing imaginary part magnitude order, the

so-called overtones.
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In general, an expression for the spectrum cannot be written in a closed analytical form,

not even for Schwarzschild. Thus, it is common to implement approximate and numerical

methods to treat the problem of QNMs. In the next session, we implement the third order

WKB, continued fraction and the Prony methods to compute the scalar eigenfrequencies of

the loop quantum corrected Schwarzschild spacetime.

2.4 scalar QNMs calculations

2.4.1 WKB approximation

The �rst method we implemented for the calculation of scalar QNMs is the third order

WKB approximation. The WKB method is a semianalytic technique, �rst applied to BH

scattering problems by Schutz and Will [146] and then improved by Iyer and Will [147].

For any barrier-type potential whose extremities are �xed (which is our case, see FIG. 2.2),

this method can be applied and yields an analytic formula that approximates the QNM

frequencies.

The third order WKB approximation is given by [147]:

ω2
l,r0,n

≈ V0 +
√
−2V ′′

0 Λ

− i

(
n+

1

2

)√
−2V ′′

0 (1 + Ω),
(2.11)

with

Λ =
1√
−2V ′′

0

[
1

8

(
V

(4)
0

V ′′
0

)(
1

4
+ κ2

)

− 1

288

(
V ′′′
0

V ′′
0

)2 (
7 + 60κ2

) ]
,

(2.12a)

where V0 is the maximum value of Vl,r0 , κ = n+1/2, the primes corresponds to �rst, sec-

ond and third order derivatives, while the superscript in round brackets (i) denotes derivative

of fourth and higher orders with respect to the tortoise coordinate. We note that there is

an alternative but equivalent method to the third order WKB approximation, proposed in

Ref. [148], based on an analogy between the BH QNM problem and a quantum anharmonic

oscillator. (The third order WKB corrections given in Eq. (2.12) can be interpreted as the
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anharmonicity corrections to the potential [148].) In this work, such approximations will be

used mainly as a consistency check for the continued fraction method.

2.4.2 Continued fraction method

One of the most accurate methods to calculate QNMs was implemented in BH physics by

Leaver [55] and it is called the continued fraction method. This method is based on �nding

an analytical solution of the radial equation as a power series satisfying the QNM boundary

conditions. Thus, the QNM spectrum is determined by those values of the frequencies which

make the series convergent on the entire domain.

In order to apply the power series method, we �rst need to investigate the regular/irregular

singular points of the ordinary di�erential equation (2.7) (see Ref. [149] for further details).

The singularities of Eq. (2.7) are {0, r0, 2M,∞}, where the singularity at in�nity is irregular

and all the others are regular. The power series solutions around some singularity has a con-

vergence radius which cannot be greater than the distance to the next neighboring singular

point. Since the domain of the QNM eigenvalue problem is (2M,∞), we cannot �nd a well

de�ned solution in the entire domain using a power series of r. Therefore, we consider the

map

r 7→ r − 2M

r − r0
. (2.13)

Let (0, r0, 2M,∞) be the ordered 4-tuple formed by the singularities of Eq. (2.7). This

4-tuple, according to Eq. (2.13), is mapped to (2M/r0,∞, 0, 1) (see FIG. 2.3). Moreover,

the domain (2M,∞) is compacti�ed into (0, 1). The singular point 2M/r0 is always greater

than 1, since 0 < r0 < 2M . Hence, in this new coordinate de�ned by Eq. (2.13), we can �nd

a well de�ned analytical solution of Eq. (2.7) in the domain (0, 1), which correspond to the

entire domain of interest.

We, therefore, may consider the solution of Eq. (2.7) to be

ψωl = r(r − r0)
2iωM+

iωr0
2

−1eiωr
∞∑
n=0

an

(
r − 2M

r − r0

)ζ+n

, (2.14)

where

ζ =
−2iωM√
1− r0

2M

(2.15)
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Figure 2.3: Schematic representation of the map de�ned by Eq. (2.13). We assign the values

taken by singularities (0, r0, 2M,∞) 7→ (2M/r0,∞, 0, 1) and show how the domain (2M,∞)

is mapped to (0, 1).

is the characteristic exponent obtained from the indicial equation [149] corresponding to the

ingoing solution at the horizon. The functions multiplying the summation are chosen to

satisfy the boundary conditions at in�nity, as well as to simplify the recurrence relation.

The sequence (an)n∈N is determined by a four-term recurrence relation de�ned by

α0a1 + β0a0 = 0 (2.16a)

α1a2 + β1a1 + γ1a0 = 0 (2.16b)

αnan+1 + βnan + γnan−1 + δnan−2 = 0, n = 2, 3, ..., (2.16c)

where the recurrence coe�cients are given by

αn = −32i
√
2M5/2(n+ 1)ω(2M − r0) + 8M(n+ 1)2(2M − r0)

3/2, (2.17a)

βn = 64M4ω2(2M − r0)
1/2 + 8

√
2M5/2ω(12Mω + 12in+ 5i)(2M − r0)+

4M
(
−2l(l + 1) + 24M2ω2 + 6iM(2n+ 1)ω − n(6n+ 5)− 2

)
(2M − r0)

3/2

+ 4
√
2M3/2ω(4Mω − 4in− i)(2M − r0)

2

+ 2(2n+ 1)(n+ 2iMω)(2M − r0)
5/2,

(2.17b)
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γn =− 128M4ω2(2M − r0)
1/2 − 16

√
2M5/2ω(12Mω + 6in− i)(2M − r0)

+ 4M
(
2l(l + 1) + n(−2− 24iMω) +Mω(−34Mω + 3i) + 6n2 + 1

)
(2M − r0)

3/2

+ 8
√
2M3/2ω(6Mω + 4in− i)(2M − r0)

2

+
(
−4l(l + 1) + 72M2ω2 + 4iM(6n− 1)ω − 8n2 + 4n− 2

)
(2M − r0)

5/2

+ 8
√
2M3/2ω2(2M − r0)

3

+ ω(−2Mω + 4in− i)(2M − r0)
7/2,

(2.17c)

δn = 64M4ω2(2M − r0)
1/2 + 8

√
2M5/2ω(12Mω + 4in− 3i)(2M − r0)

+ 4M
(
3n(1 + 4iMω) +Mω(10Mω − 9i)− 2n2 − 1

)
(2M − r0)

3/2

+
(
−4

√
2M3/2ω(16Mω + 4in− 3i)

)
(2M − r0)

2

+
(
n(−6− 32iMω) + 12Mω(−5Mω + 2i) + 4n2 + 2

)
(2M − r0)

5/2

+ 8
√
2M3/2ω2(2M − r0)

3 + ω(14Mω + 4in− 3i)(2M − r0)
7/2 − ω2(2M − r0)

9/2.

(2.17d)

This recurrence relation is in agreement with Leaver's hypothesis, which says that a radial

equation with a con�uent singularity and three regular singularities generates a solution

whose expansion coe�cients obey a 4-term recurrence relation [58].

To calculate the QNM from a 4-term recurrence relation we �rst have to apply the

Gaussian elimination scheme, de�ned by

α̃n ≡ αn, β̃n ≡ βn, γ̃n ≡ γn, for n = 0, 1 , (2.18)

and

δ̃n ≡ 0, α̃n ≡ αn, (2.19a)

β̃n ≡ βn −
α̃n−1δn
γ̃n−1

, γ̃n ≡ γn −
β̃n−1δn
γ̃n−1

for n ≥ 2. (2.19b)

The new recurrence coe�cients now obey a 3-term recurrence relation given by

α̃0a1 + β̃0a0 = 0, (2.20a)

α̃nan+1 + β̃nan + γ̃nan−1 = 0, n = 1, 2, ... . (2.20b)
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Figure 2.4: Top: First three (n = 0, 1, 2) QNM-frequencies of the scalar �eld on the quantum

corrected Schwarzschild spacetime. The green plots correspond to n = 0, blue to n = 1

and red to n = 2. Circles represent the WKB calculations, for several values of the LQG

parameter r0, beginning at r0/rh = 0 (yellow circles representing the Schwarzschild case) and

ending at r0/rh = 0.99. The solid line shows the continued fraction calculation in the same

range of parameters. Bottom: Computation of QNM frequencies for n = 1, l = 0 (bottom

left panel) and n = 2, l = 0 (bottom right panel) for r0/rh ranging from 0 to 0.99, obtained

using the continued fraction method with Nollert improvement [150]. All the frequencies

become less damped as r0/rh increases.
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The condition that the series de�ned in Eq. (2.14) converges uniformly is given by [55]

0 = β̃0 −
α̃0γ̃1

β̃1 −
α̃1γ̃2

β̃2 −
α̃2γ̃3

β̃3 − ...

,

≡ β̃0 −
α̃0γ̃1

β̃1−
α̃1γ̃2

β̃2−
α̃2γ̃3

β̃3−
...

(2.21)

Thus, the set of frequencies that makes Eq. (2.21) true are, precisely, the QNM frequencies.

The roots of Eq. (2.21) can be found numerically. The most stable root of the continued

fraction de�ned in Eq. (2.21) is the fundamental mode. The n-th inversion of Eq. (2.21) is

de�ned by

β̃n −
α̃n−1γ̃n

β̃n−1−
...− α̃0γ̃1

β̃0
=
α̃nγ̃n+1

β̃n+1−
α̃n+1γ̃n+2

β̃n+2−
..., (2.22)

and its most stable root is the n-th eigenfrequency.

2.4.3 Prony method

We can also solve Eq. (2.5) without assuming the time dependence e−iωt in Eq. (2.6).

This lead to the partial di�erential equation (PDE):

∂2Ψl

∂r2∗
− ∂2Ψl

∂t2
− Vl,r0 [r(r∗)]Ψl = 0, (2.23)

where now Ψl is a function of the variables (t, r∗). We may solve Eq. (2.23) numerically,

setting a Gaussian wave package centered at r∗ = 0 as our initial con�guration for the �eld.

The time evolution of the solution is characterized by three stages: (i): a prompt response

at early times, which is strongly determined by the chosen initial conditions of the �eld, (ii):

exponential decay at intermediate times, determined by the QNMs and (iii): power-law

fall-o� at late times, due to backscattering of the �eld in tail of the potential.

Once the Eq. (2.23) is solved for some initial data con�guration, by means of estimating

methods, one is able to construct an analytic approximation that �ts the original solution.

Here we use the Prony method to �nd an approximate Fourier decomposition, which allows

us to calculate the fundamental mode. A detailed description of the Prony method can be

found in Ref. [151].
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2.5 Results

In this section we exhibit a selection of our results, obtained from the methods described

in the previous sections.

As a consistency check that the continued fraction method leads to the correct values of

the eigenfrequencies, we �rst compare the QNMs calculated with Leaver's method and the

WKB approximation.

We compute the QNMs n = 0, 1, 2 for di�erent numbers of the azimuthal number l =

0, 1, 2. The results are exhibited in the top panel of FIG. 2.4. We de�ne a color code for

each value of n, namely: green ↔ n = 0, blue ↔ n = 1 and red ↔ n = 2. The (green, blue

and red) circles represent the QNMs calculated with the WKB method, while the solid lines

were obtained by the continued fraction method. Both, WKB and the continued fraction

calculations, were computed for r0/rh ranging from 0 (Schwarzschild) to 0.99. The yellow

circles, located at the top of each continuous line, represents the quasinormal frequencies of

the Schwarzschild BH calculated using the WKB approximation.

FIG. 2.4 shows that, as we increase the values of l, the results obtained from WKB

and continued fraction methods converge to the same value, which was already expected.

Nonetheless, even for l = 0, both, WKB and continued fraction methods, results are in very

good agreement.

From the continued fraction computations we also note that the curves in the complex

plane, parametrized by r0/rh, for n > 0 and l = 0, have a spiral-like shape. We display

the curves for n = 1, l = 0 and n = 2, l = 0 in the left and right bottom panels of

FIG. 2.4, respectively. We note that, in order to obtain the results shown in the bottom

panel of FIG. 2.4, we applied the continued fraction method with the improvement proposed

by Nollert [150]. The Nollert improvement is suitable to compute QNM frequencies with

large imaginary part, hence it gives accurate numerical results when the LQG parameter

is close to the extreme value. While the LQG parameter varies in the indicated range, the

trajectory described in the complex plane moves away from the Schwarzschild QNMs and

spirals towards some �xed complex value, which corresponds to the QNMs associated with

the extremal case. A similar behavior was also found for the RN BH [62]. We also note that
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that these curves are self-intersecting. The existence of self-intersecting curves in the orbits

of the QNM frequencies is related to the fact that, for di�erent values of the LQG parameter

r0, the BH may present the same frequency for some given n.

2.5.1 l = 0 Modes

We can �x l = 0 and compute the �rst 30 modes for several values of r0/rh. The

results, calculated with the continued fraction method, are displayed in FIG. 2.5. The small

deviation from Schwarzschild regime (r0/rh = 0, 0.05, 0.1) is displayed in the top left panel

of FIG. 2.5, where we obtain the famous Schwarzschild's scalar spectrum, formed by two

non-intersecting branches of QNM frequencies, with slight disturbances. There is a decrease

in the damping, in accordance with FIG. 2.4.

Nonetheless, the QNM frequencies for higher values of r0/rh are completely di�erent from

the Schwarzschild case. In the remaining panels of FIG. 2.5 we exhibit the spectrum near

r0/rh = 0.2, 0.3, 0.4, 0.5. As the LQG parameter varies, the real part of the frequencies

oscillates. We obtained frequencies with Re(ω) = 0, e.g. the mode n = 4 for r0/rh =

0.48. However, the continued fraction method does not converge for Re(ω) → 0, hence the

existence of purely damped modes cannot be indeed stated.

We remark that the existence of frequencies with real part almost equal to zero can be

found in Schwarzschild's QNM spectrum for the gravitational �eld. The algebraically special

frequency 2Mω ≈ −i(l − 1)(l + 1)(l + 2)/6 is almost a pure imaginary number [152]. In

the Schwarzschild case the algebraically special frequency does not exist for �elds other than

the gravitational �eld. Thus, qualitatively, in the weakly damped regime, the spectrum of

the quantum corrected Schwarzschild BH for the scalar �eld resembles the spectrum of the

Schwarzschild BH for the gravitational �eld.

2.5.2 l = 1 Modes

We may now �x l = 1 and compute the �rst 30 modes for the same values of the LQG

parameter of Sec. 2.5.1. The QNMs were calculated using the continued fraction method

and are displayed in FIG. 2.6. Once more, small holonomy corrections r0/rh = 0, 0.05, 0.1
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Figure 2.5: First 30 QNM frequencies (n = 0, 1, ..., 29) of the scalar �eld on the quantum

corrected Schwarzschild spacetime for l = 0. The top left panel shows the modes for r0/rh =

0, 0.05, 0.1, whereas the remaining panels exhibit the spectrum of the quantum corrected

BH for values of the LQG parameter near r0/rh = 0.2, 0.3, 0.4, 0.5. All the spectra were

calculated with the continued fraction method.



33 Quasinormal modes of a loop quantum corrected black hole

★ ▼ 

★
★

★
★

★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★

★
★

★
★

★
★

★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★

▼
▼

▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼

▼
▼

▼
▼

▼
▼

▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼



































































-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0

2

4

6

8

10

12

14

★ ▼ 

★
★

★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★

★
★

★
★

★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★

▼
▼

▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼

▼
▼

▼
▼

▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼


































































-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0

2

4

6

8

10

12

14

★ ▼ 

★
★

★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★

★
★

★
★
★

★
★

★
★

★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★
★

★
★

★
★

★
★

★

▼
▼

▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼

▼
▼

▼
▼
▼
▼

▼
▼

▼
▼

▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼

▼
▼

▼
▼

▼
▼

▼
▼
▼








































































-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0

2

4

6

8

10

12

★ ▼ 

★
★

★
★
★
★
★
★
★
★
★
★
★
★

★
★
★

★
★
★
★
★
★
★
★

★
★

★ ★
★

★
★

★
★

★
★

★
★
★
★

★
★

★
★

★
★
★

★
★
★
★
★
★
★
★

★
★

★★
★

▼
▼

▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼

▼
▼

▼
▼
▼
▼
▼
▼
▼
▼

▼
▼

▼
▼

▼▼

▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

▼
▼
▼
▼
▼
▼
▼
▼
▼

▼
▼

▼
▼▼













































































-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0

2

4

6

8

10

12

★ ▼ 

★
★

★
★
★
★
★
★
★

★
★
★
★
★
★

★
★
★

★
★
★
★
★

★
★

★
★
★
★
★

★
★

★
★

★
★

★
★

★
★

★
★
★
★
★
★

★
★

★
★
★
★
★

★
★

★
★
★
★
★

▼
▼

▼
▼
▼
▼
▼
▼

▼
▼

▼
▼
▼
▼

▼
▼

▼
▼

▼
▼
▼
▼
▼

▼
▼
▼
▼
▼
▼

▼

▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

▼
▼
▼
▼
▼

▼
▼

▼
▼
▼
▼
▼

▼
▼

▼
▼
▼
▼
▼
▼
















































































-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0

2

4

6

8

10

12

Figure 2.6: First 30 QNM frequencies (n = 0, 1, ..., 29) of the scalar �eld on the quantum

corrected Schwarzschild spacetime for l = 1. We display in the top left panel the modes

r0/rh = 0, 0.05, 0.1, whereas in the remaining panels we show the spectrum for higher

values of the LQG parameter, namely near r0/rh = 0.2, 0.3, 0.4, 0.5. All spectra were

calculated with the continued fraction method.
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l = 0 (Leaver)

n Schwarzschild r0/rh = 0.3

0 0.2209− 0.2097i 0.2099− 0.1828i

1 0.1722− 0.6961i 0.1705− 0.5996i

2 0.1514− 1.2021i 0.1518− 1.0329i

3 0.1408− 1.7073i 0.1403− 1.4657i

4 0.1341− 2.2112i 0.1307− 1.8974i

Table 2.1: First �ve overtones of scalar perturbations, expressed in r−1
h units, calculated by

the continued fraction method for l = 0. We consider the Schwarzschild BH, as well as the

holonomy corrected Schwarzschild BH with r0/rh = 0.3.

lead to small disturbances in the Schwarzschild spectrum, leading to an overall decrease in

the imaginary part of the QNM frequencies.

