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Resumo

O paradigma do buraco negro de Kerr é, à data, o mais bem sucedido na explicação
da natureza dos objetos astrofísicos mais compactos do Universo. No entanto, certos
problemas teóricos em aberto, bem como as limitações das observações atuais, motivam
a procura de alternativas, cujas propriedades desafiam o paradigma vigente. Entre as
muitas possibilidades, apenas algumas parecem ser sólidas e de potencial relevância
astrofísica. É esse o caso dos buracos negros com cabelo sincronizado e das estrelas
bosónicas, duas famílias de objetos compactos exóticos cuja existência depende de
campos bosónicos hipotéticos.

Esta tese de doutoramento é uma compilação de trabalhos de investigação sobre
a física desses objetos compactos. Os capítulos são, na sua maioria, reimpressões de
trabalhos de investigação publicados em revistas científicas com revisão por pares. O
Capítulo 2 estuda em detalhe o estado fundamental dos buracos negros com cabelo de
Proca, nomeadamente as suas versões lineares, conhecidas como nuvens estacionárias.
O Capítulo 3 discute a lógica subjacente à existência de nuvens estacionárias, que requer
um mecanismo de retroalimentação. O Capítulo 4 apresenta um limite superior para a
“pilosidade” de buracos negros com cabelo sincronizado formados através do crescimento
e saturação do modo superradiante dominante de buracos negros de Kerr. O Capítulo 5
considera esses buracos negros cabeludos de um ponto de vista termodinâmico. Apesar
de serem entropicamente favorecidos, estes objetos compactos são localmente instáveis
no conjunto canónico, mesmo quando bifurcam de buracos negros de Kerr localmente
estáveis, correspondendo, por isso, a uma nova fase. Por fim, o Capítulo 6 analisa
perturbações radiais lineares de estrelas bosónicas esfericamente simétricas no domínio
da frequência, confirmando e estendendo resultados existentes na literatura. Inclui
o cálculo dos modos normais fundamentais destas estrelas, bem como uma discussão
sobre critérios de estabilidade linear.

Palavras-chaves: relatividade geral, buracos negros com cabelo, estrelas bosónicas,
campos bosónicos fundamentais, teoria de perturbações





Abstract

The Kerr black hole paradigm reigns supreme in explaining the nature of the most
compact astrophysical objects in the Universe. However, lingering theoretical questions
and the limitations of current observations motivate the search for alternatives, whose
properties defy the current paradigm. Among the many possibilities, only a few appear
to be sound and of potential astrophysical relevance. This is the case of black holes
with synchronized hair and bosonic stars, two families of exotic compact objects that
spring from the existence of as yet hypothetical bosonic fields.

This doctoral thesis is a compilation of research papers on the physics of these
compact objects. The chapters are, for the most part, reprints of research papers
published in peer-reviewed journals. Chapter 2 studies in detail the ground state of
the Proca hairy black holes, namely their linear strand, known as stationary clouds
Chapter 3 discusses the rationale behind the existence of stationary clouds, which
requires a feedback mechanism. Chapter 4 presents an upper limit on the “hairiness”
of black holes with synchronized hair formed through the growth and saturation of
the dominant superradiant mode of Kerr black holes. Chapter 5 considers these hairy
black holes from a thermodynamic point of view. Despite being entropically favored,
they are found to be locally unstable in the canonical ensemble even when branched
off from locally stable Kerr black holes and thus correspond to a new phase. Finally,
Chapter 6 delves into linear radial perturbations of spherically symmetric bosonic stars
in the frequency domain, confirming and extending previous results in the literature.
It includes the computation of their fundamental normal modes as well as a discussion
about criteria for linear stability.

Keywords: general relativity, hairy black holes, bosonic stars, fundamental bosonic
fields, perturbation theory
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Chapter 1

Introduction

What is the nature of compact astrophysical objects? This has been one of the most
pressing questions in astronomy and astrophysics over the past century. The current
paradigm conceives of stellar-mass compact objects as compact stellar remnants, the
leftover cores of massive stars after their nuclear fuel runs out. The term encompasses
the three main traits of compact objects: white dwarfs, neutron stars and black holes.
They all have much higher mass-to-radius ratios than ordinary stars, and hence higher
densities and stronger surface gravitational fields. White dwarfs are the remnants of
the lightest stars, have masses comparable to that of the Sun, but are of the size of
the Earth. They are supported by electron degeneracy pressure. Neutron stars are
the remnants of some massive stars, also have masses comparable to that of the Sun,
but are of the size of a city, resulting in supranuclear densities. They are supported
by neutron degeneracy pressure. When a massive star cannot counterbalance the
pull of gravity by any means, it leaves behind a black hole [11], a region of spacetime
where gravity is so strong that nothing can escape from it—not even electromagnetic
radiation. The boundary of this region is called the event horizon. A stellar-mass black
hole is thus a completely collapsed star.

1.1 A brief history of black hole physics

1.1.1 Theoretical achievements
John Michell [12] and Pierre-Simon Laplace [13], both born in 18th century, are

credited as the first to propose that sufficiently massive stars could have a surface
escape velocity exceeding the speed of light. Although their understading of gravity was
based on Newton’s law of universal gravitation, their ideas remarkably foreshadowed
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the concept of black hole, which was not fully realized until Eintein’s theory of general
relativity in 1915 [14]. Found by Schwarzschild that same year [15], the first exact
solution of Einstein’s equations in vacuum, which is the metric of a spherically symmetric
spacetime of mass M , already revealed the existence of a particular hypersurface, the
event horizon, characterized by the Schwarzschild radius RS = 2GM/c2, within which
communication with external observers is not possible. Behind this “one-way membrane”
is a singularity, where the strength of gravity becomes infinite and general relativity
is expected to break down. The significance of the Schwarzschild radius was first
realized by Oppenheimer and Snyder in 1939, who studied the continued gravitational
contraction of a pressureless star in spherical symmetry [16]. They found that the radius
of the star approaches asymptotically its Schwarzschild radius, with the star closing
itself off from any communication with a distant observer. The Oppenheimer-Snyder
collapse turned black holes into more than theoretical speculation. Despite providing a
more concrete understanding of their hypothetical formation and properties, it remained
unclear whether or not perturbations—in particular, those caused by rotation—could
prevent the formation of black holes through gravitational collapse.

It was not until nearly half a century later, in 1963, that Kerr found a new exact
vacuum solution of Einstein’s equations that describes a rotating object of mass M and
angular momentum J [17]. Since astrophysical objects typically rotate, Kerr’s solution
was a breakthrough in bridging general relativity and astrophysics, and marked the
beginning of the golden age of black hole physics (1963-1973). If until then many
physicists viewed black holes as a speculative hypothesis, Kerr’s achievement was a
game changer—it was quickly pointed out that quasars, discovered shortly before [18],
could be powered by supermassive Kerr black holes. This cemented the black hole
paradigm, i.e. the idea that astrophysical black holes do exist.

In the decade following Kerr’s seminal work, a number of uniqueness and “no-hair”
theorems came to light. The former [19–21] state that the only possible stationary
and axisymmetric black hole solutions of the Einstein equations are the Kerr solutions,
completely characterized by two parameters only—the total mass M and the total
angular momentum J , subject to the constraint M2 − (J/M)2 > 0. Together with “no-
hair” theorems (see [22, 23] for reviews), these results contributed to the Kerr hypothesis
(or “no-hair” conjecture), stating that the gravitational collapse in the presence of any
type of matter-energy yields a Kerr black hole. Quoting Chandrasekhar’s personal
reflection in a lecture on Shakespeare, Newton and Beethoven [24], the Kerr hypothesis
asserts that an exact solution of Einstein’s equations of general relativity [...] provides
the absolute exact representation of untold numbers of massive black holes that populate
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the universe.” If true, this expectation means that, unlike planets, stars or other
astrophysical objects, black holes do not have structural freedom, with only two degrees
of freedom, and are very similar to one another. In other words, two black holes with
the same mass and angular momentum are indistinguishable.