The QNMs for higher values of the LQG parameter, namely, near r0/rh = 0.2, 0.3, 0.4, 0.5,

are displayed in the remaining panels of FIG. 2.6. As we increase the value of r0/rh, again

the oscillatory pattern appears in the spectrum of the quantum corrected BH. The �rst �ve

overtones are also exhibited in Table 2.2.

l = 1 (Leaver)

n Schwarzschild r0/rh = 0.3

0 0.5858− 0.1953i 0.5824− 0.1738i

1 0.5288− 0.6125i 0.5416− 0.5395i

2 0.4590− 1.0802i 0.4892− 0.9406i

3 0.4065− 1.5766i 0.4473− 1.3640i

4 0.3702− 2.0815i 0.4172− 1.7952i

Table 2.2: First �ve overtones of scalar perturbations, expressed in r−1
h units, calculated by

the continued fraction method for l = 1. We considered the Schwarzschild BH, as well as

the holonomy corrected Schwarzschild BH with r0/rh = 0.3.

The pattern exhibited in both FIGs. 2.5 and 2.6 may go on forever as n increases.

However such analysis requires an asymptotic study of QNMs that is beyond the scope of
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Figure 2.7: Plots of ln|Ψl(t, r∗ = 10)| for l = 0 (left panel) and l = 1 (right panel). In both

plots, we include the Schwarzschild case (darker blue), the quantum corrected Schwarzschild

case with r0/rh = 0.3 (lighter blue) and also the associated �ttings obtained from the Prony

method (stars and inverted triangles, respectively).

our work. If this assertion is true, then the limit limn→∞ℜ(ω) does not exist, what would

di�er from the Schwarzschild's case, which is known to be 2M limn→∞ ℜ(ω) = ln 3/4π [153].

2.5.3 Time domain pro�le

We may solve numerically the time-dependent wave equation given by Eq. (2.23), and

for that, we need to specify an initial condition. We consider the initial data as a Gaussian,

according to

Ψl(0, r∗) = e−r2∗/4; ∂tΨl(t, r∗)|t=0= 0. (2.24)

The chosen initial data do not play a signi�cant role in the time pro�le of the wave function

from intermediate times onwards. After a transient initial stage (highly dependent on initial

conditions), the time pro�le is dominated by the QNMs and then by the late time tail decay.

In FIG. 2.7 we exhibit the logarithmic plot for the absolute value of the solution as a

function of time. The tortoise coordinate is �xed at r∗/rh = 10. We consider the cases l = 0

(left panel) and l = 1 (right panel). The logarithmic wave-form is calculated for the cases of

Schwarzschild (darker blue) and holonomy corrected Schwarzschild with r0/rh = 0.3 (lighter

blue). We also include the respective Prony's �ttings (stars for Schwarzschild and inverted

triangles for quantum corrected Schwarzschild).

The three phases described in the Sec. 2.4.3 are clearly distinguished in FIG. 2.7. We
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highlight that the power-law tail developed at late times seems to be independent of the loop

quantum correction.

l = 0 (Prony)

n Schwarzschild r0/rh = 0.3

0 0.2209− 0.2098i 0.2098− 0.1828i

l = 1 (Prony)

n Schwarzschild r0/rh = 0.3

0 0.5858− 0.1953i 0.5823− 0.1737i

Table 2.3: Fundamental frequency of scalar perturbations, expressed in (2M)−1 units, cal-

culated by the Prony method for l = 0, 1. We considered the Schwarzschild BH, as well as

the holonomy corrected Schwarzschild BH with r0/rh = 0.3.

The fundamental modes, obtained from the Prony method, for l = 0, 1 are showed in

TABLE 2.3. These results can be compared with those of TABLES 2.1 and 2.2. As we can

see, both results are in excellent agreement.

2.6 Remarks

Simultaneously with the progress of the BH perturbation theory, the search for a quantum

theory of gravity was strongly active. Among several possibilities, the theory of LQG has

had many interesting results, namely, the construction of singular-free cosmological and

BH solutions [128, 129] and the derivation of the Hawking-Bekenstein entropy [130]. These

results might be the smoking guns to a complete and consistent theory of quantum gravity.

Nevertheless, there is still a lot of work to be done until we can interpret all LQG results

properly. Thus, many e�ective models have been studied, aiming to obtain e�ects that one

would expect to observe in the complete LQG theory.

We investigated the scalar QNMs of a quantum corrected Schwarzschild BH. We used

standard methods of BH perturbation theory, namely, the third order WKB approximation,

the continued fraction method (also named as Leaver's method) and the Prony method.

In order to perform a consistency check, we compared the numerical results, computed

through the three di�erent methods, and obtained an excellent agreement, in the regime of

applicability of each method.

We computed the QNMs for di�erent values of the multipole number l and the overtones
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n. In particular, we obtained the �rst 30 overtones for the fundamental mode l = 0 and the

�rst 30 overtones for the mode l = 1, using the Leaver's method. Our numerical results show

that, for a �xed l and n, the quantum corrected Schwarzschild BH perturbations become less

damped as we increase the LQG parameter r0. Moreover, for l = 0 and n > 0, the QNMs

frequencies curves in the complex plane are self intersecting, meaning that two di�erent

quantum corrected Schwarzschild BH con�gurations may have the same QNMs.

Furthermore, we obtained that for middle-to-high values of r0/rh, the scalar QNMs of

the quantum corrected Schwarzschild BH may have vanishing real part, i.e. it admits purely

decaying modes. We remark that purely decaying modes in a classical Schwarzschild BH

exist solely for gravitational perturbations [55,152].



Part III

Black hole imaging



Chapter 3
Light rings, shadows and lensing of a

black hole immersed in a swirling

universe

3.1 Introduction

The �rst non-trivial exact solution of the vacuum EFE, published in 1916 by Schwarzschild,

describes a spherically symmetric, static and asymptotically �at BH spacetime [23]. Nearly

�ve decades later, its rotating generalization was derived by Kerr [26]. The Kerr solution

stands as a cornerstone in BH physics, hypothesized as the metric describing all BHs in equi-

librium - see Ref. [154] for a discussion. Moreover, it is also the quintessential solution to

learn about rotational e�ects in GR. Other textbook solutions presenting rotational e�ects

are considered more exotic, such as the Gödel rotating universe [155, 156] and the Taub-

NUT spacetime [156�158], which contain, for instance, closed timelike curves that are not

cloaked by any horizon. By contrast, the Schwarzschild and Kerr metrics are well behaved

outside the event horizon, allowing a well de�ned initial value problem in the outer domain

of communication.

A whole landscape of other exact solutions of the EFE has been derived and cataloged,

see e.g. Ref. [159], some containing rotational e�ects. However, imposing vacuum is quite

restrictive, making Ricci �at geometries of particular interest. The goal of this chapter
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is to discuss the behavior of light in a class of vacuum solutions of the EFE describing a

Schwarzschild BH immersed in a rotating background with the peculiarity that the north

and the south hemispheres spin in opposite directions. This swirling universe (SU) [160]

introduces no closed time-like curves; in this sense it is less exotic than the Gödel or the

Taub-NUT spacetime. Similarly to those, on the other hand, the SU is not asymptotically

�at.

The SU was �rst mentioned in a work by Gibbons, Mujtaba and Pope [161], although

its properties were only thoroughly examined in Ref. [160], wherein the Schwarzschild BH in

the SU (SBHSU), as well as its Kerr generalization, was constructed by exploiting the Ernst

formalism1.

Here we study the LRs, shadow and gravitational lensing of the SBHSU. As we shall see,

the peculiar properties of the SU yield peculiar properties for light propagation, most notably

non-equatorial LRs for a single BH spacetime and a BH shadow that is Z2-odd, rather than

the usual Z2 even, i.e. north-south symmetric, when observed from the equatorial plane of

the BH spacetime. The remainder of this chapter is organized as follows: In Sec. 3.2 we

review some general aspects of the Ernst formalism, which is used to obtain the SBHSU

solution. We also revisit the main properties of the SBHSU spacetime. In Sec. 3.3 we study

the motion of null geodesics of the SBHSU and de�ne the 2-dimensional e�ective potentials

H±. We also analyze the LRs structure of the SBHSU, using the techniques developed in

Ref. [105]. We note that the SBHSU is not included in the results presented in [104,105], or

any of the other above, due to its peculiar asymptotics. Other related works can be found

in Refs. [165,166]. In Sec. 3.4 we present our results regarding the shadow and gravitational

lensing produced by the SBHSU. Finally, in Sec. 3.5 we present some remarks of this chapter.

3.2 The SBHSU spacetime

3.2.1 The Ernst formalism

The Ernst formalism, developed in the 1960s [167,168], has emerged as a powerful math-

ematical tool for generating stationary and axisymmetric solutions of GR. This methodology

1More recently, new exact solutions involving the SU have been obtained in Refs. [162�164].
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proves to be especially valuable when the matter content is solely characterized by the elec-

tromagnetic �eld2. The central idea of this formalism lies in rewriting the Einstein-Maxwell

(EM) system of equations in terms of the Ernst potentials. The resulting equations, referred

to as the Ernst equations, allow for a clearer exploration of the theory's symmetries, thereby

facilitating a structured examination of group theoretical aspects of the EM system.

For the stationary vacuum case, Geroch showed that SU(1, 1) is the underlying group

of symmetries of the Ernst equations [170]. Subsequently, Kinnersley demonstrated that,

when generalized for electrovacuum, the corresponding symmetry group linked to the Ernst

equations is isomorphic to SU(2, 1) [171,172]. Furthermore, this symmetry group can be ex-

plicitly represented through �ve general transformations. Starting from one known solution,

it is possible, through Kinnersley transformations, to generate non-trivial new solutions of

the EM theory.

Considering the Schwarzschild BH as a starting point (seed), using the Kinnersley trans-

formations and the conjugation discrete transformation (see Eq. (3.15) below), it is possible

to generate several other solutions like: RN, Taub-NUT and the Schwarzschild-Melvin BHs.

Following this approach, Astorino, Martelli, and Viganò showed that one can obtain the

Schwarzschild and Kerr BHs immersed in a SU [160]. They obtained these BHs solutions by

means of the Ehlers transformations. The investigation conducted in Ref. [160] goes beyond

the metric derivation and includes also analyses of the horizon embedding, ergoregion, closed

timelike curves, conical singularities and geodesics.

Applying the Ernst formalism requires both stationarity and axisymmetry. Stationarity

means that there must exist a (asymptotic) timelike Killing vector �eld ξ; axisymmetry

implies another Killing vector �eld ψ, whose trajectories form closed spacelike curves. We

also assume that the two Killing vector �elds commute3, which implies that we have the

freedom to select coordinates (t, φ) that are speci�cally suited to these symmetries. In this

2It is hard to implement the Ernst formalism beyond the electrovacuum case of stationary and axisym-

metric spacetimes without spoiling the Ernst equation symmetries. Nevertheless, there are a few possible

extensions, such as also considering a minimally and conformally coupled scalar �eld [169].
3We remark that in asymptotically �at spacetimes, there is a theorem established by Carter [173] which

guarantees the commutation of these two Killing vector �elds for asymptotically �at spacetimes. However,

we will not consider asymptotically �atness as a hypothesis here.
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coordinate system, ξ corresponds to ∂t, and ψ corresponds to ∂φ, as established in Ref. [156].

Additionally, the metric components remain independent of these chosen coordinates.

The spacetime to be constructed is a solution of the EM equations, without the inclusion

of a cosmological constant. This system of equations is expressed as follows:

Rµν −
1

2
Rgµν = 2

(
FµαFν

α − 1

4
gµνFαβF

αβ

)
, (3.1)

∂µ
(√

−gF µν
)
= 0, (3.2)

where Rµν is the Ricci tensor and R the Ricci scalar constructed from the metric gµν . The

Maxwell-Faraday tensor is represented by Fµν and is de�ned by the U(1) gauge potential Aµ

according to Fµν = ∂µAν−∂νAµ. Assuming that the gauge potential inherits the symmetries

from the spacetime, we must have A = Atdt+ Aφdφ.

Within this framework, the most general line element is described bt the Lewis-Weyl-

Papapetrou (LWP) metric, given by

ds2 = −f (dt− ωdφ)2 + f−1
[
ρ2dφ2 + e2γ

(
dρ2 + dz2

)]
. (3.3)

In Eq. (3.3), we have adopted the Weyl canonical coordinates (t, ρ, z, φ), where z ∈ (−∞,∞)

and ρ ∈ [0,∞). The function ω is associated to the spacetime rotation with respect to the

axis ρ = 0. By substituting the LWP metric back into the EM system, one may obtain

a set of four coupled, partial di�erential equations for the functions f , ω, At and Aφ (see

Refs. [174, 175] for more details). The equations for γ decouple from the others, implying

that γ is fully determined by the remaining functions.

Let E and Φ be complex functions representing the Ernst potentials de�ned according to

Φ = At + iAφ, (3.4)

E = f − |ΦΦ∗|+ ih, (3.5)

where

∇Aφ = fρ−1êφ × (∇Aφ + ω∇At), (3.6)

∇h = −f 2ρ−1êφ ×∇ω − 2Im(Φ∗∇Φ). (3.7)
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The operator ∇ in Eqs. (3.6) and (3.7) is the �at vectorial operator associated with the

�nonphysical� metric ds2 = dρ2 + dz2 + ρ2dφ2, written in cylindrical Weyl coordinates. The

vector êφ corresponds to the unit vector in the azimuthal direction.

Ernst showed that Eqs. (3.1) and (3.2), assuming the previously mentioned spacetime

symmetries, are equivalent to the Ernst equations, which are given by

(
ℜ(E) + |Φ|2

)
∇2E = (∇E + 2Φ∗∇Φ) · ∇E , (3.8)

(
ℜ(E) + |Φ|2

)
∇2Φ = (∇E + 2Φ∗∇Φ) · ∇Φ. (3.9)

The Ernst equations are symmetric under the action of the group SU(2, 1), which, fol-

lowing Kinnersley, can be represented by �ve transformations on the Ernst potentials. The

Kinnersley transformations are given by [171,172]

E → E ′ = αα∗E , Φ → Φ′ = αΦ , (3.10)

E → E ′ = E + ib , Φ → Φ′ = Φ , (3.11)

E → E ′ =
E

1 + icE
, Φ → Φ′ =

Φ

1 + icE
, (3.12)

E → E ′ = E − 2βΦ− ββ∗ , Φ → Φ′ = Φ+ β∗ , (3.13)

E → E ′ =
E

1− 2γ∗Φ− γγ∗E
, Φ → Φ′ =

Φ+ γE
1− 2γ∗Φ− γγ∗E

, (3.14)

where b, c ∈ R and α, β, γ ∈ C. Hence, the aforementioned transformations depend upon

8 arbitrary real parameters, which matches the dimension of SU(2, 1)4. Notably, these trans-

formations map the space of solutions of the EM equations into itself. We remark, however,

that Eqs. (3.10), (3.11) and (3.13) lead to trivial transformations, i.e. the modi�cations can

be absorbed in gauge transformations of either the metric or the electromagnetic potential.

The transformations de�ned in Eqs. (3.12) and (3.14) are known as Ehlers and Harrison

transformations, respectively, and act on the Ernst potential in a non-trivial way, giving rise

to nonequivalent spacetimes solutions.

4Let GL(3,C) be the general linear group of order 3 over C and η = diag(1, 1,−1). Since SU(2, 1){A ∈

GL(3,C)|detA = 1∧AηA† = η}, the dimension of SU(2, 1) must be 8, since we have 18 real free parameters

from GL(3,C) that are constrained by 1+9 conditions according to detA = 1 and AηA† = η, respectively.
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3.2.2 Conjugate metrics

There is a property of the LWP metric that is, if (f, ω, γ) constitutes a triple de�ning

a LWP line element that solves the EM system, then there exist (f, ω, γ) de�ning a non-

equivalent LWP metric which is also a solution. These triples must be related by a discrete

transformation called conjugation, de�ned by [160,176]{
f → ρ2

f
− fω2, ω → f

2
ω

f
2
ω2 − ρ2

, e2γ → e2γ

(
ρ2

f
2 − ω2

)}
. (3.15)

After applying the transformation given in Eq. (3.15), one may obtain the metric

ds2 = −f (dφ− ωdt)2 + f
−1 [

ρ2dt2 + e2γ
(
dρ2 + dz2

)]
. (3.16)

The two LWP metrics correspondent to Eqs. (3.3) and (3.16), related by Eq. (3.15), are

called conjugate metrics.

The combination of Kinnersley transformations obtained from the Ernst formalism, to-

gether with the conjugation operation, enables one to obtain a total of �ve non-equivalent

metrics from only one seed. In Ref. [160] the authors refer to the metric of Eq. (3.3) as elec-

tric LWP metric, whereas the metric of Eq. (3.16) is referred to as magnetic LWP metric. In

Fig. 3.1 we display all solutions that can be generated starting with Schwarzschild spacetime

as a seed.