Also during the golden era, Penrose reconsidered the physics of gravitational
collapse without the assumption of spherical symmetry, and analyzed the problem from
a topological viewpoint. For that purpose, he introduced the key concept of trapped
surface, a closed two-dimensional surface that only allows light rays to converge to
the singularity, and showed that “deviations from spherical symmetry cannot prevent
space-time singularities from arising” [25] (see [26] for a review).1

The golden age of black hole physics culminated in the formulation of black hole
thermodynamics. In 1972, Hawking realized that the area of a black hole’s event
horizon can never decrease with time [28]. The presence of a naked singularity (i.e. a
singularity not hidden behind an event horizon) would be the only possibility to evade
Hawking’s area theorem. However, naked singularities are excluded by the (weak)
cosmic censorship conjecture [29], which states that such singularities cannot form from
gravitational collapse. One year later, Bekenstein noticed that Hawking’s area theorem
bore a very close resemblance to the second law of thermodynamics and identified the
area of a black hole as playing the role of entropy [30]. This observation led him to
realize that a black hole should indeed be assigned an entropy proportional to its area.2

In the meantime, Bardeen, Carter and Hawking formulated the laws of black hole
mechanics [31]. A side-by-side comparison of the first law of black-hole mechanics
with the first law of thermodynamics indicates that the surface gravity plays a role
mathematically equivalent to temperature. Although this equivalence was not noted
then, it was not until 1975 that Hawking made the remarkable discovery that black
holes emit particles at a steady rate as if they were black bodies with a temperature
proportional to the surface gravity [32, 33]. The physical temperature of a black hole is
thus proportional to the surface gravity. According to Hawking, the generalized second
law of thermodynamics will only hold if one accepts spontaneous particle creation by
black hole. Although Hawking radiation from astrophysical black holes is dull and
therefore unlikely to be detected any time soon, it surely poses serious challenges to
theoretical physics, most notably the information loss paradox, i.e. the breakdown
of quantum unitary evolution [34]. The quest to solve this paradox together with

1This result owes Roger Penrose half of the 2020 Nobel Prize in Physics “for the discovery that
black hole formation is a robust prediction of the general theory of relativity” [27].

2Bekenstein mentions in [30] that it was Greif who first considered the possibility of defining the
entropy of a black hole but failed to put forward a concrete proposal.
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the search for a rationale behind the microscopic nature of the Bekenstein-Hawking
entropy have proven to be a convoluted but still fruitful and enlightening path towards
a quantum theory of gravity.

1.1.2 Astronomical evidence
Once viewed as exotic, black holes gradually became a cornerstone in physics.

Observational astronomy has strengthened both the black hole paradigm and the Kerr
hypothesis over the past 60 years (see [35] for a recent review). The body of evidence
includes observations of:

• X-ray binaries and quasars. The first evidence for the existence of black holes
emerged in the 1960s with the discovery of both X-ray binaries in the Milky
Way [36] as well as quasi-stellar radio sources (or quasars) in massive galactic
nuclei [18]. While the former are candidates for stellar-mass black holes (8–20 M⊙),
the latter are plausibly supermassive black holes (106–1010 M⊙).

• Stellar orbits in the Galactic Center. Over the past half century, cumulative
evidence for non-stellar mass concentrations at the center of most galaxies has
strengthned the black hole paradigm. The evidence comes from observations of
stellar orbits in both the optical and infrared bands, e.g. from the Hubble Space
Telescope, and, more recently, the James Webb Telescope, as well as in the radio
band, from very-long-baseline interferometry of first and second generations, e.g.
from the Event Horizon Telescope Collaboration and the GRAVITY Collaboration,
respectively. The Milky Way in particular harbours a compact, non-thermal
radio source at its center (Saggitarius A∗), compatible with a supermassive black
hole with 4.3 × 106 M⊙ [37, 38].3

• Shadows. If there is a black hole between a point light source and a distant
observer, only photons with a sufficiently large impact parameter can reach the
latter. Those not reaching the distant observer form a depression of light known
as “shadow”. In an astrophysical setting, this is essentially the silhouette or
dark region observed against the bright background of the surrounding hot gas
and matter being accreted by the black hole. During a 2017 campaign, the
Event Horizon Telescope Collaboration has directly observed the immediate
environment of both M87∗ [39] and Saggitarius A∗ [38], with the “shadows” being
consistent with those predicted by general relativity.

3This finding owes Reinhard Genzel and Andrea Ghez half of the 2020 Nobel Prize in Physics “for
the discovery of a supermassive compact object at the center of our galaxy” [27].
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• Gravitational waves. Compact binary mergers lose energy through the emission of
gravitational waves. Their dynamics can be divided into three phases: the inspiral,
the merger and the ringdown. In the inspiral phase, the two compact objects are
initially at large orbital radii. As they lose energy, the inspiral rate increases, and
so do the orbital speed, the gravitational-wave strain and the gravitational-wave
amplitude, leading to the characteristic “chirp” waveform. Initially in a wide orbit
around each other, they gradually spiral inward, Eventually, the compact objects
reach the innermost stable orbit, where relativistic effects become important. The
binary then transitions to the merger phase, during which the compact objects
plunge, i.e. rapidly spiral toward each other and coalesce to form a new compact
object. Following the merger, the remnant undergoes the ringdown: it settles into
its final, quiescent state, radiating away the excess energy through quasi-normal
modes. The quest for the direct detection of gravitational waves started in the
1960s.

The first direct detection of gravitational waves, labeled as GW150914 [40], is
compatible with the coalescence of two black holes.4 Since the first detection
and up to the end of the third observing run, aLIGO and aLIGO together with
Virgo and KAGRA have detected ∼ 100 candidates for compact binary mergers,
including black hole–black hole merger, black hole–neutron star mergers, and
neutron star–neutron star mergers [41]. The current catalogue provides the
strongest evidence ever for the existence of (stellar-mass) black holes.

Collectively, these astronomical observations contribute to a robust body of evidence
supporting the existence of both stellar-mass and supermassive Kerr black holes. Yet,
due to limitations in instrumental capabilities and/or incomplete information, such
evidence is not conclusive, and the classification of the most compact astrophysical
objects in the Universe as actual black holes is still uncertain. In light of this, it is
worth considering if all or any part of them are something else rather than Kerr black
holes. Raising this possibility fits into testing both the black hole paradigm and the
Kerr hypothesis. While this holds value per se, the quest for exotic compact objects
has also been fueled by some open problems in cosmology and general relativity, such
as the information loss paradox and the quantum description of the event horizon, or
the nature of dark matter.

4This achievement owe Reiner Weiss, Barry Barish and Kip Thorne the 2017 Nobel Prize in Physics
“for decisive contributions to the LIGO detector and the observation of gravitational waves” [27].
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1.2 Exotic compact objects
Exotic compact objects are here loosely defined as hypothetical objects that can

challenge the black hole paradigm and/or the Kerr hypothesis. As plausible candidates
for astrophysical objects, they must be sufficiently dim not to have been detected by
state-of-the-art observations across the electromagnetic spectrum. Some can be as
compact as Kerr black holes, and mimic their phenomenology, even when lacking an
event horizon. Such definition encompasses:

• Horizonless exotic compact objects—exotic compact objects without an event
horizon. They appear within modified theories of gravity and/or in the presence of
(self-gravitating) exotic matter or exotic states of matter. A number of proposals
has been put forward over the past decades (see [42] for a review). Examples
include boson stars [43, 44], anisotropic stars [45], wormholes [46], gravastars [47],
or fuzzballs [48].

• Hairy black holes—exotic compact objects with an event horizon or, equivalently,
black holes endowed with hair. The very first example challenging the “no-hair”
conjecture was found whithin Einstein–Yang-Mills theory in 1989 [49]. This
finding put hairy black holes on the agenda since then, but with a shift from
non-Abelian fields to scalar fields over the past years (see [23] for a historical
perspective). The possibilities are numerous, even when restricted to four-
dimensional, asymptotically-flat solutions with regular geometry on and outside
the event horizon (see [22] for a review on black holes with scalar hair). Of
particular interest are families of solutions bifurcating from Kerr-Newman black
holes, namely black holes with synchronized hair [50] and scalarized black holes [51–
53].