Figure 3.1: Schematic representation of the metrics generated from Schwarzschild spacetime

using conjugation and Kinnersley transformations.

From the electric version of Schwarzschild metric we may obtain RN (Taub-NUT) by

means of a Harrison (Ehlers) transformation. If, instead, we �rst conjugate the Schwarzschild
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solution to obtain the magnetic version of the Schwarzschild BH, it is possible to generate

the Schwarzschild-Melvin (SBHSU) metric through a Harrison (Ehlers) transformation.

3.2.3 The metric

As discussed in the previous subsection, the SBHSU spacetime can be obtained by means

of an Ehlers transformation on the magnetic Schwarzschild solution. It is an algebraically

general, stationary, axially symmetric and non-asymptotically �at BH solution of the vacuum

EFE. Its line element can be written as

ds2 = F (r, θ)

[
− f(r)dt2 +

dr2

f(r)
+ r2dθ2

]
+
r2 sin2 θ

F (r, θ)
×{

dφ+ [4jrf(r) cos θ] dt
}2

,

(3.17)

with

f(r) = 1− 2M

r
, (3.18)

F (r, θ) = 1 + j2r4 sin4 θ. (3.19)

For stationary, axisymmetric and asymptotically �at BH spacetimes, the central object

mass and angular momentum may be de�ned via Komar integrals [177]. These integrals are

given by

MKomar = − 1

8π
lim
r→∞

∫
S2
⋆dξ♭, (3.20)

JKomar =
1

16π
lim
r→∞

∫
S2
⋆dψ♭, (3.21)

where S2 represents a topological spherical 2-surface, ⋆ is the Hodge star operator and ♭ is

the musical isomorphism [178].

For non-asymptotically �at spacetimes, even if the Komar integrals can be de�ned, their

physical interpretation is no longer straightforward. For the SBHSU, on S2, we have

⋆dξ♭ = r2 sin θ

[
4j2r3f(r) sin2 2θ

F (r, θ)2
(f(r) + rf ′(r))

− f(r)
∂rF (r, θ)

F (r, θ)
− f ′(r)

]
dθ ∧ dφ,

(3.22)
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⋆dψ♭ =
4j r4 sin3 θ cos θ (rf ′(r) + f(r))

F (r, θ)2
dθ ∧ dφ, (3.23)

which, after the integration over S2, results in

MKomar =M, JKomar = 0. (3.24)

This calculation shows that M can be heuristically interpreted as the BH mass and the

total angular momentum is zero. Although JKomar = 0, the space is not static (see Sec. 3.2.4).

The Authors in Ref. [160] obtained the same result using the canonical integrability method.

When j = 0, the SBHSU metric simpli�es to the Schwarzschild solution, and when

M = 0, it reduces to the SU, whose line element can be expressed as

ds2 = (1 + j2ρ4)(−dt2 + dρ2 + dz2) +
ρ2

1 + j2ρ4
(dφ+ 4jzdt)2, (3.25)

where we have written Eq. (3.25) in cylindrical coordinates

ρ = r sin θ, z = r cos θ. (3.26)

The parameter j is associated with the background spacetime rotation.

The SBHSU is not plagued with geometric pathologies such as conical singularities, nor

causality violation due to closed timelike curves [160]. Nevertheless, the SBHSU solution

has a singularity at r = 2M and r = 0, inherited from the Schwarzschild BH. The former

is a coordinate singularity and de�nes the location of the event horizon, whereas the latter

cannot be removed by a change of coordinates, since the curvature invariant, given by

RµναβR
µναβ =

F(r, θ)

r6
, (3.27)

diverges as r → 0, for all θ ∈ (0, π), indicating that the spacetime is, indeed, singular. The

function F(r, θ) is a lengthy expression in terms of the coordinates r and θ (which we choose

not to show explicitly in this work) that satis�es lim
r→0

F(r, θ) = 48M2.

On the other hand, the background spacetime de�ned by Eq. (3.25) is everywhere regular,

as it can be shown by setting M = 0 in Eq. (3.27), obtaining

RµναβR
µναβ|M=0=

192j2 (j6ρ12 − 15j4ρ8 + 15j2ρ4 − 1)

(j2ρ4 + 1)6
. (3.28)

In Fig. 3.2 we plot the Kretschmann scalar, setting θ = π/2, for SU and SBHSU

spacetimes. In both cases, the curvature scalar tends to zero as r → ∞; however, while

|RµναβR
µναβ|<∞ as r → 0 for the SU, the Kretschmann scalar diverges for the SBHSU.
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Figure 3.2: Kretschmann scalar of the SU (gray) and SBHSU (black) spacetimes, for θ = π/2

and j = 0.05, 0.075, 0.1. For the BH cases we have set M = 0.1 and θ = π/2.

3.2.4 Ergoregion

This solution also possesses an ergoregion, implicitly de�ned by gtt(r, θ) = 0 (excluding

the surface r = 2M) [160, 179]. We consider the gtt metric component as a function gtt :

R3 → R, where r and θ are the usual spherical polar coordinates in R3. Let {x, y, z} be

the rectangular coordinates in R3. We plot in Fig. 3.3 the cross-section through the surface

y = 0 of the surface gtt(r, θ) = 0 (which is not an isometric embedding).

The ergosurface is de�ned by 2 disconnected patches, namely: the two non-compact

branches above and below the BH. The direction of the frame-dragging can be inferred from

dϕ

dt
= − gtφ

gφφ
= −4j(r − 2M) cos θ . (3.29)

Therefore, inside the top (bottom) branch, as well as in the region inside the BH, below

(above) the equatorial plane, observers must rotate in the negative (positive) direction. The

sense of rotation is also indicated in Fig. 3.3 by + (−) sign if it is positively (negatively)

oriented. The opposite spin directions of the north and south is what renders the zero angular

momentum obtained in Sec. 3.2.3. Similar to the SBHSU case, the RN-Melvin solution also

has a non-compact ergoregion [161].

We remark that the Killing vector ξ = ∂t is asymptotically timelike in the sense that

gtt(r, θ) ≈
r→∞

−j2r4 sin4 θ. This quantity is negative for every θ ∈ (0, π), but tends to zero

when θ → 0 or θ → π. Hence, in the vicinity of the symmetry axis, ξ may lose its timelike

character [160]. This serves as an indicator of the presence of a non-compact ergoregion in



48 Light rings, shadows and lensing of a black hole immersed in a swirling universe

-10 -5 0 5 10

-10

-5

0

5

10

Figure 3.3: Representation of the surface gtt(r, θ) = 0 in the section y = 0 of the 3-

dimensional Euclidean space, for jM2 = 0.01, 0.05, 0.1. As the parameter of the swirling

background increases, the ergosurface gets closer to the horizon surface.

the vicinity of the rotational axis.

3.2.5 Horizon geometry

The geometry of the event horizon is de�ned by Eq. (3.17) restricted to the 2-surface

t =constant and r = 2M , from where we obtain

ds2| r=2M
t=const

= 4M2F (2M, θ)dθ2 +
4M2 sin2 θ

F (2M, θ)
dφ2. (3.30)

For a two-dimensional surface embedded in a three-dimensional space, the Gaussian

curvature K is de�ned as the product of the principal curvatures k1 and k2 at each point.

The principal curvatures represent the maximum and minimum curvatures in orthogonal

directions on the surface. In our case, the two principal directions are {θ, φ} and we will

represent the corresponding principal curvatures by {kθ, kφ}, respectively. From Eq. (3.30)

we can compute the Gaussian curvature [180]

K = − 1

2
√

det(gµν)

∂

∂θ

(
∂θgφφ√
det(gµν)

)

=
K(θ)

4M2(1 + 16j2M4 sin4 θ)3
,

(3.31)
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where gµν are the metric components of Eq. (3.30) and

K(θ) = 1 + 48j2M4 sin2 2θ − 1024j4M8 sin6 θ cos2 θ

− 256j4M8 sin8 θ.
(3.32)

One key signi�cance of the Gaussian curvature lies in its classi�cation of di�erent types of

surfaces regarding its sign. By examining the signs and values of the Gaussian curvature at

various points on a surface, we can identify whether the surface is �at/parabolic5, positively

or negatively curved. One can show that, for all j > 0, θ = π/2 corresponds to a global

minimum of K, where it is evaluated to

K|θ=π/2=
1− 16j2M4

4M2 (1 + 16j2M4)2
. (3.33)

Therefore, for j < 1/4M2 the Gaussian curvature is always positive. If we set j = 1/4M2,

the Gaussian curvature is zero at the equatorial plane. If j is greater than this critical value,

then K is negative on a neighborhood of θ = π/2. Since kφ is always positive due to

axisymmetry, kθ must be negative in a neighborhood of θ = π/2 for j > 1/4M2.

We can classify the horizon geometry according to the sign of the Gaussian curvature in

the following way [180]:

� j < 1/4M2: Globally elliptic;

� j = 1/4M2: Everywhere elliptic, except at the equator, where it is parabolic;

� j > 1/4M2: Locally elliptic at the poles and locally hyperbolic at the equator.

In Fig. 3.4 we plot the isometric embedding for jM2 = 0, 1/4, 1/2, specifying where K

is zero (negative) by points (continuous lines). The dashed, dot dashed and dotted lines

represent points where K is greater than zero.

Another way to deduce the horizon local hyperbolic geometry at equator for j > 1/4M2

5In both �at and parabolic points, the Gaussian curvature vanishes, but in �at spaces both principal

curvatures are zero, whereas in parabolic points just one of the principal curvatures is zero. An example of

a surface with parabolic points is the surface of a cylinder.
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is to calculate the proper length

L(θ) =

∫ 2π

0

√
gφφ(r, θ)|r→2Mdφ

= 2π

√
4M2 sin2 θ

1 + 16j2M4 sin4 θ
,

(3.34)

which represents the horizon perimetral length at a �xed value of θ.

For every compact, globally elliptic and Z2 symmetric surface contained in R3, the length

L(θ) attains its maximum at θ = π/2. This holds true for j < 1/4M2. However, as we extend

to j > 1/4M2, the point θ = π/2 transitions to a local minimum of L(θ), while the points

arcsin
√

1/4jM2 and π − arcsin
√

1/4jM2 become maxima.

The existence of an elliptic portion on the horizon geometry is expected, since every

compact surface embedded in R3 has, at least, one elliptical point [180]. Thus, either the

horizon surface is purely elliptical or there exists a region where it can be hyperbolic. In the

Kerr case, for high enough values of the dimensionless rotation parameter (a/M >
√
3/2),

there are regions where the horizon surface is hyperbolic, namely, in a neighborhood of the

poles. In the vicinity of those points, the isometric embedding into the Euclidean 3-space is

not realizable. Generically, any U(1)-symmetric 2d-surface with negative Gaussian curvature

at �xed points of a U(1) symmetry cannot be globally embedded into Euclidean 3-space [181].

In the case of SBHSU, the negative curvature regions are not vicinities of the poles, hence,

the previous theorem does not apply. In fact, the global embedding exists for all values of j.

Although the horizon gets deformed with increasing j, the horizon area A does not

change, i.e. the area of the Schwarzschild BH A = 16πM2 is preserved, regardless of j.

3.3 LRs in the SBHSU (and SU) spacetimes

3.3.1 Null geodesics

We now study null geodesics on the SBHSU. We adopt the Hamiltonian formalism. In

order to do so, we consider the Hamiltonian function H ,

H =
1

2
gµνpµpν = 0, (3.35)
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Figure 3.4: Isometric embedding of the horizon into the 3-dimensional Euclidean space, for

jM2 = 0, 1/4, 1/2. As the parameter of the swirling background increases, the horizon gets

more prolate and thinner along the equator.

where pµ is the 4-momentum of the photon. The corresponding Hamilton's equations are

given by

ẋµ =
∂H

∂pµ
, (3.36)

ṗµ = −∂H
∂xµ

. (3.37)

In Eqs. (3.36) and (3.37) the dots stands for derivatives with respect to an a�ne parameter.

As discussed in Sec. 3.2.1, the SBHSU admits two Killing vectors �elds, namely, ∂t and

∂φ. These vectors are responsible for generating the isometries governing time translation

and rotation around the symmetry axis, respectively. The existence of the two Killing vectors

also implies the existence of two quantities, de�ned by

E = −(∂t)
µpµ = −pt, (3.38)

L = (∂φ)
µpµ = pφ, (3.39)

which are conserved along the direction of the geodesics.
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Figure 3.5: 3D plot representations showing the potentials HSBHSU

+ (left panel) and HSBHSU

−

(right panel), as a function of the (r, θ) coordinates for M2j = 0.05. The critical points for

both HSBHSU

± are highlighted in red, while the Schwarzschild LR locations are denoted by

black points.

The Hamiltonian can be separated into a kinetic term T plus a potential V , according to

H = T + V, (3.40)

where

T = grr(pr)
2 + gθθ(pθ)

2, (3.41)

V =
L2F (r, θ)

r2 sin2 θ
− (4jrf(r)L cos θ + E)2

f(r)F (r, θ)
. (3.42)

It is possible to de�ne potentialsHSBHSU

± , which do not depend on the conserved quantities

E and L. Such potentials are given by

HSBHSU

± (r, θ) = ±
√
f(r)F (r, θ)

r sin θ
− 4jrf(r) cos θ, (3.43)

and are related with V by

V = − L2

f(r)F (r, θ)

(
E

L
−HSBHSU

+

)(
E

L
−HSBHSU

−

)
. (3.44)

In Fig. 3.5 we illustrate the null geodesic potentials HSBHSU

± .

We remark that the potentials HSBHSU

± (r, θ), de�ned in Eq. (3.43) satisfy

H±(r, θ) = −HSBHSU

∓ (r, π − θ), (3.45)

which implies that the potential HSBHSU

− can be fully constructed from HSBHSU

+ and vice-

versa.
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Figure 3.6: LR position on the (r, θ)-plane for various values of the rotation parameter j.

We considered a sequence of values of j de�ned by j = 0.025 × n for n ∈ N. The sequence

starts at j = 0, for which the LR is located at (3M,π/2), and for j → ∞ the LR positions

go to (2M, 0) and (2M,π) in the used coordinate system, which, albeit not geometrically

invariant, clearly shows the o�-equatorial displacement of the LRs with increasing j.

3.3.2 Topological charge

We now inspect the LRs of the SBHSU. By de�nition, LRs are critical points of the

potential V de�ned in Eq. (3.44). In Ref. [104] it was shown that critical points of V are

also critical points of HSBHSU

± . The critical points (r±, θ±) of HSBHSU

± for the SBHSU with

jM2 = 0.05, are displayed in Fig. 3.5 as red points, whereas the black points represent the

Schwarzschild LR position. This spacetime exhibits the unusual characteristic of having

a LR outside the equatorial plane, i.e. θ± ̸= π/2. The absence of Z2 symmetry causes

the Schwarzschild LR - which is the same for both circulation directions - to move in the

θ-direction either upwards or downwards, depending on the photon's circulation direction.

Consequently, the Schwarzschild LR splits into two separate LRs: one positioned above

the equatorial plane and another below it. A similar e�ect was reported to occur in the

Taub-NUT solution [109], and Kerr BHs surrounded by plasma [182].

In Fig. 3.6 we display the LR position as we increase the value of the background rotation

parameter j. The point on the far right of Fig. 3.6 corresponds to the Schwarzschild LR.

As we increase j, the LR split into two, one for each potential HSBHSU

± , such that θ+ < π/2

(θ− > π/2) is associated with HSBHSU

+ (HSBHSU

− ). The points (2M, 0) and (2M,π) in the

(r, θ)-space are accumulation points of the sequence presented in Fig. 3.6.
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The result presented in Fig. 3.6 is in accordance with Eq. (3.45), which implies that if

(r, θ) is a critical point of HSBHSU

+ , then (r, π− θ) must be a critical point of HSBHSU

− . Hence,

if (r, θ) corresponds to a LR position such that θ ̸= π/2, then there must exist another

LR with the same radius, separated from the former by one θ-re�ection with respect to the

equator. These two LRs also must share the same stability properties.

We remark that the correspondence between the labels ± of the potentials HSBHSU

± and

the rotation sense requires careful analysis. In the case of Kerr, for instance, there exists

two LRs that counter rotate in relation to each other. Due to the single direction of rotation

in Kerr spacetime, one LR must co-rotate with the BH, while the other counter rotates.

The SBHSU spacetime similarly accommodates two counter rotating LRs, but both of them

co-rotate locally with the spacetime, as can be inferred from Eq. (3.29).

A powerful technique to determine whether there are LRs in a given spacetime was

developed in Ref. [105]. This technique consists of calculating a topological charge (TC)

obtained from the circulation integral of the gradient of the potentials HSBHSU

± . The sign

of the TC de�nes the stability of the corresponding LR. It was shown that any stationary,

axially symmetric, circular and asymptotically �at BH spacetime must have a TC equal to

−1 for each HSBHSU

± , indicating the existence of at least one unstable LR associated with

each potential.