This thesis is mainly focused on boson stars and black holes with synchronized hair,
which appear in Einstein’s gravity minimally coupled to a complex bosonic field. In
the case of a scalar field, the action reads

S =
∫

d4x
√−g

[
R

2κ
− ℏ

(
gab∇aΦ∇bΦ̄ + µ2ΦΦ̄

)]
, (1.1)

where κ = 8πG/c3, Φ is a complex scalar field, and the overbar ·̄ denotes complex
conjugation. Both families of compact objects rely on the existence of a putative
bosonic field of mass m = ℏµ/c, where µ is the inverse Compton wavelength, relatable
to wave dark matter. The latter is nothing but dark matter that exhibits wave-like
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behavior, i.e. whose de Broglie wavelength exceeds the average interparticle separation.
From measurements of the dark matter density in the neighborhood of the Sun [54–56],
it can be shown that the latter holds if m ≲ 30 eV/c2. The term encompasses fuzzy
dark matter [57], the QCD axion [58] and axion-like particles (ALPs), whose possible
mass spans a wide range. Fuzzy dark matter in particular refers to ultralight bosonic
fields (m ∼ 10−22–10−20 eV/c2) weakly coupled to ordinary matter. Such fields are
ubiquitous in string theory [59] and physics beyond the Standard Model [60], and can
have a relic abundance that matches today’s observed dark matter density [61].

The basic features and phenomenological aspects of bosonic stars and black holes
with synchronized hair will be outlined in the following.

1.2.1 Bosonic stars
One of the earliest mentions of boson stars can be traced back to a paper published

by Kaup in 1968 [43], followed by a paper by Ruffini and Bonazzola in 1969 [44]. As
first conceived by Kaup, boson stars are nothing but the descendents of Wheeler’s
«gravitational electromagnetic entity» (or simply geon), a localized non-singular solution
of the Einstein–Maxwell equations [62]. They are solitonic (i.e. particle-like) solutions
of Einstein’s gravity minimally coupled to a massive, complex scalar field with harmonic
time dependence (see [63–65] for reviews). Their evolution is described by the Einstein–
Klein–Gordon equations. Boson stars are held together not by the electromagnetic
or strong nuclear forces as in ordinary matter, but rather by the dispersive nature of
the scalar field, akin to that underlying the Heisenberg uncertainty principle. The
dispersiveness counterbalances its self-gravity, preventing the scalar field from collapsing
into a black hole. From a condensed matter physics perspective, these stars can be
regarded as Bose–Einstein condensates at vanishing temperature.

Boson stars come in different flavours in the literature. They can have charge [66]
or rotation [67, 68], and exist in modified theories of gravity, in Newtonian gravity [44]
or even in the absence of gravity (Q–balls [69]). Their features are mainly shaped by
the scalar field’s self-interactions, expressed in different classes of potentials. Three
particularly relevant classes of boson stars are:

• mini-boson stars, composed of a non-interacting scalar field, whose maximum
mass, ∼ 0.633 m2

P/m [43] (with m ≲ 30 eV/c2), is much smaller than the
corresponding Chandrasekhar limit for a fermion star, ∼ m3

P/m2 [70].

• massive boson stars, composed of a scalar field with a quartic self-interaction
potential of the form λ|Φ|4/4 [71], whose maximum mass depends on the coupling
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constant λ, and can be comparable to or even larger than the corresponding
Chandrasekhar limit.

• solitonic boson stars, composed of a scalar field with a solitonic potential
of the form m2|Φ|2(1 − 2|Φ|2/v2

0), whose maximum mass depends on v0, ∼
0.0198m4

P/(mv2
0).

Additionally, although boson stars are often thought of as condensates of spin–0
fields, they can likewise be composed of spin–1 (or Proca) fields [72], in which case they
are called Proca stars. Collectively, they are commonly referred to as bosonic stars.

Just like their scalar relatives, Proca stars exhibit a rich landscape of variety.
Despite their similitude, boson stars and Proca stars are significantly different from
each other. The ground state of static boson stars is characterized by a spherically
symmetric energy distribution, whereas that of static Proca stars in the ground state
turns out to be axially symmetric [9] (see also [73]). As for stationary configurations,
boson stars are prone to non-axisymmetric instabilities that ultimately lead to black
hole formation, while Proca stars are dynamically stable [74].

From an astrophysical standpoint, bosonic stars stand out from other exotic compact
objects because, unlike most of them, they have a formation mechanism. They can be
formed by gravitational cooling, i.e. the (relativistic) virialization through the ejection
of bosonic radiation [75–77] (see also [78]). Rotating bosonic stars in particular share
several features with black holes, being often regarded as black hole mimickers. As
a matter of fact, the putative fundamental field they are composed of is assumed
to not interact with baryonic matter, making them as elusive as black holes. The
addition of (either attractive or repulsive) self-interactions can make these compact
objects as heavy and compact as black holes. Furthermore, bosonic stars can also have
ergoregions (and be prone to ergoregion instabilities [79]) and light rings (and be prone
to light-ring instabilities [80, 81]).

If bosonic stars are to be an alternative to black holes or coexist with them,
they should explain all or at least part of the (radio, X-ray, and gravitational-wave)
observations given as evidence of their existence, respectively.

As for radio observations, if Sgr A* is modelled as a very compact rotating boson
star with a stationary accretion torus around it, the latter produces images which
bear close resemblance with those of a rapidly-rotating Kerr black hole, showing
in particular an effective shadow and light-ring-like structures [82]. On the other
hand, general relativistic magnetohydrodynamic simulations of accreting black holes
and static mini-boson stars reveal that the differences in the synthetic reconstructed
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images (under realistic astronomical observing conditions) can be detected by the Event
Horizon Telescope Collaboration [83]. It has been suggested in particular that a (static)
mini-boson star is an unlikely candidate to describe Sgr A* [84], but this hypothesis
deserves further investigation. There are some indications that such dissimilarities may
soften or even vanish when replacing a boson star by a Proca star [85–87]. Nonetheless,
an in-depth study of this scenario (and its variants) should be considered to make a
conclusive argument.

As regards X-rays observations, synthetic X-ray reflection spectra of accretion disks
around bosonic stars suggest that current missions only rule out the most dilute as well
as the most compact configurations [88, 89]. Future X-ray missions, such as eXTP [90],
are expected to put stringent constraints on exotic compact objects, namely through
precision quasi-periodic-oscillation spectroscopy [91].

Like neutron stars and black holes, bosonic stars can be sources of gravitational
waves whose characteristic strain and frequency lie in the detection sensitivity range
of current and future detectors. Binary bosonic stars in particular are an ideal target
of gravitational-wave astronomy. Although the early inspiral phase is blind to the
structure and composition of the compact objects [92], they become important in the
late inspiral and merger phases [93, 94, 42]. In principle, gravitational-wave observations
can help constrain the “equation of state” of bosonic stars, placing bounds in their
potential. Nevertheless, equal-mass, head-on collisions of two boson stars suggest their
gravitational-wave signals might be indistinguishable from those of two black holes [95].
In fact, exotic binaries can mimic the ringdown phase of binary black holes, even when
their quasi-normal mode spectra are unalike [96]. An illustration of this degeneracy
is the event GW190521 [97], interpreted as a merger of two black holes, which is also
consistent with the merger of two rotating Proca stars [98] (see also [99]).

1.2.2 Black holes with synchronized hair
Black holes with synchronized hair are (four-dimensional) asymptotically-flat, sta-

tionary solutions of Einstein’s gravity minimally coupled to a complex bosonic field
which are regular on and outside an event horizon (see [22] for a review). Unlike most
hairy black holes, these solutions are sourced by matter with canonical kinetic energy,
a minimal coupling to gravity. As originally conceived [50], these compact objects are
characterized by three global charges: the mass M , the angular momentum J , and
the Noether charge Q. The latter is a consequence of the U(1) global symmetry of
the complex field. In other words, the Noether charge is a primary hair. Since the
field is not gauged, the Noether charge is not associated with a Gauss law and cannot
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be measured at spatial infinity. Both the mass and the angular momentum can be
expressed as M = MH + Mψ and J = JH + Jψ, where MH and JH (Mψ and Jψ) are
the mass and angular momentum inside (outside) the event horizon, respectively. The
proportions of mass and angular momentum outside the horizon, p = Mψ/M and
q = Jψ/J , both ranging from 0 to 1, measure the amount of hair (or hairiness).

The parameter space of black holes with synchronized hair continuously connects
Kerr black holes with rotating bosonic stars. They reduce to the former in the limit of
vanishing field (Kerr limit, p = q = 0) and to the latter in the limit of vanishing event
horizon size (solitonic limit, p = q = 1). Their properties can vary significantly across
the parameter space. For instance, they (i) always feature an ergo-region that is limited
by either an ergo-sphere or an ergo-Saturn [100]; (ii) can violate the Kerr bound in
terms of asymptotic and/or horizon quantities, i.e. J/M2 and/or JH/M2

H can be greater
than unity [101]; (iii) can have quadrupole moments and orbital angular velocities at
the innermost stable circular orbit considerably larger than those of comparable Kerr
black holes.

The existence of these solutions was first established for a complex scalar field [50]
(see also [102] for details on the numerical strategy for their construction). The physical
rationale behind it can be understood from a linear analysis, i.e. disregarding the
matter’s backreaction on the spacetime and considering the latter to be that of a
Kerr black hole. In the case of a scalar field, this amounts to solving the Klein-
Gordon equation in Kerr spacetime. The non-trivial separability of this problem
was first unveiled via separation of variables by Carter [103], shortly after noting the
complete integrability of the Hamilton-Jacobi equation for Kerr geodesics [104]. In
Boyer-Lindquist coordinates (t, r, θ, φ), this can be achieved by taking an ansatz for
the scalar field of the form [105]

Φ(t, r, θ, φ) = e−iωtf(r, θ)e+imφ , (1.2)

where ω is the (angular) frequency and m is the azimuthal harmonic index. The scalar
function f can be further separated as f(r, θ) = Sℓm(θ)Rℓm(r), where Sℓm are the
spheroidal harmonics of degree ℓ and order m (see [106] for a review), and Rℓm satisfies
the radial Teukolsky equation [105, 107], which can be cast in a Schrödinger-like form.
Despite that, as opposed to the hydrogen atom problem in quantum mechanics, in
general, the Klein-Gordon equation does allow for bound states, i.e. solutions with
real frequency, ℑ(ω) = 0. The event horizon requires only purely ingoing waves
should be present therein, precluding the existence of bound states. Mathematically
speaking, the (non-linear) boundary value problem is not Hermitian and therefore the
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frequencies are complex, the imaginary part being associated with either the decay,
if ℑ(ω) < 0, or the growth, if ℑ(ω) > 0, rate of the corresponding quasi-bound state.
If ℜ(ω)/m > ΩH , then ℑ(ω) < 0, and the quasi-bound state decays exponentially in
time, with e-folding 1/|ℑ(ω)|. This is the decaying regime. On the other hand, if
ℜ(ω)/m < ΩH , then ℑ(ω) > 0, and the quasi-bound state grow exponentially in time,
with e-folding 1/ℑ(ω). This is the superradiant regime, in which energy and angular
momentum can be extracted from the Kerr black hole. Something special happens at
the onset of superradiance,

ℜ(ω)
m

= ΩH , (1.3)

i.e. when the (real part of the) frequency synchronizes with the angular velocity of
the event horizon: bound states, ℑ(ω) = 0, in the sense of quantum mechanics, do
exist. These are commonly referred to as stationary clouds. They were first found for
extremal Kerr black holes [108], in which case the radial equation becomes a confluent
hypergeometric equation, similarly to that arising in the hydrogen atom problem in
quantum mechanics, and can be solved analitically. The analysis was then extended (for
the most part, numerically) to sub-extremal Kerr black holes [109–114], and generalized
to ungauged and/or gauged scalar fields around Kerr-Newman holes [115–117], Reissner-
Nordström-Melvin black holes [3], black holes in string theory [118, 119], BTZ black
holes [120], regular black holes [121], and to Proca fields around Kerr(-Newman) black
holes [1, 2].

Stationary clouds are marginal and lead to new families of stationary solutions: black
holes with synchronized hair. They can be thought of as the non-linear continuations
of stationary clouds, the latter being a natural seed in a root-finding algorithm [122].

While the foregoing discussion was restricted to the original family of such hairy
black holes [50], generalizations are possible. Examples include families with electric
charge [123], radial and polar nodes [124], higher azimuthal winding number [125],
self-interacting hair [126, 127], higher-dimensional Myers-Perry black holes [128, 129],
asymptotically anti-de Sitter [130].

Kerr black holes can grow hair through superradiance and become black holes with
synchronized hair. A bosonic field with ℜ(ω) < mΩH and mass in an appropriate
range triggers a superradiant instability that efficiently extracts energy and angular
momentum from a Kerr black hole, spinning it down. Superradiance feeds the bosonic
field on energy and angular momentum. At the linear level, this fuels an exponential
growth in time known as “black-hole bomb” [131] (see also [132–134]). When the black
hole spins down enough to meet the synchronization condition in Eq. (1.3), the process
stalls. The non-linear evolution of the “black-hole bomb” remained an open question for
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decades and was only achieved very recently. The detailed phenomenology depends on
whether the field is real or complex. As for self-interacting real fields, the superradiant
instability can drive the system to a “bosenova” [135], a phenomenon analogous to the
supernova-like explosions observed in Bose-Einstein condensates. “Bosenovas” may
give rise to observable gravitational-wave signals [136]. In the case of free complex
fields, on the other hand, non-linearities saturate the growth by superradiance, leading
the system to new (quasi-)stationary equilibrium configurations without any explosive
phenomena [137]. The latter are precisely black holes with synchronized hair [138].

Black holes with synchronized hair grown by superradiance are themselves prone to
superradiant instabilities [139]. For sufficiently Kerr-like configurations with scalar hair,
their growth rate is comparable to those of a massive scalar field in Kerr spacetime.
Thus, such compact objects should not be the endpoint of the evolution of superradiant
instabilities, but rather transient configurations. Their lifetime, though, can be very
large. For supermassive black holes, it can actually exceed the Hubble time [140].
The (effective) stability against superradiance does not preclude the possibility of
these hairy black holes being plagued by other (as yet unknown) instabilities that may
threaten their astrophysical viability.

Since black holes with synchronized hair are non-linear combinations of Kerr black
holes and bosonic stars, their phenomenology should be Kerr-like in the Kerr limit
and non-Kerr-like in the solitonic limit. This expectation is confirmed, for instance, by
studies of their lensing and shadows using backward ray-tracing [141–144] (see [145] for a
review). The lensing and shadows of Kerr-like configurations might be indistinguishable
from those of comparable Kerr black holes. The state of affairs significantly changes
when considering non-Kerr-like configurations. The size, shape and topology of their
shadow can be utterly different, and their lensing exhibits chaotic patterns, induced by
the emergence of stable light rings [143]. On the observational side, current constraints
from the Event Horizon Telescope are compatible with superradiantly-grown black
holes with synchronized hair [146]. The light source considered in the aforementioned
studies is a celestial sphere sufficiently far away from the compact object. More
realistic astrophysical scenarios should include accretion disks, though. In general, the
differences in imaging between hairy and Kerr black holes remain, although an emitting
torus of matter can partly mask them [147] (see also [148, 149]). The effects of the
hair have also been examined in the context of Bondi-Hoyle-Lyttleton accretion [150],
with the morphology of the flow past a black hole with syncronized hair being fairly
similar to that past a Kerr black hole. As the black holes becomes hairier and hairier,
the angle of the bow shock becomes wider and wider and the stagnation point moves
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further and further away from the compact object. Bondi-Hoyle-Lyttleton accretion
naturally produces quasi-periodic oscillations in the shock cone [151], whose spectrum
is richer in the presence of hair and might be a fingerprint for an ultralight bosonic
field (see also [91] for an account of quasi-periodic oscillations in the X-ray flux from
an accreting hairy black hole).