Given that the SBHSU is not asymptotically �at, it falls outside the scope of the theorem

proved in Ref. [105]. Our task now is therefore to evaluate the TC for this case. We choose

to work with the Weyl coordinate system de�ned by

ρ =
√
r2 − 2Mr sin θ, (3.46)

z = (r −M) cos θ . (3.47)

The Weyl coordinates reduce to cylindrical coordinates in the asymptotic limit. In these

coordinates, the horizon is located at ρ = 0 and |z|< M . The axis of symmetry is determined

by ρ = 0 and |z|> M . The remaining exterior region is de�ned by ρ > 0.
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The SBHSU metric in Weyl coordinates is given by

ds2 =
F (r, θ)

f(r) +
(
M2 sin2 θ

)
/r2

(
dρ2 + dz2

)
−f(r)F (r, θ)dt2 + r2 sin2 θ

F (r, θ)

{
dφ+ [4jrf(r) cos θ] dt

}2

,

(3.48)

where the quantities r and θ in Eq. (3.48) are to be understood as functions of ρ and z,

implicitly de�ned by Eqs. (3.46) and (3.47). Let vSBHSU± be the vector �elds de�ned by

vSBHSU± =

(
1

√
gρρ

∂HSBHSU

±

∂ρ
,

1
√
gzz

∂HSBHSU

±

∂z

)
=
(
vSBHSUρ,± , vSBHSUz,±

)
. (3.49)

The explicit expression of these vector �elds, even in terms of the coordinates (r, θ), is

too lengthy and we choose not to show it here.

We can write each component of the vector �elds as

vSBHSUρ,± = |vSBHSU± |cosΩ(ρ, z), (3.50)

vSBHSUz,± = |vSBHSU± |sinΩ(ρ, z), (3.51)

where |vSBHSU± |=
√
(vSBHSUρ,± )2 + (vSBHSUz,± )2 is the norm of vSBHSU± and Ω is the angle formed

by vSBHSU± and the horizontal axis parametrized by vSBHSUρ,± .

Let C be the homotopy class of (simple) curves in the (ρ, z)-space homotopic to the

circle. The TC w is a map w : C → Z, de�ned to be

wC =
1

2π

∮
C

dΩ, (3.52)

where C ∈ C . Eq. (3.52) represents the winding number of the vector �elds vSBHSU± along

some curve C in the homotopy class C de�ned over the (ρ, z)-space.

Each LR enclosed by C contributes to the TC by ±1. Therefore, wC is a homotopic

invariant if the number of LRs inside C does not change. LRs with w = −1 are unstable,

whereas LRs with w = 1 are stable.

To calculate the total TC, one must consider a curve C, as de�ned in Eq. (3.52), that

encompasses all the LRs. Hence, despite the complexity of the vector �elds vSBHSU± compo-

nents in terms of the coordinates (ρ, z), determining the TC only requires an analysis of its

behavior in asymptotic regions, namely, near the horizon, the axis, and at in�nity.
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Figure 3.7: Vector �eld vSBHSU+ = (vSBHSUρ,+ , vSBHSUz,+ ) in the (ρ/M, z/M)-plane for the

Schwarzschild BH (top), Schwarzschild-Melvin BH with BM = 0.1 (middle) and SBHSU

with jM2 = 0.025 (bottom). The red points represent the location of the LRs of the corre-

sponding spacetime.

The vector plot of the vSBHSU+ = {vSBHSUρ,+ , vSBHSUz,+ } �eld in terms of the Weyl coordinates

can be seen in Fig. 3.7. It su�ces to restrict our analysis to vSBHSU+ , since we can always

derive the conclusions for vSBHSU− by means of Eq. (3.45).

In Fig. 3.7 we compare the vector �eld vSBHSU+ of SBHSU with Schwarzschild spacetime

and also with Schwarzschild BH immersed in the Melvin universe. The qualitative behavior of

the vector �eld vSBHSU+ near the horizon and close to the axis is similar for all the three cases.

The primary distinction between Schwarzschild, Schwarzschild-Melvin and SBHSU arises in

the asymptotic region. The Melvin and SU asymptotics result in a positive asymptotic

value for vSBHSUρ,+ , whereas it is negative for asymptotically �at spacetimes. Nevertheless, the

vector �elds vSBHSU+ of Schwarzschild-Melvin and SBHSU are di�erent for z ≫ 1, namely,

the vector �elds turns in di�erent directions to �ip the sign of vSBHSUρ,+ . This di�erence will
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have a decisive impact on the TC of SBHSU, when compared to Schwarzschild-Melvin.

Given a real number ξ > 0, the total TC is computed by considering a curve C =
⋃6

k=1Ck.

In this arrangement, the z coordinate of the paths C1 and C3 is �xed at −Mξ and Mξ,

respectively. Meanwhile, for the other paths C2 and the combination C4∪C5∪C6, the radial

coordinate ρ is �xed at Mξ and M/ξ, respectively (see Fig. 3.8).

Figure 3.8: Schematic representation of the contour C, enclosing a compact region outside

the horizon in the (ρ, z)-plane. The region inside the curve C is designed to encompass all

of the spacetime outside the horizon as ξ → ∞.

Thus, we can separate the integral of Eq. (3.52) into six pieces, according to

2πwC = I1 + I2 + I3 + I4 + I5 + I6, (3.53)

where

I1 =

[∫ Mξ

M/ξ

dΩ

dρ
dρ

]
z=−Mξ

, (3.54)

I2 =

[∫ Mξ

−Mξ

dΩ

dz
dz

]
ρ=Mξ

, (3.55)

I3 =

[∫ M/ξ

Mξ

dΩ

dρ
dρ

]
z=Mξ

, (3.56)

I4 =

[∫ M

Mξ

dΩ

dz
dz

]
ρ=M/ξ

, (3.57)

I5 =

[∫ −M

M

dΩ

dz
dz

]
ρ=M/ξ

, (3.58)

I6 =

[∫ −Mξ

−M

dΩ

dz
dz

]
ρ=M/ξ

. (3.59)
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Hence, the total TC in the exterior region of the BH is given by the limit

w = lim
ξ→∞

wC . (3.60)

The composite curve formed by C4 ∪ C6 represents the axis limit, while C5 denotes the

horizon limit. Additionally, the path formed by the combination C1 ∪ C2 ∪ C3 corresponds

to the asymptotic limit.

In order to compute the integrals presented in Eqs. (3.54)-(3.59), it is necessary to ensure

that the associated angle Ω, within each path Ck, falls within the valid range for the inverse

trigonometric functions arccos and arcsin. Thus, Ω must belong, along each path Ck, to one

of the following four intervals: (π/2,−π/2), (π/2, 3π/2), (0, π), or (−π, 0).

For each of the four possibilities, Ω is calculated inverting Eqs. (3.50) and (3.51) according

to

if Ω ∈ (π/2,−π/2) : Ω = arcsin

(
vSBHSUz,±

|vSBHSU± |

)
, (3.61)

if Ω ∈ (π/2, 3π/2) : Ω = π − arcsin

(
vSBHSUz,±

|vSBHSU± |

)
, (3.62)

if Ω ∈ (0, π) : Ω = arccos

(
vSBHSUρ,±

|vSBHSU± |

)
, (3.63)

if Ω ∈ (−π, 0) : Ω = − arccos

(
vSBHSUρ,±

|vSBHSU± |

)
. (3.64)

For any of the four possibilities, the integrals Ik are calculated by substituting Ω for the

formulae given in Eqs. (3.61)-(3.64), evaluated at the corresponding integration limits.

Asymptotic limit

In the asymptotic limit we have to calculate the Integrals I1, I2 and I3. Starting with the

integral I1, we have z = −Mξ → −∞, where the vector �eld vSBHSU+ can be approximated

as:

vSBHSUρ,+ ≈ − 1− 3j2ρ4

ρ2
√

1 + j2ρ4
+O(ξ−1), (3.65)

vSBHSUz,− ≈ − 4j√
1 + j2ρ4

+O(ξ−1), (3.66)
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with higher-order terms represented by O(ξ−1). In this part of the integration, the corre-

sponding angle Ω will be denoted by Ωz→−∞.

Since the z-component, vSBHSUz,+ , is negative (vSBHSUz,+ < 0), it indicates that the angle

Ωz→−∞ ∈ (−π, 0), which implies that the function Ωz→−∞ can be calculated via Eq. (3.64).

Thus, the expression for the �rst integral can be written as

I1 = π − 1

3
√
2

1

ξ
+O(ξ−2). (3.67)

Now we may consider the integration for ρ =Mξ → ∞, where the vector �eld vSBHSU+ is

approximately given by

vSBHSUρ,+ ≈ 3j +O(ξ−1), (3.68)

vSBHSUz,+ ≈ 0 +O(ξ−1). (3.69)

Since, up to zeroth order in ξ−1, the vector �eld vSBHSU+ does not depend on neither of

the coordinates ρ and z, as ρ approaches in�nity, we can deduce that the contribution I2

from path C2 to the TC is zero:

I2 = 0 . (3.70)

To complete the asymptotic analysis, we have to calculate I3. In this integration we let

z =Mξ → ∞, where the vector �eld vSBHSU+ is approximately given by

vSBHSUρ,+ ≈ − 1− 3j2ρ4

ρ2
√

1 + j2ρ4
+O(ξ−1), (3.71)

vSBHSUz,+ ≈ − 4j√
1 + j2ρ4

+O(ξ−1). (3.72)

Thus, the calculation is performed exactly the same as it was for the C1 path, just

swapping the integration limits, which gives

I3 = −π +
1

3
√
2

1

ξ
+O(ξ−2). (3.73)
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Axis limit

In this part of integration we let ρ = M/ξ → 0. The coordinate z has to satisfy either

z > M or z < −M . We �rst consider the case z > M , which is associated with the I4

integral. Thus, we can make an approximation for the vector �eld vSBHSU+ as follows:

vSBHSUρ,+ ≈ −
(
z −M

z +M

)3/2
ξ2

M2
+O(ξ0) , (3.74)

vSBHSUz,+ ≈ 2
√
z −M

(z +M)5/2
ξ +O(ξ0) . (3.75)

The corresponding angle Ω will be denoted by Ωz>M
ρ→0 . Since the ρ-component, vSBHSUρ,+ , is

negative (vSBHSUρ,+ > 0), it indicates that the angle Ωz>M
ρ→0 lies between π/2 and 3π/2, which

implies that Eq. (3.62) is suitable for this calculation. Thus, the expression for I4 can be

written as

I4 = −π
2
+

8jM2

ξ
+O(ξ−2). (3.76)

Analogously, we may calculate I6 considering z < −M . We obtain that the vector �eld

vSBHSU+ takes the approximated form:

vSBHSUρ,+ ≈ −
(
z +M

z −M

)3/2
ξ2

M2
+O(ξ0) , (3.77)

vSBHSUz,+ ≈ − 2
√
−z −M

(−z +M)5/2
ξ +O(ξ0) . (3.78)

The corresponding angle Ω will be denoted by Ωz<−M
ρ→0 . Since the ρ-component, vSBHSUρ,+ , is

negative (vSBHSUρ,+ < 0), it indicates that the angle Ωz<−M
ρ→0 lies between π/2 and 3π/2, which

implies that we must use Eq. (3.62). Thus, the expression for I6 is given by

I6 = −π
2
+

8jM2

ξ
+O(ξ−2). (3.79)

Horizon limit

Following the C5 curve, we still have ρ = M/ξ → 0, but now |z|< M . We want to show

that vSBHSUρ,+ > 0, hence we may use Eq. (3.61) to evaluate I5. In order to do so, we have to
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go back do spherical coordinates. Thus, we have that

vSBHSUρ,+ =
∂ρHSBHSU

+√
gρρ

=

(
∂r
∂ρ

∂
∂r

+ ∂θ
∂ρ

∂
∂θ

)
HSBHSU

+√(
∂r
∂ρ

)2
grr +

(
∂θ
∂ρ

)2
gθθ

≈
r→2M

∂rHSBHSU

+√
grr

. (3.80)

Therefore, the ρ-component of the vector �eld v+, nearby the horizon (r = 2M + δr,

where δr is a small, positive real number), in spherical coordinates, can be written as

vSBHSUρ,+ ≈
√
F (2M, θ)

8M2 sin θ
−
√

2

M

2j cos θ√
F (2M, θ)

δr1/2 +O(δr). (3.81)

Since δr → 0, we have that vSBHSUρ,+ > 0. Thus, let Ω|z|<M
ρ→0 denote the vector �eld angle

with the horizontal axis. We must have Ω
|z|<M
ρ→0 ∈ (−π/2, π/2), implying that we may use

Eq. (3.61). The corresponding integral I5 must be given by

I5 = −π +
16jM

ξ
+O(ξ−2). (3.82)

We can now compute the total TC using Eq. (3.60), which is given by

w = lim
ξ→∞

1

2π
(I1 + I2 + I3 + I4 + I5 + I6)

= lim
ξ→∞

[
−π +

16jM2

ξ
+O(ξ−2)

]
= −π.

(3.83)

Therefore, we proved that there must exist one unstable LR, for all values of j ∈ (0,∞),

associated with the vector �eld v+. Due to the odd Z2 symmetry (see Appendix A) mani-

fested in Eq. (3.45), we can also conclude that there is also another LR associated with v−,

with the same radial coordinate ρ and re�ected z-coordinate with respect to the equatorial

plane. Therefore, there are two LRs, one for each potential.

To conclude our analysis in this section concerning LRs, we turn our attention to the

examination of the TC within the context of the background spacetime alone, excluding the

presence of the Schwarzschild BH. To study the SU we have to consider the same calculation,

but now setting M = 0. For M = 0, the formulae undergo a substantial simpli�cation. The

Weyl coordinates reduce to cylindrical coordinates (see Eq. (3.26)).

The potentials HSBHSU

± |M=0≡ HSU

± are given by

HSU

± = −4jz ±
(
j2ρ3 +

1

ρ

)
. (3.84)
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Figure 3.9: Plot illustrating the vector �eld vSBHSU+ = (vSBHSUρ,+ , vSBHSUz,+ ) in the (ρ/M, z/M)-

plane for the SU with j = 0.025. Since Eq. (3.85) does not depend on the coordinate z,

the pattern of the vector �eld displayed in the plot repeats itself in�nitely upwards and

downwards.

The associated vector �elds vSBHSU± can be written as

vSBHSU± =

(
∓ 1− 3j2ρ4

ρ2
√

1 + j2ρ4
,− 4j√

1 + j2ρ4

)
. (3.85)

The vector �elds vSBHSU± of the SU are precisely the ones that we obtained for the SBHSU

case in the limit z → ±∞.

In Fig. 3.9 we display a vector plot of vSBHSU+ . Since the vector �eld does not depend on

the z coordinate, the winding number is zero for any curve C in the (ρ, z)-plane. Therefore,

the total TC is also zero, implying that in the SU there are no LRs.

To conclude, the LR of the SBHSU spacetime is actually the LR inherited from the

Schwarzschild BH that was split and pushed o� the equator by the the swirling background.

3.4 Shadows and gravitational lensing

In this section we investigate the shadow and gravitational lensing phenomena of the

SBHSU solution de�ned by Eq. (3.17).

However, the SBHSU does not appear to be integrable in the (t, r, θ, φ) coordinates, in

contrast with the SU background [179]. But one may calculate the shadow by means of

numerical simulations using (backward) ray-tracing codes.
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Figure 3.10: Plot illustrating the backward ray-tracing method for the SBHSU spacetime.

We evolved, numerically, 50 null geodesics with initial conditions given by Eqs. (3.86)-(3.89),

θ = π/2 and r = 10M . We have chosen the observation angles at random.

Here, we numerically integrate Eqs. (3.36) and (3.37), with initial conditions given by

E =
√
f(r)F (r, θ)− 4j r2 cosα sin βf(r) sin θ cos θ√

F (r, θ)
, (3.86)

pr = cosα cos β

√
F (r, θ)

f(r)
, (3.87)

pθ = r
√
F (r, θ) sinα, (3.88)

L =
r cosα sin β sin θ√

F (r, θ)
, (3.89)

where α, β are the observation angles and Eqs. (4.32)-(4.35) are evaluated at the observer

coordinates. These initial conditions are obtained by projecting the photon's momentum

into the observer's tetrad frame - see Ref. [115] for more details.

The initial conditions of the photon are de�ned by the observation angles. Using the

PyHole package implemented in Python [116], varying the observation angles, we evolved

1024×1024 light ray trajectories. An illustration of the backward ray-tracing method is

depicted in Fig. 3.10.
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Figure 3.11: Shadow and gravitational lensing of the SBHSU, starting with the Schwarzschild

case and increasing the swirling parameter j in equal steps of δj = 0.0001. In all the images,

the observer is positioned at the equatorial plane (θ = π/2) and at the radius r = 15M .
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Figure 3.12: Shadow and gravitational lensing of the SBHSU, for jM2 = 0.0005, for several

observer positions. We start with θ = 0 (on axis observer seeing the BH from the top) and

we increase the angle θ in equal steps of δθ = π/8, until we reach θ = π (on axis observer

seeing the BH from the bottom). We kept the radius �xed at r = 15M .
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Figure 3.13: Shadow edge of the SBHSU for jM2 = 0.0005, for observers positioned at θ = 0

(top left), θ = π/4 (top right) and θ = π/2 (bottom). We kept the radius �xed at r = 15M .

The points P1, Q1 and R1 are randomly chosen points on the shadow's edge. The points P2,

Q2 and R2 are obtained by re�ecting P1, Q1 and R1 with respect to the horizontal axis at

the middle of each plot. The points P3, Q3 and R3 are obtained by re�ecting P2, Q2 and R2

with respect to the vertical axis.
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3.4.1 Equatorial plane images

The shadows and gravitational lensing of the SBHSU, described by Eq. (3.17), are

displayed in Fig. 3.11. We considered the observer positioned on the equatorial plane,

θ = π/2, and with radial coordinate r = 15M . We computed the images for several values

of the swirling background parameter, namely, jM2 = nδj, with n ∈ {0, 1, 2, 3, 4, 5} and

δj = 0.0001. The top left image corresponds to the Schwarzschild BH, for reference. We

increase the parameter j from left to right, top to bottom, in each image of Fig. 3.11. The

contour of the shadow gets a tilted oblate shape in comparison to the Schwarzschild BH.

Regarding the gravitational lensing e�ects in the images, they also become more oblate as

j increases. The Einstein ring, present in the Schwarzschild's case, disappears when we

increase the swirling parameter.

3.4.2 O�-equatorial plane images

Next we analyze the shadow and gravitational lensing when the observer is positioned

o� the equator. For this case, we considered images with jM2 = 0.0005, keeping the same

radial distance, but now changing observer θ coordinate, starting at θ = 0 and ending at

θ = π. We considered equal step displacements δθ = π/8 in the observer's θ coordinate.

The simulated images are displayed in Fig. 3.12. The �rst (last) image corresponds

to an observer located right above (below) the BH. In this case, due to axial symmetry,

the shadow's boundary is a perfect circle. The predominant colors for this position of the

observer are blue and yellow (green and red), which compose the bottom (top) hemisphere

of the celestial sphere, hence, are in front of the observer. Nevertheless, it is still possible to

see the other two colors near the shadow's edge, which are on the back of the observer.

As we move the observer along the θ direction, from the poles to the equator, all the colors

blend together and the distinct circular shape of the shadow's edge fades away. Interestingly,

moving the observer away from the poles disrupts the Z2 symmetry. The Z2 symmetry

breaking of the shadow is depicted in Fig. 3.13. To represent the re�ections we considered 3

di�erent points, namely P1, Q1 and R1; on the shadow's edge in each panel. The points P1,

Q1 and R1 are �rst re�ected with respect to the horizontal axis and end up on the points
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P2, Q2 and R2, respectively. Afterwards, we consider a second re�ection, now with respect

to the vertical axis, mapping P2, Q2 and R2 to P3, Q3 and R3, respectively. The point P1 is

always chosen to be near the vertical axis, the point R1 is close to horizontal axis, whereas

the point Q1 is chosen about half the way between the other two.

For an observer with θ = 0 or θ = π, the shadow's edge has a Z2 × Z2 symmetry.

This means that any point on the shadow's boundary, if re�ected with respect to either

horizontal or vertical axis, ends up in an another point contained on the shadow's edge.

Those re�ections are illustrated on the top left panel of Fig. 3.13.

Considering now an observer at θ = π/4, no re�ection symmetry with respect to the

vertical and/or horizontal axes is present. The top right panel in Fig. 3.13 represents the

re�ection for this case. The point P1 close to vertical axis is (approximately) mapped to

another point on the shadow's edge after both vertical and horizontal re�ections. However,

as we consider points on the shadow closer to the horizontal axis, such as Q1 and R1, the

re�ections do not map those points to another point on the shadow's boundary. The point

that most clearly illustrates the symmetry breaking is R1, located near the horizontal axis.

Finally we considered the case where the observer is at the equatorial plane θ = π/2. In

this case the odd Z2 (see Appendix A) is present. Therefore, any point on the shadow's edge,

after both vertical and horizontal re�ections are mapped to other points on the shadow's

edge. Hence, for those observers, the symmetry of the underlying spacetime is inherited for

its shadow. Such modi�cation of the symmetry properties of the shadow illustrated here

emphasizes the already known concept that the shadow is observer dependent.

3.5 Remarks

The SBHSU [160,161] represents a novel class of exact solutions of vacuum Einstein's GR,

initially explored in Ref. [160] and exhibiting intriguing properties. We explored the shadows

and gravitational lensing of the SBHSU. Because the SBHSU described with (t, r, θ, φ) coor-

dinates does not appear to be integrable, we employed the backward ray-tracing technique

to compute the shadow and gravitational lensing. Our �ndings show that when observers are

positioned at the equatorial plane, the shadow inherits the odd re�ection symmetry present
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in the spacetime, giving a prolate shape for its boundary along a diagonal direction - a sort of

twisting of the shadow. However, for observers o� the equatorial plane, this odd symmetry

is lost, except for those situated at θ = 0 or θ = π, where the shadow exhibits Z2 × Z2

symmetry.

Our analysis of the null geodesic �ow in the SBHSU also revealed the existence of two

unstable LRs (total TC w = −1 for each HSBHSU

± ), each co-rotating with the underlying

spacetime. We have shown that, due to the odd Z2 symmetry, these LRs must exist outside

the equatorial plane.

The concepts of odd and even Z2 symmetry, introduced in Appendix A, are fundamental

to our results. This classi�cation is important to understand the behavior of null geodesics

in the Schwarzschild BH within the SU. Several distinguishing properties of LRs, shadows

and gravitational lensing of the SBHSU are related to the odd type of symmetry.



Chapter 4
Spinning generalizations of

Majumdar-Papapetrou multi-black hole

spacetimes:

light rings, lensing and shadows

4.1 Introduction

As discussed in Chap. 1, dynamical BBH solutions can model the complex dynamics

of common gravitational wave sources. Yet, constructing these solutions in GR is excep-

tionally challenging, as the problem lacks generic symmetries and involves fundamentally

time-dependent processes.

An intermediate simpler way, albeit limited in scope, to get a glimpse of how BHs interact

with each other is to analyze exact stationary solutions involving multiple BHs. In such

solutions the BHs must be ��xed�, for equilibrium to be achieved. This can be done by

either �ne tuning their physical parameters (distances, masses, angular momenta, gauge

charges, external �elds,...) or by introducing arti�cial structures to hold the BHs in place,

such as conical singularities.

In 4-dimensional vacuum GR, asymptotically �at multi-centered BH con�gurations can-

not remain in equilibrium without the presence of naked singularities [183�186]. For example,
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the double Schwarzschild solution [187] and the double Kerr solution [188] require conical

singularities. Even without resorting to gauge �elds, however, conical singularities can be

removed either by introducing additional (non-gauge) �elds, such as scalar �elds [189, 190],

or by waiving asymptotic �atness [191,192].

The introduction of gauge �elds, on the other hand, opens up new possibilities. In New-

tonian mechanics, the equilibrium between two charged, massive particles is achieved when

the product of their masses equals the product of their electric charges (in appropriate units).

The inherent non-linearities of GR would seem to preclude a straightforward generalization

of this simple rule. Remarkably, however, in EM theory an equally simple (and related) rule

applies: two (or more) BH con�gurations are possible if the BHs have the same (unitary)

charge to mass ratio. Such spacetimes are constructed by superimposing two (or more)

extremal RN BHs, leading to the Majumdar-Papapetrou (MP) solution [193,194].

There have been attempts to extend the static MP solution to rotating spacetimes within

EM theory [195,196]. It turns out that the obtained generalizations describe the interaction

between naked singularities rather than BHs [197]. On the other hand, enlarging the model

from EM to Einstein-Maxwell-dilaton (EMD) with the Kaluza-Klein (KK) coupling between

the dilaton and Maxwell �eld - hereafter dubbed KK theory -, Teo and Wan constructed a

generalized version of the MP solution that accommodates rotating, electrically and mag-

netically charged BHs [198] that reduce to the standard MP of EM in the static limit. In

other words, the dilaton is sourced by rotation. Moreover, the Teo-Wan (TW) spacetime

represents a regular superposition of the well-known rotating, charged BHs in KK theory,

the Rasheed-Larsen (RL) BHs [199,200].

The TW metric is much simpler than the double-Kerr solution, making it a convenient

laboratory for rotational e�ects on physical observables. Additionally, it is free of conical

singularities, which makes it more physically appealing. Even though it should not be

faced as a representation of (astro)physical reality, as it remains inherently dyonic and with

extremal horizons, its theoretical advantages, motivate us to analyze its null geodesic �ow,

exploring the e�ects of rotation on a multi-BH system.

In this chapter, we explore the LRs, shadows, and gravitational lensing e�ects of the

TW spacetime. As we will demonstrate, the LR structure�or more generally, the FPO
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structure�of this rotating, KK theory counterpart of the MP spacetime, is signi�cantly

more involved than that of its static counterpart. The remainder of this chapter is organized

as follows. In Sect. 4.2, we review key aspects of the single RL BH solution, which is the

basis for deriving the TW solution, revisiting its main properties. Sect. 4.3 reviews key

aspects of the single TW solution restricted to the case of only two BHs in equilibrium.

Sect. 4.4 focuses on the motion of null geodesics in the TW spacetime, where we de�ne the

2-dimensional e�ective potentials HTW

± and analyze the LR structure using the techniques

introduced in Ref. [105, 165]. In Sect. 4.5, we present our �ndings on the shadow and

gravitational lensing e�ects of the TW spacetime. Finally, Sec. 4.6 presents some remarks

about this chapter.

4.2 Single BH solution: Rasheed-Larsen spacetime

4.2.1 KK theory

In this section we review some aspects of the RL spacetime, a solution in KK theory.

KK theory emerges from Einstein's pure gravity theory in higher-dimensional spacetimes.

Speci�cally, we consider (1 + 4)-dimensional vacuum GR, described by the action:

S =
1

16πG5

∫
d5X

√
−g(5)R(5), (4.1)

where G5 is Newton's constant in �ve spacetime dimensions, g(5) and R(5) denote the �ve

dimensional metric and Ricci scalar, respectively, and XM = (xµ, x5) are the �ve dimensional

coordinates. The �fth dimension, x5, is compacti�ed, and the 5-dimensional metric remains

invariant under translations along this compact dimension. These conditions allow the 5-

dimensional vacuum equations to be mapped into a 4-dimensional theory with a (dilaton)

scalar �eld coupled to Maxwell electrodynamics, under the KK ansatz

ds2(5) = eϕ/
√
3gµνdx

µdxν + e−2ϕ/
√
3(dx5 + 2Aµdx

µ)2, (4.2)

leading to KK theory

S =
1

16πG4

∫
d4x

√
−g
[
R− 1

2
(∇ϕ)2 − 1

4
e−

√
3ϕF 2

]
, (4.3)
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where ϕ is the dilaton �eld, F 2 = FµνF
µν , Fµν = ∂µAν −∂νAµ is the Maxwell 2-form and Aµ

the potential 1-form. Thus, the higher-dimensional geometry naturally incorporates both

scalar and electromagnetic sources within a 4-dimensional framework. This corresponds to

a speci�c type of EMD theory, where the dilaton coupling constant is �xed as
√
3, by the

process of dimensional reduction.

4.2.2 5-dimensional metric

The RL BH represents a stationary and axisymmetric solution in KK theory (4.3), char-

acterized by a connected event horizon. This solution is parametrized by four independent

physical quantities: the mass M , angular momentum J , electric charge Q, and magnetic

charge P . For such family, there exists two distinct extremal classes, each corresponding to

a di�erent condition that saturates the bound for a horizon to exist. These two conditions

can be represented within the parameter space shown in Fig. 4.1.

The TW solution is constructed using one of these classes, called under-rotating extremal

solutions, for which Q and P are non-vanishing and J can take values in a certain (charge)

dependent interval, with the minimum value being always zero. This is illustrated in Fig. 4.1.

Using a spherical-like coordinate system (t, r, θ, φ, x5), the under-rotating limit of RL

extremal solution [199,200] is described (in their �ve dimensional guise) by the 5-dimensional

metric

ds2(5) =
H2

H1

{
dx5 −

[
2
(
r +

p

2
− pj cos θ

)] Q
H2

dt

−
[
2H2 cos θ − q

(
r +

pq

p+ q

)
j sin2 θ

]
P

H2

dφ

}2

− r2

H2

(
dt+

2jPQ sin2 θdφ

r

)2

+H1

(
dr2

r2
+ dθ2 + sin2 θdφ2

)
,

(4.4)

where

H1 = r2 + rp+
p2q(1 + j cos θ)

2(p+ q)
, (4.5)

H2 = r2 + rq +
pq2(1− j cos θ)

2(p+ q)
, (4.6)
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Figure 4.1: Surfaces of extreme solutions in KK theory. The under-rotating extremal solu-

tions fall into the lighter purple wall. Fixing the charges and varying J , one gets a vertical

line segment, as illustrated by the black solid line, with a vanishing minimum value of J .

The other class of extremal solutions fall into the darker purple surface.

and p and q are positive quantities related to the electric and magnetic charge by

P 2 =
p3

4(p+ q)
, Q2 =

q3

4(p+ q)
. (4.7)

The mass and angular momentum are [198] 4M = p + q and J = jPQ and are constrained

by (P/M)2/3 + (Q/M)2/3 = 22/3 and |J |< |PQ|. Following [198], to construct the multi-

centered solution, a simpli�cation is achieved by considering P = Q = M/
√
2, yielding the

simpli�ed �ve dimensional geometry

ds2(5) =
H2

H1

{dx5 −
√
2H−1

2 [M(r +M)− 2J cos θ]dt

−
√
2
[
M cos θ − 2JH−1

2 (r +M) sin2 θ
]
dφ}2

− r2

H2

(
dt+

2J sin2 θdφ

r

)2

+H1

(
dr2

r2
+ dθ2 + sin2 θdφ2

)
, (4.8)

where now H1,2 = (r + M)2 ± 2J cos θ. While imposing equality between the charges is

not a strict requirement, it greatly simpli�es the construction of the multi-centered solution.



75
Spinning generalizations of Majumdar-Papapetrou multi-black hole spacetimes:

light rings, lensing and shadows

Eq. (4.8) describes a BH solution that lies along the black line segment on the parameter

space represented in Fig. 4.1. This solution is characterized by two parameters, M and J ,

where |J |< Je =M2/2. Here, J = 0 corresponds to the bottom black point in Fig. 4.1, while

J = Je represents the point on the top.

4.2.3 4-dimensional metric

After performing dimensional reduction with (4.2), the particular case of equal charges

BHs, Eq. (4.8), leads to the 4-dimensional spacetime, characterized by its metric, gauge

potential, and scalar �eld con�guration:

ds2 =− (r −M)2√
r4 − 4J2 cos2 θ

(
dt+

2J sin2 θdφ

r −M

)2

+
√
r4 − 4J2 cos2 θ

[
dr2

(r −M)2
+ dθ2 + sin2 θdφ2

]
,

(4.9)

Aµdx
µ = −

√
2

[(
Mr − 2J cos θ

r2 − 2J cos θ

)
dt+

(
M cos θ

− 2Jr sin2 θ

r2 − 2J cos θ

)
dφ

]
,

(4.10)

ϕ =

√
3

2
ln

(
r2 + 2J cos θ

r2 − 2J cos θ

)
, (4.11)

respectively.

The event horizon is located at r =M , enclosing a curvature singularity at r =
√
2|J cos θ|.

In the limit J = 0 the dilaton trivializes, and this solution reduces to the extremal RN BH

of EM theory.

The geometry of the event horizon is determined by restricting Eq. (4.9) to the 2-surface

t = constant and r = M . The area AH of this surface is given by AH = 4π
√
M4 − 4J2.

The horizon Gaussian curvature is everywhere positive throughout the entire parameter

space. Consequently, there exists a unique isometric embedding (up to rigid rotations) of

the horizon surface into a 3-dimensional Euclidean space [201]. In Fig. 4.2 we display the

isometric embedding for J/Je = 0, 0.2, 0.4, 0.6.

The parametersM and J are constants obtained via Komar integrals evaluated at in�nity.

However, we may also evaluate the mass and angular momentum by Komar integrals over
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Figure 4.2: Isometric embedding of the horizon into 3-dimensional Euclidean space for

J/Je = 0, 0.2, 0.4, 0.6. As the angular momentum increases, the area diminishes, in ac-

cordance with the expression of AH . In the limit of J/Je → 1, the area AH vanishes.

the horizon [202]. From this, we �nd that the horizon mass MH and the horizon angular

momentum JH are given by

MH = 0, (4.12)

JH =
(4J2 −M4)

[
(4J2 −M4) tanh−1

(
2J
M2

)
+ 2JM2

]
16J2M2

, (4.13)

respectively.

Thus, RL under-rotating extremal solutions have their entire mass contained outside

the horizon, carried by the external �elds, a characteristic shared with the RN extremal

solution [202], while JH ̸= 0 in general. Figure 4.3 shows the pro�le of JH as a function of

J , from which we observe that the horizon angular momentum has an opposite sign to the

angular momentum of the whole spacetime.

Despite the non-vanishing horizon angular momentum, we emphasize that the horizon

has zero angular velocity, as inferred from −gtφ/gφφ = 2J(r−M)/(r4−4J2) [199,200]. This

implies the absence of an ergoregion. Unlike other well known cases, as the BMPV BH in

D = 5, in which the absence of an ergoregion can be associated to supersymmetry [203], this

class of solutions is not supersymmetric [198].
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Figure 4.3: Angular momentum at the horizon JH , as a function of the parameter J of the

solution (4.9).