As for X-ray spectroscopy, a proof of concept study of the iron Kα line expected
in the reflection spectrum of black holes with synchronized hair showed some regions
of their parameter space could be ruled out by current observations [152], which is
nevertheless consistent with Kerr-like configurations.

Lastly, as far as gravitational-wave signatures are concerned, there is a distinctive
lack of dynamical evolutions of black holes with synchronized hair in the literature,
from which template waveforms could be extracted to build new libraries that can be
compared with real data. A first step in that direction considered extreme-mass-ratio
inspirals in such spacetimes, by using a formalism that combines exact orbital dynamics
of geodesic motion with the quadrupole formula [153, 154]. On the observational
side, the LIGO-Virgo-KAGRA Collaboration Collaborations have recently searched
for gravitational-wave signals resulting from the depletion of a scalar cloud around a
rotating black hole using data from the third observing run of Advanced LIGO, and
did not find evidence for such signals [155].

In summary, current observations can only rule out regions in the parameter space
wherein these hairy black holes deviate significantly from their hairless counterparts,
but not those wherein deviations are negligible, i.e. sufficiently close to the Kerr limit,
in which superradiance may be able to create such compact objects.

1.3 Outline of the thesis
This thesis is a compilation of research works on bosonic stars and black holes

with synchronized hair. The following chapters are reprints from peer-reviewed journal
publications co-authored by me.

Part I – Black holes with synchronzied hair

• Chapter 2, reprinted from [1, 2], deals with black holes with synchronized Proca
hair, both at the linear and non-linear levels. Firstly, the linear solutions are
studied in detail for the first time using the Lunin–Frolov–Krtous̆–Kubizn̆ák
(LFKK) ansatz for the separability of the Proca equation in the Kerr–NUT–(A)dS
family of spacetimes [156], which relies on the existence of a principal tensor, i.e.
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a non-degenerate closed conformal Killing–Yano 2-form [157]. The ansatz eases
the problem of solving the Proca equation, breaking it down into two second-order
ordinary differential equations, which in turn facilitates the study of stationary
clouds’ dependence on the different “quantum” numbers. Since the Proca field is
a spin-1 field, they are labelled by four, and not three, such numbers: {n, ℓ, j, m},
where the orbital angular momentum ℓ and the total angular momentum j may
not coincide. Secondly, the parameter space of non-linear solutions in the ground
state is constructed and compared with that of solutions in the first-excited state
as well as that of their scalar counterparts. Illustrative examples of Kerr-like and
non-Kerr-like black holes are provided, with an emphasis on the morphology of
surfaces of constant energy density, as it might offer hints to their dynamical
stability.

• Chapter 3, reprinted from [3], discusses the conditions for the existence of
stationary clouds. As suggested by several examples, they only exist if (i)
the spacetime allows for the possibility of superradiance, and (ii) a trapping
mechanism is present. The former, which can be traced back to the existence of
an ergoregion, is needed for the matter to be in equilibrium with respect to the
event horizon. The latter is necessary for matter to accumulate in its vicinity.
There is a variety of trapping mechanisms. For example, the (bare or effective)
mass of a bosonic field creates a potential barrier that prevents it from dispersing
and escaping to infinity. The two conditions are often considered independent
from each other. In the case of stationary clouds around Kerr black holes (say),
superradiance is not related with the trapping mechanism whatsoever, the latter
being assured by the bare mass of the field. However, this is not necessarily
the case: a single ingredient might satisfy both conditions simultaneously. To
illustrate this, the work studies stationary clouds of massless, neutral scalar fields
around Reissner-Nordström black holes immersed in a uniform magnetic field,
i.e. Reissner-Nordström-Melvin black holes. These are electrovacuum solutions
whose asymptotics resemble those of the magnetic Melvin universe [158]. Their
magnetic field induces rotation (and thereby superradiance), and, at the same
time, traps the field in the neighborhood of the black hole. Stationary clouds are
here obtained both semi-analytically (using the method of matched asymptotic
expansion) and numerically (using a shooting method).

• Chapter 4, reprinted from [4], is about the dynamical formation of black holes
with synchronized hair. More precisely, it explores how hairy such black holes
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can be when formed by the growth and saturation of superradiant instabilities.
Hawking’s area theorem sets an upper limit of 29% for the efficiency of energy
extraction from Kerr black holes [159]. This upper limit corresponds to the
case of an extremal Kerr black hole. In light of this maximal efficiency, the
proportion of energy stored in superradiance-induced hair is expected not to
exceed 29%. Recent evolutions of the dominant superradiant mode of a complex
Proca field could only reach 9%, though, despite considering a near-extremal
Kerr black hole [137]. Similar evolutions for the scalar case are as yet to be
performed. The work queries whether the “hairiness” of such black holes can
be much closer to the thermodynamic bound. For that purpose, the evolution
of superradiant instabilities is assumed to be nearly conservative. Accordingly,
the Kerr bound should be satisfied throughout the growth and saturation of the
dominant superradiant mode. This allows one to scan the parameter space and
estimate a bound on the “hairiness”.

• Chapter 5, reprinted from [5], addresses a poorly explored aspect of asymptotically-
flat hairy black holes: their thermodynamic stability. The four laws of black-hole
mechanics describe black holes as thermal systems [31]. Because of this, basic
concepts in classical thermodynamics do have a meaning in this context. An
example is the notion of thermodynamic equilibrium, which can be local or global.
The former (the latter) occurs when the equilibrium configuration of a thermal
system corresponds to a local (global) maximum of the entropy. Following
previous results on the thermodynamic stability of the canonical black holes
in general relativity [160], the work investigates for the first time the local
thermodynamic stability of black holes with synchronized hair in the canonical
ensemble, also considering scalarized black holes in Einstein-Maxwell-scalar
theories for comparison. The study is based on the admissable specific heats and
evinces the contrast between thermodynamic and dynamic stabilities.

Part II – Bosonic stars

• Chapter 6, reprinted from [6], considers the mode stability of different families of
spherically symmetric bosonic stars, namely boson stars with different potentials
and Proca stars. More concretely, the parameter space of equilibrium solutions
is obtained and reviewed, and their radial normal modes are computed. The
latter amounts to solving a boundary value problem for the perturbation mode
frequency squared, whose sign is connected with the stability of the corresponding
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mode. This has been done in detail for mini-boson stars [161], but results for
other families were sparse or even lacking in the literature. The work aims at
(partially) filling that gap as well as dispeling some misconceptions about the
stability of boson stars.

The thesis closes with an outlook and perspectives in Chapter 7.
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1 Introduction

Successfully tested up to the TeV scale, the Standard Model of particle physics turns out

to describe but a tiny fraction of the matter-energy density of the Universe. It does not

explain the phenomenological evidence for the existence of dark matter and dark energy,

which are believed to make up about 95% of the Cosmos [1]. Many models have been put

forward to explain the dark side of the Universe. Some, in particular, relate dark matter

to hypothetical new, ultralight bosonic particles which are sufficiently weakly coupled to

ordinary matter to have remained elusive to past and present experimental searches [2, 3].