4.3 Teo-Wan spacetime

4.3.1 The solution

It was remarked in Ref. [198] that the RL solution in the under-rotating extremal limit

is contained within a class of solutions reported by Clément [204], characterized by two har-

monic functions. This structure is the trademark of a superposition principle and allowed

Teo and Wan to extend the single extremal BH solution (4.8) to a multi-BH con�guration

by generalizing the single center harmonic functions to multi-center ones. The resulting TW

solution describes an asymptotically �at, stationary, axisymmetric, multi-centered nonsin-

gular equilibrium con�guration of rotating dyonic BHs, each with an extremal horizon. The

particular case of two BHs may be written as

ds2 = −
(dt+ ω0

φdφ)
2

√
H+H−

+
√
H+H−

(
dρ2 + dz2 + ρ2dφ2

)
, (4.14)

Aµdx
µ =

√
2

H−

{
− [(1 + f)f − 2g] dt

+

[
(1 + f)ω0

φ +
H−ω̃

5
φ√

2

]
dφ

}
,

(4.15)

ϕ =

√
3

2
ln
H+

H−
, (4.16)

where

H± = (1 + f)2 ± 2g, (4.17)
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ω0
φ =

2J1ρ
2

[ρ2 + (z + a)2]3/2
+

2J2ρ
2

[ρ2 + (z − a)2]3/2
, (4.18)

ω̃5
φ = −

√
2M1(z + a)√
ρ2 + (z − a)2

−
√
2M2(z − a)√
ρ2 + (z + a)2

, (4.19)

and

f =
M1√

ρ2 + (z + a)2
+

M2√
ρ2 + (z − a)2

, (4.20)

g =
J1(z + a)√
ρ2 + (z + a)2

3 +
J2(z − a)√
ρ2 + (z − a)2

3 . (4.21)

The double BH spacetime is determined by 5 parameters, namely: M1, M2, J1, J2

and a, where |J1|< Je,1 = M2
1/2, |J2|< Je,2 = M2

2/2 and a ≥ 0. The multi-centered

solution reduces to the single 4-dimensional BH solution of Sec. 4.2 with the coordinate

change {ρ = (r − M) sin θ, z = (r − M) cos θ}, when a → 0 and with the identi�cations

M1 →M/2, M2 →M/2, J1 → J/2, and J2 → J/2.

We remark that Eq. (4.14), expressed in cylindrical coordinates {t, ρ, z, φ}, has a spatial

sector conformal to the Euclidean 3-space, E3. Accordingly, we de�ne the Euclidean position

x = (x, y, z), where x, y, and z are rectangular coordinates. The two BHs are located at

x1 = (0, 0,−a) and x2 = (0, 0, a), making a the coordinate distance from the origin of E3 to

each gravitating center.

The functions f and g are solutions of the Poisson equation on E3, respectively, namely

∆E3f = 4πM1δ(x+ aẑ) + 4πM2δ(x− aẑ), (4.22)

∆E3g = 4πJ1 · ∇E3δ(x+ aẑ) + 4πJ2 · ∇E3δ(x− aẑ), (4.23)

where δ(·) is the Dirac delta function, ẑ denotes the unit vector along the z-axis and the

vectors J1 and J2 are de�ned as J1 = J1ẑ and J2 = J2ẑ. The operators ∆E3 and ∇E3 refer

to the Laplacian and gradient on E3, respectively. Hence, f represents a pair of monopole

solutions with monopole strengths M1 and M2, while g corresponds to a pair of dipole

solutions with dipole moments J1 and J2.

The spacetime total mass and angular momentum can be calculated using Komar inte-

grals and the Gauss's law, are given by M1 +M2 and J1 + J2, respectively. Moreover, the

parameters (M1, J1) and (M2, J2) can be interpreted as the mass and angular momentum of

the BHs located at x1 and x2, respectively, since Eqs. (4.14), (4.15), and (4.16) reduce to
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Eqs. (4.9), (4.10), and (4.11) near each center, with the identi�cations (M1, J1) → (M,J)

or (M2, J2) → (M,J). Therefore, all the analyses presented in Sec. 4.2 regarding horizon

quantities and horizon embedding, remain valid for the multi-centered solution.

4.3.2 Majumdar-Papapetrou limit

For J1 = J2 = 0, the scalar �eld ϕ vanishes, as H+|J1=J2=0 = H−|J1=J2=0. In this limit,

the metric and the vector potential reduce to:

ds2 =
dt2

(1 + f)2
+ (1 + f)2(dρ2 + dz2 + ρ2dφ2), (4.24)

Aµdx
µ = −

√
2f

1 + f
dt+ ω̃5

φdφ. (4.25)

The metric and gauge potential given in Eqs. (4.24) and (4.25) correspond to the dyonic MP

solution1 [205].

4.4 Null orbits

4.4.1 Majumdar-Papapetrou null orbits

This subsection reviews null orbits in the MP spacetime, with a particular focus on null

planar orbits, including LRs and other general FPOs. In Ref. [105], a theorem guarantees the

existence of unstable LRs for BH spacetimes for each rotation sense. This result was later

generalized in Ref. [165] for a con�guration of N collinear BHs, which must accommodate at

least N unstable LRs for each sense of rotation. Since this result relies solely on boundary

conditions and not on the �eld equations, it applies to the TW solution (and in particular

to MP) as well. The topological techniques developed in Refs. [105, 165] o�er a powerful

framework for analyzing the LR structure of both BH spacetimes and horizonless objects [104,

206]. This approach relies on evaluating a TC, which is derived from a circulation integral

1Usually the MP is presented with At = (1 + f)−1, di�erent from Eq. (4.25). However, −f/(1 + f) =

1/(1 + f)− 1 and the −1 term can be gauged away, hence the two potentials are equivalent.
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involving the normalized gradient of the following potential functions:

H± =
−gtφ ±

√
g2tφ − gttgφφ

gφφ
. (4.26)

The normalized gradients of H± are de�ned by

v± =

(
1

√
gρρ

∂H±

∂ρ
,

1
√
gzz

∂H±

∂z

)
=
(
v±ρ , v

±
z

)
. (4.27)

To determine the location of each LR, one can �nd the critical points of the potentials

H±, or equivalently, identify the zeros of the vector �eld v±. By evaluating the circulation

of v± along a closed path in the (ρ, z)-plane that encloses exactly one of these zeros, a TC

can be assigned to each LR. The TC is de�ned as +1 if the winding direction of v± matches

its circulation around the path; otherwise, it is −1.

TC=−1 corresponds to a saddle point of H±, TC=+1 indicates either a maximum or a

minimum. Whether the LR represents a maximum or a minimum, depends on the behavior

of the vector �eld v± in a neighborhood of the point: if v± is convergent, the point is a

maximum, if it is divergent, the point is a minimum.

The total TC, calculated over a path that encloses all the LRs of a given spacetime, can be

generically determined under appropriate boundary conditions. In Ref. [105], it was shown

that in any single BH spacetime with properties of stationarity, axial symmetry, circularity,

and asymptotic �atness, the total TC for each potential H± is always −1. This result was

later generalized in Ref. [165] to account for a con�guration of N collinear BHs, where the

corresponding total TC is given by −N .

The MP LR structure can be analyzed through the lens of the TC formalism. The

potential functions HMP

± for the MP spacetime are given by

HMP

± =
±1

ρ (1 + f)2
. (4.28)

Its corresponding vector �elds vMP

± are given by

(
vMP

±
)
j
= ±

(1 + f)δρj + 2ρ∂jf

ρ2(1 + f)4
, (4.29)

where j = ρ, z and
(
vMP

±
)
j
denotes the j-th component of vMP

± .
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Figure 4.4: Vector �eld vMP

+ over the (ρ, z)-plane for the 2-center MP with a/M =

0.3 (top), 0.5 (middle), 0.7 (bottom). Blue upright triangles indicate the positions of LRs

with a TC of −1, while the inverted triangle marks the location of the LR with a TC of +1.

Since the MP solution is static, the potentials HMP

± and the vector �elds vMP

± can only

di�er by a global minus sign. Hence it su�ces to �nd the critical points and zeros of HMP

+

and vMP

+ , respectively. Fig. 4.4 shows the LR con�guration for a/M = 0.3, 0.5, 0.7, along

with the vector plot of vMP

+ for equal-mass BHs.

In the MP spacetime, for M1 = M2 = M , equatorial LRs can only exist when the

coordinate distance a of each BH from the origin is below a critical value of af/M ≈ 0.5443:

i) If a is smaller than another critical distance, ai/M ≈ 0.3849, both LRs are saddle

points [207].
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ii) Letting ai < a < af , the internal LR becomes stable, while the external one remains a

saddle point. Simultaneously, two o�-equator LRs emerge, both saddle points.

iii) For a > af , the o�-equatorial LRs remain saddle points and the equatorial ones disap-

pear. For a summary, see Table 4.1.

For ai < a < af , the saddle point indicates the presence of two critical contour lines on

the non-Killing submanifold, along which the LR exhibits stability (along one) and instability

(along the other one). In general, these lines do not need to intersect orthogonally. However,

it can be shown that for (stationary, axisymmetric, circular) Z2-symmetric spacetimes in

four dimensions with an unstable LR at the equator, the critical lines are indeed orthogonal.

This orthogonality arises from the Z2 symmetry, which enforces ∂zgµν |z = 0 = ∂z∂ρgµν |z=0=

0 ⇒ ∂z∂ρHMP

+ |LR= 0. Since the 2-center MP solution with equal masses is Z2, the stability of

equatorial LRs is fully determined by their stability along the orthogonal ρ and z directions,

i.e. ∂2ρHMP

+ |LR and ∂2zHMP

+ |LR.

a < ai ai < a < af af < a < af af < a

Internal ρ ⌣ | z ⌢ (-1) ρ ⌣ | z ⌣ (+1) � �

External ρ ⌢ | z ⌣ (-1) ρ ⌢ | z ⌣ (-1) � �

Top � ρ ⌣ | z ⌣ (-1) ρ ⌣ | z ⌣ (-1) ρ ⌢ | z ⌣ (-1)

Bottom � ρ ⌣ | z ⌣ (-1) ρ ⌣ | z ⌣ (-1) ρ ⌢ | z ⌣ (-1)

Table 4.1: LR (in)stability along the ρ and z directions of the MP solution with equal masses,

for di�erent ranges of the parameter a. Here, ρ ⌣ and z ⌣ denote stability, while ρ ⌢ and

z ⌢ denote instability, in the respective directions. In brackets, after each LR, we present

its TC. Clearly, in all cases the total TC is −2. But the analysis of purely the ρ and z

behaviour may be misleading when cross derivatives of the potential are non-vanishing.

O�-equatorial LRs in the range ai < a < af are stable in both ρ and z directions;

however in this case stability along both directions is not su�cient to conclude that these

LRs correspond to minima of HMP

+ . Speci�cally, for o�-equatorial LRs, the cross derivative

∂z∂ρHMP

+ |LR does not vanish, so that the stability must be determined by the Hessian. Since

det(∂i∂jHMP

+ ) < 0, these LRs are indeed saddle points.
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It is worth noting that there is another critical value, af ≈ 0.5515M ⪆ af , for the

parameter a, at which the stability of the o�-equatorial LRs along the ρ direction transitions

from stable to unstable. To better illustrate this stability transition, we plot the potential

HMP

+ as a function of ρ in Fig. 4.5, with z = zLR(a). Here, zLR(a) represents the z coordinate

of the top o�-equatorial LR corresponding to the parameter a.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1350

0.1355

0.1360

0.1365

Figure 4.5: Plot showing the potential HMP

+ , as a function of the ρ coordinate for z = zLR(a).

The critical points associated with LRs are highlighted with black points.

According to Table 4.1, the MP solution exhibits four LRs for any value of a within the

range (ai, af ). Outside this range, there are only two LRs: equatorial when a < ai, and

o�-equatorial when a > af . Since the TC is additive, the total TC is just the sum of the

individual TCs. Hence, for all values of a, the MP binary has TC=−2, in accordance with

Ref. [165].

The variation in the number of LRs within the MP solution is associated with the co-

alescence of the +1 LR with one or more of the −1 LRs. As a approaches af , the two

equatorial LRs converge and annihilate each other due to their opposite TCs, resulting in

the disappearance of LRs at the equator. Conversely, as a approaches ai, the +1 LR merges

with the two o�-equatorial plane LRs. The combined TC of these three merging LRs results

in a single LR with a TC of −1. The interpolation between these two LR coalescing con-

�gurations can be visualized in Fig. 4.6. In all the three cases, namely a < ai, ai < a < af

and af , the total TC is always equal to −2, which could not have been di�erent, since the

boundary conditions of the solution are not changed.
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Figure 4.6: Positions of the LRs in the 2-center MP solution as the parameter a varies. For

a = ai, the BHs are located at the gray circles. The corresponding LRs are represented

by a pink six-pointed star and a triangle. The triangle denotes the external equatorial LR

with TC = −1, while the six-pointed star indicates a three-fold superposition of LRs, also

with TC = −1. As the distance between the BHs increases, the six-pointed star splits into

three distinct LRs: two are represented by purple upright triangles moving away from the

equator, each with TC = −1, and the third by purple inverted triangles moving along the

equator with TC = +1. For a = af , the BHs positions are represented by the black circle,

the o�-equatorial LRs reach the positions indicated by the dark blue triangles, and the two

equatorial LRs merge at the position of the blue six-pointed star.

The LR positions in the closest con�guration with a < ai closely resemble those found

in a single BH solution, with the LRs con�ned to the equatorial plane. In contrast, when

the BHs are taken apart beyond the critical distance af , the system exhibits a LR pro�le

characteristic of two BHs, each with its own LR. The regime where ai < a < af represents

a transitional phase between these two qualitatively distinct LR structures.

LRs represent a speci�c example of null trajectories within a larger family of orbits,

termed FPOs. Broadly speaking, a FPO is a bound photon trajectory that neither falls into

the BHs nor escapes to in�nity [110]. Such orbits for the MP spacetime were analyzed in

Ref. [207]. In Fig. 4.7, we represent photon trajectories as curves in E3 using cylindrical

coordinates (ρ, z, φ). The LRs (black circles) are shown along with other null geodesics

(colored lines) that lie within a vertical plane, i.e., φ = 0. The LRs depicted here correspond

exactly to those in the second panel of Fig. 4.4.
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Figure 4.7: FPOs in the 2-center MP spacetime for a/M = 0.5. Black points indicate the

BHs, black circles mark the LRs, as displayed in Fig. 4.4 and colored lines show additional

bounded null trajectories.

4.4.2 Teo-Wan null orbits

The LR structure of the TW solution is signi�cantly more complex than that of the MP

case discussed above. With the introduction of angular momentum into the system, the

potentials HTW

± for the TW spacetime no longer di�er merely by a global sign, and are now

given by

HTW

± =
1

±ρ
√
H+H− − ω0

φ

, (4.30)

and the associated vector �eld vTW± can be written as

(
vTW±

)
j
=

√
H+H−∂jω

0
φ ∓

[
δρj + (ρ/2)∂j

]
H+H−

(H+H−)3/4
(
ω0
φ ∓ ρ

√
H+H−

)2 , (4.31)

where j = ρ, z and
(
vTW±

)
j
denotes the j-th component of vTW± .
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Figure 4.8: Vector �elds vTW+ (dotted black) and vTW− (gray) are shown on the (ρ, z)-plane

with parameters J1 = 0, J2 = J , and (a/M, J/M2) values of (0.45, 0.2) (top), (0.51, 0.17)

(middle), and (0.51, 0.07) (bottom). Blue upright triangles mark the positions of LRs with

a TC of −1, with �lled triangles representing LRs obtained from HTW

+ and empty triangles

from HTW

− . Similarly, the inverted triangles indicate the location of a LR with a TC of +1,

with �lled and empty markers denoting LRs from HTW

+ and HTW

− , respectively.

We remark that the total TC, for each HTW

± , remains the same as in the MP spacetime,

regardless of the values of J1 and J2, as the boundary conditions are unchanged. Hence,

although the LRs change position with di�erent choices of angular momentum, their total

TCs must still sum to −2.

In the MP case there is a maximum of 4 LRs. However, since the potentials HTW

± are no
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longer related by a simple global sign, the TW spacetime may exhibit more than four LRs.

In Fig. 4.8, we show cases with 4, 6, and 8 LRs, along with the vector �elds plot of vTW± for

equal-mass BHs, where one BH is non-rotating, while the other rotates.
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Figure 4.9: Variation in the positions of LRs of equal-mass, oppositely rotating BHs, with

−J1 = J2 = J , as the parameters a and J change. Positions of LRs with a TC of −1 are

indicated by upright triangles, where �lled triangles correspond to those derived from HTW

+

and empty triangles to those from HTW

− . In contrast, inverted triangles mark the locations of

LRs with a TC of +1, with �lled and empty inverted triangles representing LRs from HTW

+

and HTW

− , respectively. The six-pointed stars represent superposition of LRs with opposite

TCs.

In Fig. 4.9, we present an analogous plot to Fig. 4.6 for the TW spacetime, showing how

the positions of LRs change as we vary the solution parameters. We consider equal-mass,

oppositely rotating BHs, i.e. M1 = M2 = M and −J1 = J2 = J . A curve in the parameter

space a × J is shown in the inset of Fig. 4.9. The corresponding LR locations are plotted

on the ρ× z plane, with colors that match those in the parameter space. For example, the

purple point in the parameter space corresponds to the LR con�guration marked by the

purple triangles and inverted triangles.

The TW solution allows for a minimum of 2 LRs and a maximum of 4 LRs for each

potential, HTW

± . Consequently, the total number of LRs, for J1 ̸= 0 or J2 ̸= 0, will always

be 4, 6, or 8. As in the MP case, changes in the number of LRs arise from the coalescence of

LRs with di�erent TCs. Given that the TW solution has 5 parameters, verifying all possible

cases that result in 4, 6, or 8 LRs is signi�cantly more challenging. Therefore, we restrict
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Figure 4.10: Parameter space highlighting regions with 4, 6 and 8 LRs for equal-mass BHs

with J1 = 0, J2 = J (top); J1 = J2 = J (middle) and −J1 = J2 = J (bottom). In the white

regions, the total number of LRs is 4. In the blue and purple regions without overlap, there

are 6 LRs. In the overlapping blue and purple regions, the total number of LRs is 8.

our analysis to equal-mass BHs and to three di�erent con�gurations for angular momentum:

(i)J1 = 0, J2 = J ; (ii)J1 = J2 = J and (iii) − J1 = J2 = J . This approach leaves us with

only two free parameters, namely a and J .

In Fig. 4.10, we show the regions of the parameter space corresponding to 4, 6, and 8

LRs (except for the trivial cases of J = 0 and a < ai, or J = 0 and a > af , where we recover

the 2 or 4 LRs of the MP solution discussed in Sec. 4.4.1). The white regions indicate areas

where both potentials, HTW

± , each contribute with 2 LRs. In the dark blue (light purple)

region, HTW

+ (HTW

− ) yields 4 LRs, while HTW

− (HTW

+ ) produces only 2. In the overlapping

regions, both potentials yield 4 LRs each.

For the case J1 = 0, J2 = J , and −J1 = J2 = J we notice that the boundary is composed
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Figure 4.11: FPOs in the TW spacetime for a/M = 0.5 and three di�erent angular momen-

tum con�gurations. Black points indicate the BHs, black dashed (HTW

+ ) and dotted (HTW

− )

orbits mark the LRs and colored lines, analogous to the colored lines exhibited in Fig. 4.7,

show additional bounded null trajectories.

of three di�erent smooth pieces. This boundary represents critical values of (a, J) where the

number of LRs contributed by one potential changes from 2 to 4, or vice versa. Each smooth

boundary segment corresponds to the coalescence of the +1 LR with one of the three −1

LRs.

For oppositely rotating BHs, the blue and purple regions coincide, even if the potentials
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HTW

± are not identical. This overlap arises due to the symmetry of the parameter space

along the horizontal axis J = 0, which prevents con�gurations with a total of 6 LRs.

Figure 4.12: Shadow and gravitational lensing of the equal-mass MP solution. The observer

is positioned at the equatorial plane (z = 0) and at the radius ρ = 15M .

We also computed some FPOs of the TW spacetime, as shown in Fig. 4.11. Black points

represent the BHs, with light trajectories shown in both colored and black lines. Dotted

lines indicate LRs derived from HTW

+ , while dashed lines correspond to LRs from HTW

− .

Each image serves as a natural generalization of Fig. 4.7, illustrating how photon trajectories

are in�uenced by di�erent con�gurations of BH angular momentum. Each colored FPO in

Fig. 4.7 assumes some sort of 3 dimensional rotated version in Fig. 4.11. The external pink

orbit �sees� the binary as almost a single gravitational center, whereas the internal purple

and blue orbits see each center individually.

In con�guration (i), with J1 = 0 (top left), the blue trajectory is asymmetric with respect

to the plane z = 0. In this setup, light rays are strongly dragged near the top BH, which

carries angular momentum J2/M
2 = 0.1, compared to the bottom BH with J1 = 0. As a

result, rays above z = 0 are more widely spaced, while trajectories below z = 0 are more

closely clustered.

In contrast, cases (ii) and (iii) exhibit blue light rays that are more symmetric with

respect to the equatorial plane, due to the spacetime's re�ection symmetry across this plane.

Additionally, in case (iii), involving oppositely rotating BHs, the LRs of HTW

+ always share

the same ρ coordinate with a corresponding LR of HTW

− , which is symmetrically re�ected
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Figure 4.13: Shadow and gravitational lensing of the rapdily rotating (J ≈ Je) TW solution,

starting with equal-mass MP solution and increasing the coordinate distance parameter a

for three di�erent angular momentum con�gurations, namely the cases (i), (ii) and (iii)

discussed in Sec. 4.4.2. In all the images, the observer is positioned at the equatorial plane

(z = 0) and at the radius ρ = 15M .

across the plane z = 0. This is a special feature of odd Z2 symmetric spacetimes, which was

discussed in more detail in Appendix A [208].

It is worth noting that in con�guration (iii), although the purple and pink trajectories
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appear to be con�ned to a vertical two-dimensional plane, this is not the case. The opposite

angular momenta prevent these trajectories from developing the three-dimensional structure

observed in con�gurations (i) and (ii). However, there are frame dragging e�ects that add to

the trajectories a wiggly appearance, which deviates from the behavior obtained in Fig. 4.7.

4.5 Shadow and gravitational lensing

Here, we analyze the shadow and gravitational lensing e�ects associated with the TW

solution. In spacetimes where geodesic equations are not integrable, which seem to be the

case of the metric (4.14), numerical techniques like backward ray-tracing are very useful.

Hence the set up here is very similar to the one presented in Sec. 3.4.

The initial conditions for this integration are derived by projecting the photon's momen-

tum onto the observer's tetrad frame�details of which can be found in Ref. [115]. The initial

conditions for a ZAMO frame are given by

E =
(H+H−)

1/4√
ρ2H+H− − ω0

φ
2

(
ρ+

ω0
φ cosα sin β
√
H+H−

)
, (4.32)

pρ = (H+H−)
1/4 cosα cos β, (4.33)

pz = (H+H−)
1/4 sinα, (4.34)

L =

√
ρ2H+H− − ω0

φ
2

(H+H−)1/4
cosα sin β, (4.35)

where α, β are the observation angles and Eqs. (4.32)-(4.35) must be evaluated at the

observer coordinates.

The initial conditions for the photons are determined by the observation angles.

4.5.1 Equatorial plane images

We display in Fig. 4.12 the case J/M2 = 0, which corresponds to the MP subcase with

a/M = 1, to provide a consistent reference. Althought the shadows of MP and double-

Schwarzschild are signi�cantly similar (see Figure 2 of Ref. [209]), the MP image does not
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exhibit the discontinuity on the lensing as it does for the double-Schwarzschild, since there

are no conical singularities.

Figure 4.13 presents the shadows and gravitational lensing of the TW solution for an

observer located on the equatorial plane (z = 0) at a radial coordinate of ρ = 15M . The

three rows correspond to the angular momentum con�gurations (i), (ii), and (iii) described

in 4.4.2, respectively. To calculate the images we �x the magnitude of the angular momentum

to J/M2 = 0.499 ≈ Je/M
2. For each con�guration, the coordinate distance parameter a

takes three values: a/M = 0.5, 1.0, and 1.5, with the distance increasing from left to right

along each row.

The shadows reveal no signi�cantly novel characteristics and it seems hard to distinguish

them from the double-Kerr [210]. In particular, the characteristic 'eyebrows' [207,211,212],

located above and below each primary shadow, are a typical feature of double-BH con�gu-

rations.

These features appear in simulations as secondary shadows, which are more clearly vi-

sualized in Fig. 4.14. For illustration, the top panel shows an equatorial observer facing

equal-mass MP BHs, with a/M = 0.5. We display a vertical cross-section of light rays

corresponding to each shadow seen in Fig. 4.13. The group of geodesics that either fall into

the bottom BH or end on the FPO surrounding it corresponds to the primary shadow of

the bottom BH. This group is highlighted in gray regions in the top panel of Fig. 4.14, with

boundaries marked by black dashed lines. Similarly, geodesics bounded by the dotted line ei-

ther fall into the top BH or become trapped by its nearby FPO, forming a secondary shadow

below the primary shadow. This secondary shadow, or the bottom eyebrow, is much thinner

due to the smaller viewing angle of these geodesics. A similar and even thinner shadow

layer, associated with the dot dashed line, exists below this bottom eyebrow, associated with

the bottom BH. This pattern repeats in�nitely, creating a fractal-like structure of nested

shadows.

The �rst row, which represents case (i), the bottom BH has J = 0. The eyebrows

become signi�cantly larger when the BHs possess angular momentum. Hence, its shadow

looks distorted only by frame dragging e�ects of the top BH and is not, as expected, Z2

symmetric.
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Figure 4.14: Light trajectories corresponding to the eyebrow features of the MP's shadow

with two BHs. In the top panel, the observer is located at the equator, while in the bottom

panel, the observer is positioned above the BHs.

In contrast with case (i), the cases (ii) and (iii) have shadows that are even and odd

Z2 symmetric, respectively [208]. We additionally remark that the rotation e�ects on the

shadows are more noticeable in case (iii), as the eyebrows merge with the primary shadows.

4.5.2 O�-equatorial plane images

Next, we examine the shadow and gravitational lensing when the observer is positioned o�

the equatorial plane. For this analysis, we consider the near-maximum angular momentum

J ≈ Je con�guration for the same cases (i), (ii), and (iii) on each row. The observer's radial

distance remains �xed, but the polar angle θ ≡ arctan ρ
z
is varied, starting from θ = 0 and

ending at θ = π/2. We use equal step increments of δθ = π/4 in the observer's θ coordinate.

The simulated images are shown in Fig. 4.15. The leftmost image on each row corresponds

to an observer positioned at the equator, as in previous analyses, for reference. The rightmost

image shows the perspective from directly above the two BHs. Due to axial symmetry, the

shadow boundary for θ = 0 observer's forms a perfect circle at the center, representing the

shadow of the top BH. The central portion of the shadow corresponds to geodesics within
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Figure 4.15: Shadow and gravitational lensing of the TW solution, starting with an observer

at the equator for near-extremal J ≈ Je on the left of each row, corresponding to con�g-

urations (i), (ii), and (iii), respectively. Moving from left to right, the observer's position

changes with increments of θ = π/4 and ending at the top of the binary.
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the gray region in Fig. 4.14, bounded by the dashed line, which are captured by the top

BH. Surrounding this core shadow, there is a ring-shaped shadow created by the bottom

BH, followed by a thinner outer ring associated with a secondary shadow of the top BH.

These two ring-like shadows are related with ther dotted and dot dashed lines in Fig. 4.14,

respectively. This nested structure of shadows and rings continues in�nitely, re�ecting a

similar repeating pattern seen in eyebrow formation.

4.6 Remarks

The TW spacetime [198] represents a novel class of exact solutions obtained in the context

of KK theory, as a multi-center generalization of the RL BH [199,200]. The TW solution is

also a regular rotating generalization of MP solution, where the equilibrium established is

ensured not only by the electromagnetic �eld, but also by the dilaton �eld. As is Refs. [189,

190], the presence of a scalar �eld is fundamental to achieve a proper equilibrium.

Our analysis of LRs focused on using the TC formalism to examine the various LR

con�gurations across di�erent parameter choices. We revisited the properties of the equal-

mass MP spacetime through the lens of the TC method, exploring all possibilities within the

parameter space. This leads to three distinct LR con�gurations: a compact setup with two

equatorial LRs for a < ai, a transient regime with four LRs�two of which are equatorial�for

ai < a < af , and a spread-out BH regime for a > af , featuring two LRs near each gravitating

center. The transition between the regimes a < ai and a > af is illustrated in Fig. 4.6, aiding

in a clearer understanding of the process. Additionally, the stability of the LRs has been

analyzed and summarized in Tab. 4.1.

In the rotating case, with �ve parameters, the LR structure becomes signi�cantly richer

than in the static scenario. The angular momentum splits each LR of the static case into

two, one for each sense of rotation, resulting in a maximum of 8 LRs. However, LRs with

opposite TC can merge and annihilate, leading to con�gurations with 6 or 4 LRs. Whether

there are 4, 6, or 8 LRs depends on the choice of solution parameters. Focusing on equal-

mass BHs and three speci�c angular momentum con�gurations, namely: (i) : J1 = 0, J2 = J ;

(ii) : J1 = J2 = J ; and (iii) : −J1 = J2 = J , we mapped the parameter space and identi�ed
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all possible LR con�gurations (see Fig. 4.10).

We also calculated some FPOs for the TW spacetime and compared them with those

previously reported for the MP spacetime. As before, we focused on the speci�c angular

momentum con�gurations (i), (ii), and (iii). The MP orbits shown in Fig. 4.7, initially

con�ned to a vertical plane, become frame-dragged when angular momentum is introduced,

transforming into the orbits displayed in Fig. 4.11. Notably, the pink and purple orbits in

Fig. 4.11, for oppositely rotating BHs appear to lie within a vertical plane; however, due to

the dragging e�ect, this is not the case. As these orbits evolve, they experience dragging in

opposite directions, ultimately forming a 1-dimensional submanifold.

We also investigated the shadows and gravitational lensing of the TW solution. In non-

integrable spacetimes, as the TW binary seems to be, the geodesic equations cannot be

separated, making analytical shadow calculations not possible in a general context. Instead,

shadows can be determined through numerical simulations using backward ray-tracing tech-

niques. The shadow's 'eyebrows' grow signi�cantly when the BHs have angular momentum,

and its shape adopts a D-like appearance, similar to that of the double-Kerr spacetime.

While the TW and double-Kerr spacetimes may di�er in many respects, they share similar

shadow characteristics.



Appendix A
General considerations regarding Z2

symmetry and null geodesic motion

A.1 De�nition of odd Z2 symmetry

The goal of this Appendix is to de�ne the odd Z2 symmetry and put it in contrast with

the usual (even) Z2 symmetry. The Z2 symmetry is associated with a particular type of

symmetry operation involving some kind of inversion of a physical system. This type of

transformation is mathematically represented by the action of the cyclic group of order 2,

Z2 [213].

Let (M, gµν) be a 4-dimensional, stationary, axisymmetric, circular spacetime. For this

class of spacetimes, we can parameterize the non-Killing submanifold by the coordinates

r ∈ (rh,∞) and θ ∈ (0, π), where r = rh is the horizon surface. Under these assumptions,

the spacetime metric can be written as

ds2 = gttdt
2 + 2gtφdtdφ+ gφφdφ

2 + grrdr
2 + gθθdθ

2. (A.1)

In the context of BH physics, or more generically, of localized compact objects, the

action of Z2 is commonly related with the re�ection transformation θ → θR := π − θ, which

intuitively amounts to swapping the �north� and the �south� hemispheres. Spacetimes that

are symmetric under such re�ection, i.e.

∀(µ, ν) : gµν(r, θ) = gµν(r, θR), (A.2)
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are called Z2 symmetric and the �xed point θ = π/2 is the equatorial plane. The Kerr

spacetime, as well as all spherically symmetric spacetimes are examples of Z2 symmetric

spacetimes. But there are well known non-Z2 symmetric spacetimes, which have been studied

in the context of light propagation [200,214,215].

The SBHSU is not Z2 symmetric, but it has the discrete symmetry de�ned by

(t, θ) → (−t, θR). (A.3)

That is, the metric is invariant under exchanging north and south and simultaneously the

direction of the time coordinate. We will dub the spacetime with the symmetry de�ned by

Eq. (A.3) as odd Z2 symmetric, whereas the standard Z2 symmetry will be referred as even

Z2 symmetry. The SBHSU is also invariant under the same discrete transformation as (say)

Kerr, namely (t, φ) → (−t,−φ); its distinctive feature is that it is not invariant under the

standard (even) Z2 symmetry θ → θR; it requires the additional transformation present in

Eq. (A.3).

For odd symmetric spacetimes, we can still de�ne the equatorial plane as the set of

points which are �xed by the θ-re�ection. Hence, the top submanifold 0 < θ < π/2 is

isometric do the bottom spacetime patch π/2 < θ < π, under time reversal for one of them.

Equation (A.3) could also be written with a re�ection in φ instead of t. The symmetry

de�ned in Eq. (A.3) holds true for any spacetime with metric components invariant under

θ-re�ection, except for the gtφ component, which must pick up a minus sign. Therefore, an

equivalent de�nition of an odd Z2 (symmetric) spacetime can be given, in the above metric

chart, in terms of metric components transformations as follows:

∀(µ, ν) ̸= (t, φ) : gµν(r, θ) = gµν(r, θR), (A.4)

gtφ(r, θ) = −gtφ(r, θR). (A.5)

Thus, the re�ection in t (or φ) corrects the �wrong� sign of the gtφ component. Moreover,

any spacetime with the symmetry de�ned by Eq. (A.3) must have gtφ|θ=π/2= 0, since gtφ is

an odd function with respect to the plane θ = π/2.

Apart from the SBHSU, another example of spacetime that is odd Z2 symmetric is the

Taub-NUT BH.
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A.2 The potentials H±

It is possible to express the potentials H± purely in terms of the metric components

according to Eq. 4.26. One may check that Eq. (4.26) agrees with Eq. (3.43) when the

metric components are given by Eq. (3.17).

The symmetry relation in Eq. (3.45) between the potentials H± is true for any spacetime

that is symmetric under action of Eq. (A.3). This can be shown as follows:

H±(r, θ) =
−gtφ(r, θ)±

√
gtφ(r, θ)2 − gtt(r, θ)gφφ(r, θ)

gφφ(r, θ)

= −
−gtφ(r, θR)∓

√
gtφ(r, θR)2 − gtt(r, θR)gφφ(r, θR)

gφφ(r, θR)

= −H∓(r, θR).

(A.6)

Eq. (A.6) shows that, for odd Z2 symmetric spacetimes, the potential H− can be fully

constructed from the H+ potential and vice-versa, which is not true for even Z2 symmetric

spacetimes.

A.3 Equatorial light rings

It is interesting to investigate the relation between even Z2 symmetry and LRs posi-

tioned on the equator, assuming a single BH with spherical topology. This can be simply

addressed for spacetimes possessing the same properties mentioned in the preceding section

plus asymptotically �atness.