Bosonic particles have an interesting interaction with Kerr black holes (BHs). They

can extract the BH’s rotational energy through a radiation enhancement mechanism known

as superradiance [4]. For Kerr BHs, superradiance occurs when the phase angular velocity

of the boson, ω, fulfills the condition

ω

mj
< ΩH ≡

a

2MrH
, (1.1)

where mj is the boson’s azimuthal total angular momentum and ΩH, rH = M +
√
M2 − a2

are, respectively, the BH’s horizon angular velocity and event horizon (Boyer-Lindquist)

radial coordinate, in terms of the BHs’s ADM mass M and total angular momentum

– 1 –
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J = Ma. The enhancement is most efficient when the reduced Compton wavelength of the

boson, λC = ~/(µc), is comparable to the BH’s gravitational radius, RG = GM/c2, i.e.

α ≡ RG

λC
=
GMµ

~c
≈ 0.15

(
M

106M�

)(
µc2

10−17 eV

)
∼ 1 , (1.2)

where µ is the boson’s mass; α is the so-called gravitational fine-structure constant. For

the known astrophysical BH masses, ranging between 1 − 1010 M�, this implies that the

bosonic particles are ultralight, with a mass range of roughly 10−10 − 10−20 eV .

The non-vanishing bosonic field mass plays the role of a mirror, trapping the bosons in

the vicinity of the BH and creating a recurrent energy/angular momentum enhancement

of the bosonic state. At the linear level, i.e. disregarding the bosons’ backreaction on

the background spacetime, the energy feeding of the particles fuels an exponential growth

known as superradiant instability, or ‘BH bomb’ [5]. At the non-linear level, the exponential

superradiant growth stalls when the inequality (1.1) saturates, i.e.

ω

mj
= ΩH . (1.3)

One may say the (phase angular velocity of the) cloud and the (horizon angular velocity

of the) BH synchronise. A simple entropic estimate shows that up to about 29% of the

BH’s energy could be mined, in an astrophysical timescale, by this process. The result is a

classical condensate (often dubbed as cloud but also as BH ‘hair ’) which is stationary with

respect to the slowed-down BH [6–8]: a Kerr BH with synchronised bosonic hair. These

are stationary BH solutions of Einstein’s gravity minimally coupled to complex bosons,

first discussed in [9] for scalar and in [10] for vector bosons. They challenge the no-hair

hypothesis [11] (see also [12, 13]) even in General Relativity. According to this hypothesis,

BHs that could form dynamically in the presence of astrophysically (potentially) relevant

generic matter-energy are fully characterised by global charges associated with Gauss laws,

such as M and J , and have no other degrees of freedom, broadly referred to as ‘hair’.

The domain of existence of BHs with synchronised bosonic hair has two important

boundaries. Firstly, for vanishing horizon size it yields the set of spinning bosonic stars,

which have long been known in the scalar case [14, 15], but only recently constructed in

the vector case, a.k.a. Proca stars [16]. Very recently, it has been shown that the spinning

scalar stars suffer from a non-axisymmetric instability, whereas the spinning Proca stars

are dynamically robust [17]. This suggests that the Proca case may be dynamically more

interesting. Secondly, for vanishing bosonic field, the hairy BHs bifurcate from the Kerr

family at the Kerr solutions that admit linear bound states of the corresponding massive

bosonic field. These states exist at the threshold of superradience, i.e. when eq. (1.3) holds,

and are commonly known as stationary clouds.

Stationary clouds around Kerr BHs were first found in the scalar case and around an

extremal (a = M) BH [18]. Remarkably, in this particular case the radial function can be

solved analytically in terms of confluent hypergeometric functions. This analysis has then

be extended, typically using numerical methods, to other regimes and other BHs — see

e.g. [19–36]. Stationary clouds in the Kerr case are analogous to the atomic orbitals in the

– 2 –
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hydrogen atom [37] — see also [38]. They are finite on and outside the BH’s event horizon,

decay exponentially at spatial infinity and can be labeled by four quantum numbers: n,

the number of nodes of the radial function; `, the orbital angular momentum; j, the total

angular momentum; and mj , the projection of the total angular momentum along the

BH’s axis of rotation. Similar configurations have also been obtained in analogue models

of gravity such as the draining bathtub vortex [39, 40].

Most studies of stationary clouds around rotating BHs have focused on the scalar case,

whose equations of motion are separable on the Kerr spacetime. As for the massive vector

bosons, it remained unclear for decades whether the Proca equation was separable or not on

Kerr and the only study of clouds tackled the problem by solving the corresponding partial

differential equations [10] — see also [41]. Recently, however, the separability of the Proca

equation for a large family of spacetimes that includes the Kerr BH was established using

a proper ansatz [hereafter the Lunin-Frolov-Krtouš-Kubizňák (LFKK) ansatz] [42]. This

development has allowed more detailed studies of the Proca superradiant instability — see

e.g. [43, 44]. The first goal of this paper is to make use of this development to determine

and characterize the stationary vector clouds around Kerr BHs in terms of {n, `, j,mj}.
The stationary (scalar or vector) clouds define an existence line on the Kerr parameter

space from which the BHs with synchronised hair bifurcate [9, 10]. There is a discrete set of

families of BHs with synchronised hair, labelled by the parameters (n,mj); the parameters

(`, j) do not have significance when going from the linear to the non-linear theory. In

the scalar case, the fundamental family of hairy BHs has nodeless scalar field profiles,

corresponding to n = 0 and mj = 1 [45]; nodeful solutions, i.e. with n 6= 0, are excited

states with higher energy [46]. The same holds for the solitonic limit. In the particular

case of spherical, static scalar boson stars (mj = 0), it has been shown dynamically that

the n > 0 excited states decay into the fundamental n = 0 ground state [47].

In the original study of Proca stars [16] it was proved that, for static spherical Proca

stars, one of the profile functions of the Proca potential must have at least one node; there

are no nodeless solutions. In consistency with this observation, the spinning Proca stars

reported in the same paper had one node for the corresponding function. Subsequently,

the original study of BHs with synchronised Proca hair constructed BH solutions that also

have one node of the same function [10]. It was observed in [8] when interpreting the results

in [7], however, that in the spinning case (but not in the static case) there are nodeless

Proca stars, and also hairy BHs with Proca hair, and these are the true fundamental states.

Nonetheless, the latter have not been studied in detail in the literature. The second goal

of this paper is, therefore, to report a detailed study of the fundamental solutions of these

hairy BHs. In particular, their solitonic limit corresponds precisely to the solutions that

have been recently shown to be dynamically robust [17] — see also [48].

This paper is organised as follows. In section 2 we consider the linear analysis of

the stationary clouds on a fixed Kerr geometry. In section 2.1 the relativistic quantum-

mechanical description of vector bosons is briefly addressed. The notation introduced

therein will be useful to label the stationary clouds. Section 2.2 reviews the Proca equation

on a curved spacetime, introduces the LFKK ansatz for the Proca field and presents the

radial and angular equations it yields for the Kerr case, in Boyer-Lindquist coordinates.
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Section 2.3 then sets the stage for the numerical integration of those equations and covers

the results. Section 3 deals with the non-linear analysis. After briefly describing the setup

in section 3.1, the domain of existence of the fundamental BHs with Proca hair is discussed

in section 3.2 and compared with that of the first excited states of hairy BHs and the cousin

scalar model. In section 3.3 we analyse illustrative solutions of both hairy BHs and spinning

Proca stars. Finally, a concise overview of the work is sketched in section 4, together with

some closing remarks on future prospects. Appendix A provides some illustrations of the

vector spherical harmonics.

Natural units (G = c = 1) are consistently used throughout the text. Additionally,

the metric signature (−,+,+,+) is adopted.

2 Linear analysis: stationary clouds on a fixed Kerr geometry

2.1 Vector bosons

In relativistic quantum mechanics, particles are described by the orbital angular momentum

L̂ and the intrinsic angular momentum Ŝ. The components of the individual operators

satisfy the angular momentum commutation relations, i.e.

[L̂a, L̂b] = i~εabcL̂c , [Ŝa, Ŝb] = i~εabcŜc , [L̂, Ŝ] = 0 ,

where a, b, c = 1, 2, 3. The eigenstates of the operators L̂2 (and L̂z) and Ŝ2 (and Ŝz),

respectively denoted as |`,m`〉 and |s,ms〉, where |m`| 6 ` and |ms| 6 s, satisfy

L̂2 |`,m`〉 = ~2`(`+ 1) |`,m`〉 , L̂z |`,m`〉 = ~m` |`,m`〉 ,
Ŝ2 |s,ms〉 = ~2s(s+ 1) |s,ms〉 , Ŝz |s,ms〉 = ~ms |s,ms〉 .

The total angular momentum Ĵ is the sum of the orbital and intrinsic angular mo-

menta, i.e. Ĵ = L̂+ Ŝ. Thus, according to the angular momentum addition theorem, the

eigenstates of the operator Ĵ2, here denoted by |`, s, j,mj〉, can be expressed in terms of

the eigenstates |`,m`〉 and |s,ms〉 as [49]

|`, s, j,mj〉 =
∑

m`+ms=mj

C`sjm`msmj |`,m`〉 ⊗ |s,ms〉 ,

where the coefficients C`sjm`msmj , with j = |`− s|, . . . , ` + s− 1, `+ s and |mj | 6 j, are the

Clebsch-Gordan coefficients. These eigenstates satisfy

L̂2 |`, s, j,mj〉 = ~2`(`+ 1) |`, s, j,mj〉 , Ŝ2 |`, s, j,mj〉 = ~2s(s+ 1) |`, s, j,mj〉 ,
Ĵ2 |`, s, j,mj〉 = ~2j(j + 1) |`, s, j,mj〉 , Ĵz |`, s, j,mj〉 = ~mj |`, s, j,mj〉 ,

and therefore {`, s, j,mj} are legitimate quantum numbers.

Vector bosons are characterized by s = 1, which means that the quantum number

j can take a single value when ` = 0 (j = 1) and three different values when ` > 0

(j = ` − 1, `, ` + 1). In this case, the eigenstates of the operator Ĵ2 in the spherical
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coordinate representation are the (‘pure-orbital’) vector spherical harmonics Y `
j,mj

, which

can be expressed in terms of the scalar spherical harmonics Yj,mj as

Y j−1
j,mj

=
1√

j(2j + 1)

[
r∇ + jê(r)

]
Yj,mj , (2.1)

Y j
j,mj

= − i√
j(j + 1)

[r ×∇]Yj,mj , (2.2)

Y j+1
j,mj

=
1√

(j + 1)(2j + 1)

[
r∇− (j + 1)ê(r)

]
Yj,mj , (2.3)

where

ê(r) = ∂r , ê(θ) =
1

r
∂θ , ê(ϕ) =

1

r sin θ
∂ϕ ,

∇ = ê(r)∂r + ê(θ)
1

r
∂θ + ê(ϕ)

1

r sin θ
∂ϕ .

The vector spherical harmonics have parity Π̂ = (−1)`+1. Thus, upon a parity transfor-

mation, Y `
j,mj

acquires a factor of (−1)j , when j = ` ± 1, and of (−1)j+1, when j = `.

Y j±1
j,mj

(Y j
j,mj

) are said to have electric-type (magnetic-type) parity: they correspond to the

magnetic (electric) field of electric multipole radiation and the electric (magnetic) field of

magnetic multipole radiation [50, 51]. The explicit form and a graphic representation of

the first few ‘pure-orbital’ vector harmonics are provided in appendix A.

In curved spacetimes, {`, j,mj} are not in general legitimate quantum numbers, since

curvature can break the conservation of angular momentum.1 However, in Schwarzschild

spacetime, the total angular momentum Ĵ is still conserved. This means that vector bosons

only have definite total angular momentum. Such definiteness is broken in Kerr spacetime,

in which the total angular momentum is no longer conserved. Nevertheless, choosing Ĵz
to be aligned with the symmetry axis of Kerr spacetime at spatial infinity, mj remains a

conserved quantity.

It is convenient to use the quantum numbers {`, j,mj} to identify vector bosons, always

bearing in mind that they are only physically meaningful in Minkowski spacetime. In

particular, in the following, vector states will be labelled with |`, j,mj〉 ≡ |`, s = 1, j,mj〉.

2.2 Proca equation

The Lagrangian density of a massive complex vector boson Aα reads

LM = −1

4
FαβF̄

αβ − 1

2
µ2AαĀ

α , (2.4)

where Fαβ = 2A[β;α]. Fαβ is the electromagnetic-field tensor, which is antisymmetric

and gauge invariant, α, β = 0, 1, 2, 3 and µ is the boson’s mass. The variation of the

action integral S =
∫
V d4x

√−g LM with respect to the field Āα leads to the Proca field

equation [52]:

∇βFαβ + µ2Aα = 0 . (2.5)

1Intrinsic angular momentum is expected to be conserved in curved spacetimes, though, otherwise cur-

vature could induce transitions between particles or fields with different spins.
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Writing the equation in terms of the electromagnetic four-potential Aα,

∇β∇αAβ −�Aα + µ2Aα = 0 , (2.6)

its four-divergence reads

∇α∇β∇αAβ −∇α(�Aα) + µ2∇αAα = 0 . (2.7)

Using the identities

∇[α∇β]A
β =

1

2
RβγαβA

γ = −1

2
RαβA

β , (2.8)

∇[α∇β](∇αAβ) = Rαβ∇[αAβ] , (2.9)

it follows that, for Ricci-flat spacetimes (Rαβ = 0), such as the Kerr spacetime, eq. (2.7)

reduces to

∇αAα = 0 . (2.10)

This means that any massive complex vector boson minimally coupled to Einstein’s gravity

in a Ricci-flat spacetime satisfies the Lorenz condition. Moreover, under these conditions,

the Proca equation (2.6) simplifies to

(�− µ2)Aα = 0 . (2.11)

The dynamics of the divergenceless electromagnetic four-potential Aα is thus encoded in

a set of four Klein-Gordon equations, one per component. The non-trivial separability of

the Klein-Gordon equation in Kerr spacetime was first unveiled via variable separation by

Carter [53], shortly after noting the complete integrability of the Hamilton-Jacobi equation

for Kerr geodesics [54]. Carter’s seminal work broke down the original second-order partial

differential equation (PDE) into two coupled second-order ordinary differential equations

(ODEs), and paved the way for a thorough study of Kerr linear perturbations.

Although the four equations of motion (2.11) are individually separable for a specific

ansatz, the separability does not extend to the Lorenz condition (2.10). In fact, the separa-

bility of these five second-order PDEs is not trivial and was only achieved recently via the

LFKK ansatz [42] (see also ref. [55]), following [56]. This separability has been established

for the Kerr-NUT-(A)dS family of spacetimes. The LFKK ansatz, which embodies the

explicit and hidden symmetries of the metric, is

Aα = Bαβ∇βZ , (2.12)

where Bαβ is the polarisation tensor2 and Z is an auxiliary complex scalar function for

which a multiplicative separation of variables will hold — cf. eq. (2.17) below. The polar-

isation tensor Bαβ is defined in terms of the principal tensor3 hαβ as

Bαγ

(
gγβ + i

hγβ
λ

)
= δαβ , (2.13)

where λ plays the role of a separation constant.