Let H̃± be null geodesic potentials of a BH with such properties. LRs are critical points

of the potentials H̃±, i.e. the LR position (r̃±, θ̃±) is de�ned by ∇H̃±(r̃±, θ̃±) = 0. From the

�rst three hypotheses we obtain

∀θ ∈ I ⊂ (0, π) ∃ r̃± ∈ (rh,∞) :
∂H̃±(r̃±, θ)

∂r
= 0, (A.7)

where I is an open interval that includes π/2. In fact, for asymptotically �at spacetimes, a

stronger version of the condition (A.7) is satis�ed, which is valid for all values of θ ∈ (0, π)

and not only for an open neighborhood of π/2. With this assumption, one can also show

that there is a odd number of r̃±'s satisfying Eq. (A.7).
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Now, imposing the even Z2 symmetry, we obtain that

∀θ ∈ I ⊂ (0, π) :
∂H̃±(r, θ)

∂θ
= −∂H̃±(r, π − θ)

∂θ
. (A.8)

In particular, we may choose θ = π/2 in Eq. (A.8), from where we get ∂H̃±(r, π/2)/∂θ =

0. Therefore, the following �formal� implication is true:

even Z2 ⇒ ∃ LR at θ = π/2. (A.9)

Alternatively, we could have calculated the gradient of Eq. (4.26) and evaluated at the

equatorial plane. If the spacetime is even Z2 symmetric, the metric components should be

even functions with respect to the equator, according to Eq. (A.2). Thus, their corresponding

derivatives with respect to θ are odd functions, which implies Eq. (A.9).

It also holds the contrapositive of Eq. (A.9), which states that the absence of a LR at

θ = π/2 implies that the corresponding spacetime is not even Z2 symmetric, i.e.

(∄ LR at θ = π/2) ⇒ ¬(even Z2). (A.10)

We remark, however, that it is not true in general that: (∃ LR at θ = π/2) ⇒ even Z2,

since is easy to construct examples of spacetimes with a LR at the equatorial plane, which

are not even Z2 symmetric. Both Eqs. (A.9) and (A.10) are only valid for asymptotically

�at spacetimes.

Therefore, at least for the asymptotically �at cases, the relation between even Z2 sym-

metry and equatorial LRs - assuming a single BH1 - is already well established. For other

asymptotics, Eq. (A.7) is not necessarily true. For instance, considering a BH which is

asymptotically Melvin, the existence of critical points in the radial direction is determined

by the strength of the magnetic �eld. If the magnetic �eld is weak (subcritical regime), then

Eq. (A.7) is satis�ed, but for strong magnetic �elds (supercritical regime) it is not [107].

Nevertheless, the condition (A.7) is necessary in order to have an equatorial LR in the �rst

place, thus the general conclusion is: for any stationary, axisymmetric, even Z2 symmetric,

1The point here is that for, say, a 2-centre solution, e.g. the 2-centre Majumdar-Papapetrou solution,

there needs not to be a LR on the equatorial plane. The loophole in such cases is because the horizon is

multi-connected, and therefore it does not have spherical topology as assumed in Ref. [105] to compute the

TC; it is rather a product of spheres.
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(single) BH spacetime where Eq. (A.7) is satis�ed, there exists one LR lying on the equatorial

plane.

As we shall see, when we assume odd Z2 symmetry, the result is di�erent. The odd

symmetry implies that the metric components should transform according to Eqs. (A.4)

and (A.5). Thus, we have that

∀(µ, ν) ̸= (t, φ) :
∂gµν(r, θ)

∂θ
= −∂gµν(r, θR)

∂θ
, (A.11)

∂gtφ(r, θ)

∂θ
=
∂gtφ(r, θR)

∂θ
. (A.12)

From Eqs. (A.11) and (A.12) we may infer that ∀(µ, ν) ̸= (t, φ) : ∂gµν(r, π/2)/∂θ = 0, but

nothing can be concluded for the component gtφ(r, π/2).

Let H± be null geodesic potentials of an odd Z2 symmetric BH. Using Eqs. (A.5)

and (A.11), we have that

∂H±(r, π/2)

∂θ
= −∂gtφ(r, π/2)/∂θ

gφφ (r, π/2)
. (A.13)

As we did for the even-symmetric case, we may assume that Eq. (A.7) is true for H±.

Hence, we have a condition for the existence of LRs at the equator for odd Z2 spacetimes,

which is given by
∂gtφ(r, π/2)

∂θ
= 0. (A.14)

The interpretation of Eq. (A.14) is that the spacetime, despite the fact that it is odd Z2

symmetric, is locally even Z2 symmetric in a small neighborhood of the equator. For this

to be accomplished, the gtφ, which vanishes at the equatorial plane (see Eq. (A.5)), is also

zero in a small vicinity of θ = π/2. As we shall see in the next subsection, Eq. (A.14)) is

also a condition for the equatorial plane to be a totally geodesic submanifold of an odd Z2

symmetric spacetime. Therefore, the existence of equatorial LRs for odd symmetric BHs is

intimately related with how null geodesics deviate from the equatorial plane.

From Eq. (3.17), one can show that

∂gtφ(r, π/2)

∂θ
= −4jr2(r − 2M)

j2r4 + 1
̸= 0, (A.15)

which shows that the SBHSU spacetime cannot have LRs at the equatorial plane. A similar

analysis can be done for the Taub-NUT BH.
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A.4 Equatorial totally geodesic submanifold

Let M denote a submanifold of M, de�ned by θ = π/2. The induced metric hµν on M

(also known as the �rst fundamental form) is given by the expression hµν = gµν − nµnν . Let

n =
(
1/
√
gθθ
)
∂θ be the normal unit vector to M. The extrinsic curvature kµν (or the second

fundamental form) of the hypersurface M is the symmetric tensor de�ned by

kµν =
1

2
Lnhµν , (A.16)

where Ln denotes the Lie derivative with respect to the normal vector n [216]. The spacetime

patch M of M is said to be a totally geodesic submanifold if observers in M see no curving

in M, i.e. kµν = 0 [217].

For a spacetime de�ned by the metric (A.1) we can calculate the extrinsic curvature

explicitly. The pullback of the extrinsic curvature kab = (∂xµ/∂xa)
(
∂xν/∂xb

)
kµν

2 is given

by

(kab) =
1

2
√
gθθ


∂θgtt 0 ∂θgtφ

0 ∂θgrr 0

∂θgtφ 0 ∂θgφφ

 . (A.17)

For even Z2 symmetric spacetimes we have that

gµν(θ) = gµν(θR) ⇒ ∂θgµν(θ) = −∂θgµν(θR)

⇒ ∂θgµν(π/2) = 0,
(A.18)

hence Eq. (A.17) vanishes, which satisfy the condition of extrinsic �atness.

Similarly, for odd Z2, one can infer that

∀(µ, ν) ̸= (t, φ) : gµν(θ) = gµν(θR) ⇒ ∂θgµν(π/2) = 0,

gtφ(θ) = −gtφ(θR) ⇒ ∂θgtφ(θ) = ∂θgtφ(θR).
(A.19)

Therefore, the di�erence in this case is that the ∂θgtφ(θ) term does not necessarily vanish

at the equatorial plane, which implies that, generically, for odd symmetric spacetimes, kab ̸=

0. Nevertheless, those spacetimes can have an equatorial totally geodesic submanifold, as

long as Eq. (A.14) is satis�ed. In general, a necessary and su�cient condition for a spacetime

2Here, we are working under the assumption that Latin indices are limited to the set {t, r, φ}.
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Figure A.1: Deviation of geodesics from the equatorial plane. We evolved, numerically, 50

null geodesics with initial conditions given by Eqs. (4.32)-(4.35), setting α = 0, while β varies

randomly.
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(with metric given by Eq. (A.1)) to have an equatorial totally geodesic submanifold is to be

locally even Z2 around the plane θ = π/2.

An equivalent de�nition of totally geodesic submanifold is given in terms of geodesics.

Let TpM denote the tangent space of M at the point p ∈ M. If, in a small interval

λ ∈ (−ϵ, ϵ) ⊂ R, a geodesic γ(λ) ofM with tangent vector v ∈ Tγ(λ)M have initial conditions

given by γ(0) ∈ M and v ∈ Tγ(0)M, lies in M, then M is classi�ed as a totally geodesic

submanifold. Thus, every geodesic of M must also be a geodesic of M [217].

To ensure consistency, let us demonstrate that a brief exploration of the geodesic equation

results in identical criteria for the presence of an equatorial totally geodesic submanifold.

Considering a spacetime characterized by the line element described in Eq. (A.1), we can

derive the geodesic equation speci�cally for the θ coordinate as follows:

θ̈ + Γθ
ttṫ

2 + Γθ
rrṙ

2 + Γθ
θθθ̇

2 + Γθ
φφφ̇

2 + 2Γθ
tφṫφ̇+ 2Γθ

rθṙθ̇ = 0, (A.20)

where

Γθ
tt = −∂θgtt

2gθθ
, Γθ

φφ = −∂θgφφ
2gθθ

, Γθ
tφ = −∂θgtφ

2gθθ
,

Γθ
rr = −∂θgrr

2gθθ
, Γθ

θθ =
∂θgθθ
2gθθ

, Γθ
rθ =

∂rgθθ
2gθθ

.

(A.21)

In order to set the particle movement at the equator, we choose the initial condition

θ = π/2, θ̇ = 0, (A.22)

which eliminates the terms Γθ
θθ and Γθ

rθ. The remaining connection terms are precisely given

by the components of the extrinsic curvature tensor kab. Therefore, the analysis is identical

as the one made before, as expected from the equivalence of the de�nitions. We could also

have written the extrinsic curvature with the equivalent formula [218]

kab = −nµ

(
∂2xµ

∂xa∂xb
+ Γµ

αβ

∂xα

∂xa
∂xβ

∂xb

)
= −√

gθθΓ
θ
ab, (A.23)

which is in accordance with Eqs. (A.17) and (A.21).

We conclude that, for odd Z2 symmetric spacetimes, it is possible for geodesics initially

con�ned to the plane θ = π/2, to deviate from it, namely

gθθθ̈ = ṫφ̇∂θgtφ. (A.24)
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In the literature, the existence of a well de�ned equator is associated only with spacetimes

which are even Z2 symmetric. Expanding on this notion and from the results obtained in

Eq. (A.18), one might think that the existence of a well de�ned equator is linked to a

totally geodesic submanifold, which is not true. Our demonstration revealed that odd Z2

symmetric spacetimes provide a counter example, since they can also have a well de�ned

equatorial plane, while also having geodesics escaping from it.

To illustrate how the geodesics deviate from the equatorial plane, we considered a plot

of 50 geodesics in the SBHSU spacetime, with initial conditions given by Eqs. (4.32)-(4.35),

θ = π/2 and r = 10M . We �x α = 0, which corresponds to geodesics launched at the

equatorial plane (pθ = 0), and let β take values randomly. The plots are displayed in

Fig. A.1 for jM2 = 0.001, 0.0025, 0.01.

For the SBHSU, there exists a critical value for j, namely jc = r−2, with r being the

observer radial position, such that |∂θgtφ| is maximum. Therefore, the deviation of the

geodesics is ampli�ed for j = jc. For r = 10M , we have jcM2 = 0.01, which corresponds to

the bottom plot in Fig. A.1. For j > jc, the geodesic deviation from the equator starts to

diminish. For j → ∞, we have ∂θgtφ → 0, so that, for high enough values of j, this e�ect

disappears.



Concluding thoughts

In this thesis, we have explored various properties associated with BHs. The study was

focused on QNMs and null geodesic calculations. To conclude, this �nal section highlights

promising future directions for each study and discusses open questions that remain unan-

swered.

In Chapter 2, we explored the QNMs of a regular BH model with e�ective correc-

tions from LQG. In recent years, there has been growing interest in regular BHs, though

early attempts initially received little attention. The �rst regular BH was introduced by

James Bardeen [219], which was later shown to be motivated by nonlinear Electrodynamics

(NED) [220]. Several other solutions in NED-based models have also been reported (e.g.,

see Refs. [221�224]).

E�ective LQG corrections have been successfully applied to cosmological models, as well

as spherically symmetric BHs, where their singularities are replaced by bounces. More

recently, the construction developed in Refs. [137, 138] has been extended to charged BHs,

where a particularly interesting feature was reported: the Cauchy horizon lies inside the

transition surface [225], making these models more physically appealing compared to other

regular BH solutions found in NED. It has been shown that charged scalar �elds in certain

NED models can exhibit superradiant instability [226, 227], in contrast to the standard RN

case [228,229]. An intriguing avenue for further exploration would be to investigate whether

e�ective quantum e�ects arising from LQG could also induce a similar instability.

In Chapter 3, we examined the behavior of null geodesics in the SBHSU. One may

compare the number of LRs in the SBHSU spacetime with those in the Schwarzschild-Melvin
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solution. When we non-linearly bring together the Schwarzschild BH (w = −1) and the SU

(w = 0), the result is a spacetime with w = −1. On the other hand, both Schwarzschild

and Melvin spacetimes admit the existence of LRs3. When these two spaces are non-linearly

superposed in the Schwarzschild-Melvin solution, if the magnetic �eld is weak, there are

two LRs on the spacetime, which were inhered by each one of the separate spacetimes. If

we let the magnetic �eld become strong, the potential's critical points are spoiled [107].

By these two examples, heuristically, it seems that the number of LRs, as well as their

respective stabilities, of each spacetime is preserved even after the non-linear superposition,

as long as the boundary conditions are not signi�cantly altered. Another example where this

summation rule can fail due to boundary conditions is in the Schwarzschild-dilatonic-Melvin

BH [108]. But, of course, it is hard to formalize this argument, since GR's �eld equations

are non-linear and, therefore, the associated space of solutions does not constitute a vector

space.

We remark that when delving into the study of exact solutions, one typically encounters

scenarios where the spacetime is either overly idealized, making it inadequate for describing

real physical systems, or it exhibits pathologies that render its existence in the natural world

highly unlikely. During the GR7 international conference in 1974, Kinnersley highlighted

this issue: �the study of exact solutions has acquired a rather low reputation in the past,

for which there are several explanations. Most of known exact solutions describe situations

which are frankly unphysical and these do have a tendency to distract attention from useful

ones� [230].

The SBHSU spacetime, even though it is free of conical singularities and closed timelike

curves, does not have much astrophysical appeal, since it is not asymptotically �at. However,

there is also a case to be made if the SBHSU can represent, in some regime of approxima-

tion, an analytical model for some astrophysical phenomenon. The authors in Ref. [160]

conjectured that the SBHSU might be useful to describe the collision of oppositely rotating

galaxies. This issue holds the potential for a standalone work if thoroughly explored.

Apart from the phenomenology perspective, there exists a signi�cant value in exploring

3For the Melvin universe, due to the translational invariance along the z direction, there exists a light

tube instead of a LR.
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exact solutions for understanding GR in its fully non-linear regime. Perhaps the most in-

triguing property of this solution is its north-south asymmetry, which we refer to as an odd

Z2 symmetry (as de�ned in Appendix A). This asymmetry arises from opposite spinning

directions above and below the equator and is closely linked to the o�-equatorial LRs and

the formation of a twisted shadow�the main results of this chapter. To our knowledge, no

other BH solution with a connected horizon produces a shadow with odd symmetry. While

not necessarily a fundamental requirement, such features are typically encountered in BBH

systems (see Chapter 4).

Since the SBHSU is not asymptotically �at, it cannot be interpreted as a localized grav-

itating source. The authors of Ref. [160] conjectured that a double-Taub�NUT spacetime

with opposite NUT parameters could generate a SU structure when pushed to in�nity, which

aligns well with the non-asymptotically �at nature of SU.

This immediately raises an interesting question: Is it possible to construct asymptotically

�at BH solutions in GR that feature a connected horizon and odd symmetry? Additionally,

under what conditions is this odd symmetry imprinted onto the shadow's edge? Breaking

the even Z2 spacetime symmetry alone does not grantee that the same happens with its

shadow [215, 231, 232]. It is possible that in Liouville-integrable, shadows tend to retain

the even symmetry. Thus, under this hypothesis, the SBHSU solution may only be able

to induce this particular spacetime symmetry in its shadow due to its non integrability

condition. However, to our knowledge, there is no formal proof establishing a connection

between the Z2 symmetry of spacetime and the corresponding shadow symmetry.

In Chap. 4 we focused on the study of null geodesics over the TW spacetime. We remark

that the TW spacetime reported in Ref. [198] chooses the BHs to have equal electric and

magnetic charges, which corresponds to the black line displayed in Fig. 4.1, but this is not

mandatory. We chose to exhibit the extremal surface of the RL BH to show how much more

can be explored. All our analyses are valid just for this black line segment in Fig. 4.1. It

is an interesting task to generalize the TW spacetime, and the analysis in this chapter, for

arbitrary charge values abiding the extremality constraint.

It has been reported that a quasi-static approach to simulate images for stationary BBHs

can serve as a good approximation for a fully dynamical binary system [210]. Although this
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method was successfully applied to the double-Schwarzschild case, no implementation for the

double-Kerr con�guration has been made, due to the complexity of the metric. Given that

the TW spacetime exhibits a similar shadow pattern to the double-Kerr but has a simpler

metric, it is more likely that the quasi-static method can be e�ectively applied to this case,

o�ering a useful approximation for the images of a fully dynamical Kerr binary.

We discussed the absence of a rotating generalization of MP in EM. However, we identify

a potential approach to constructing such a solution that, to our knowledge, has not yet been

explored in the literature. By employing the Ernst formalism (see Subsection 3.2.1), one can

generate a non-asymptotically �at magnetized version of RN, known as RN-Melvin, where

the interaction between the BH charge and the surrounding magnetic �eld induces rotation

in the spacetime. In principle, the same procedure could be applied to the MP solution,

yielding a spinning generalization of MP within pure EM due to the presence of an external

magnetic �eld. However, the main limitation of this approach is its non-asymptotic �atness,

which may be an unavoidable feature in pure EM.
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