2In [55], the authors named Bαβ polarisation tensor without clarifying how the tensor encodes the

different polarisations of massive vector bosons. It is worth pointing out that, as opposed to the polarisation

tensors usually found in the literature, Bαβ is not totally symmetric.
3The separability of the Hamilton-Jacobi, Klein-Gordon, and Dirac equations in Kerr-NUT-(A)dS space-

times can be traced back to the existence of the principal tensor. For a review, see [57].
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To solve the Proca equation in the Kerr background with the ansatz (2.12) one proceeds

as follows. In Boyer-Lindquist coordinates (t, r, θ, ϕ), the Kerr metric reads

g = −∆

Σ

[
dt− a sin2 θ dϕ

]2
+

Σ

∆
dr2 + Σ dθ2 +

sin2 θ

Σ

[
adt− (r2 + a2) dϕ

]2
, (2.14)

where Σ ≡ r2 + a2 cos2 θ and ∆ ≡ r2 − 2Mr + a2. The Kerr spacetime is stationary and

axisymmetric; it has an event horizon at r = rH, the largest root of ∆. In Boyer-Lindquist

coordinates, the Killing vectors associated with these continuous symmetries are ξt = ∂t
and ξϕ = ∂ϕ, respectively. Its principal tensor reads

h = −(rdr + a2 sin θ cos θdθ) ∧ dt

+ a sin θ[r sin θdr + (r2 + a2) cos θdθ] ∧ dϕ . (2.15)

Using the metric and principal tensor, one constructs the polarization tensor. Its symmetric

and antisymmetric parts are

B(αβ) =
λ2

Σ




1

qr




− (r2+a2)2

∆ 0 0 −a(r2+a2)
∆

0 ∆ 0 0

0 0 0 0

−a(r2+a2)
∆ 0 0 −a2

∆


+

1

qθ




a2 sin2 θ 0 0 a

0 0 0 0

0 0 1 0

a 0 0 csc2 θ





 ,

B[αβ] = − iλ
Σ



r

qr




0 −(r2 + a2) 0 0

(r2 + a2) 0 0 a

0 0 0 0

0 −a 0 0


+

a cos θ

qθ




0 0 −a sin θ 0

0 0 0 0

a sin θ 0 0 csc θ

0 0 − csc θ 0





 ,

respectively, where

qr = r2 + λ2 , qθ = λ2 − a2 cos2 θ . (2.16)

Note that the r-dependent terms are decoupled from the θ-dependent terms, apart from

the common factor 1/Σ.

Additionally, we take the complex scalar function in eq. (2.12) with the form

Z(t, r, θ, ϕ) = e−iωtR(r)Q(θ, ϕ) , Q(θ, ϕ) = S(θ)e+imjϕ , (2.17)

where R and S are dubbed radial and angular functions, respectively, and ω and mj are

the eigenvalues related to the aforementioned isometries.

With this construction, the ansatz (2.12) reduces the Proca equation to the two sepa-

rated equations

qr
d

dr

[
∆

qr

dR

dr

]
+

[
K2
r

∆
+

2λ2 − qr
qr

σλ− qrµ2

]
R = 0 , (2.18)

qθ
sin θ

d

dθ

[
sin θ

qθ

dS

dθ

]
−
[
K2
θ

sin2 θ
+

2λ2 − qθ
qθ

σλ− qθµ2

]
S = 0 , (2.19)

where

Kr = (r2 + a2)ω − amj , Kθ = mj − aω sin2 θ , σ =
a(mj − aω)

λ2
+ ω . (2.20)
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As mentioned in section 2.1, vector states can have electric-type or magnetic-type

parity. The ansatz (2.12) encodes all the electric-type states and the magnetic-type states

with j = |mj | [37, 43]. It remains unclear, however, whether all the magnetic-type states

are captured by the LFKK ansatz or not. If so, further study of the Proca equation in

Kerr spacetime may shed some light on how to recover all of them. If not, a new question

arises: whether it is possible to find a new ansatz which contains all the states.

In the following, all physical quantities will be expressed in terms of the boson’s reduced

Compton wavelength. It is therefore convenient to set λC = µ−1 = 1.

2.3 Stationary vector clouds around Kerr black holes

In general, eqs. (2.18) and (2.19) form a non-standard coupled eigenvalue problem with

an eigenvalue pair {ω, λ}. To construct the stationary vector clouds around Kerr BHs,

we need to find the bound states whose phase angular velocity fulfills the synchronization

condition (1.3). Since ω is fixed a priori, the eigenvalue pair can be chosen to be either

{M,λ} or {a, λ}. The existence of stationary clouds is only allowed for specific values of

the background parameters M and a. Such quantization follows from the regularity of the

bound states and results in an existence line in the two-dimensional Kerr parameter space

defined by (M,a) or, alternatively, (M,ΩH).

The next subsections summarise the algorithm to solve the radial equation (2.18)

together with the synchronization condition and therefore determine the existence lines of

stationary vector clouds around Kerr BHs. For convenience, eqs. (2.18) and (2.19) will be

considered as written in terms of rH and a instead of M and a. For this purpose, using

the identity

M =
r2

H + a2

2rH
, (2.21)

the function ∆ may be written as

∆ = r2 − (r2
H + a2)

r

rH
+ a2 . (2.22)

2.3.1 Angular equation

In the Minkowski limit, the phase angular velocity equals the inverse of the reduced Comp-

ton wavelength: ω = µ = 1. Hence, eq. (2.19) can be written in the form4

Ĵ2Q0 = λE
0 (λE

0 − 1)Q0 , (2.23)

where Q0 denotes the leading-order form of the function Q at spatial infinity and the

superscript ‘E’ will become clear in the remainder of the present section. Ĵ2 coincides with

the square of the orbital angular momentum operator,

Ĵ2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂ϕ2
, (2.24)

4As opposed to the angular equation governing the dynamics of massless scalar bosons in the Kerr

geometry, eq. (2.19) does not reduce to the spherical harmonic differential equation when aω = 0 (i.e. when

a = 0 or ω = 0), but only when a = 0, i.e. in the Schwarzschild limit. Note, however, that eq. (2.23)

corresponds to the Minkowski limit (M = 0, a = 0) of eq. (2.19), for which the condition ω = µ holds.
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whose eigenfunctions are the well-known scalar spherical harmonics of degree j and order

mj , Yj,mj . In particular, Ĵ2Yj,mj (θ, ϕ) = j(j + 1)Yj,mj (θ, ϕ). Since the Kerr spacetime is

asymptotically flat, j may be defined as the total angular momentum at spatial infinity.

The quadratic equation λE
0 (λE

0 − 1) = j(j + 1) has two different solutions:

λE
0,− = −j , λE

0,+ = j + 1 . (2.25)

This means that, at leading order, the electromagnetic four-potential Aα = (At,A) takes

the form

At0 =
λE

0

r2 + (λE
0 )2

(
−λE

0 ∂tZ0 + ir∂rZ0

)
=
iλE

0

r
∂rZ0 + . . . = iλE

0

e−iωt

r
∂rR

[∞]
0 Yj,mj + . . . ,

Ar0 =
λE

0

r2 + (λE
0 )2

(
−ir∂tZ0 + λE

0 ∂rZ0

)
= − iλ

E
0

r
∂tZ0 + . . . = −λE

0

e−iωt

r
R

[∞]
0 Yj,mj + . . . ,

Aθ0 =
1

r2
∂θZ0 =

e−iωt

r2
R

[∞]
0 ∂θYj,mj ,

Aϕ0 =
1

r2 sin2 θ
∂ϕZ0 =

e−iωt

r2 sin2 θ
R

[∞]
0 ∂ϕYj,mj ,

where R
[∞]
0 is the leading-order form of the function R at spatial infinity. The spatial part

of Aα can be written as

A0 =
e−iωt

r
R

[∞]
0

[
−λE

0 Yj,mj∂r +
1

r
(∂θYj,mj )∂θ +

1

r sin2 θ
(∂ϕYj,mj )∂ϕ

]

=
e−iωt

r
R

[∞]
0

[
−λE

0 Yj,mj ê(r) + (∂θYj,mj )ê(θ) +
1

sin θ
(∂ϕYj,mj )ê(ϕ)

]

=
e−iωt

r
R

[∞]
0

[
r∇− λE

0 ê(r)

]
Yj,mj

=
√

2j + 1
e−iωt

r
R

[∞]
0 ×

{√
j Y j−1

j,mj
, for λE

0 = λE
0,−√

j + 1 Y j+1
j,mj

, for λE
0 = λE

0,+

. (2.26)

The angular dependence of A0 is described by the ‘pure-orbital’ vector spherical harmonics

in flat space. Equation (2.26) with eigenvalues λE
0,∓, corresponds to the j = `± 1 electric-

type states of the vector field (cf. section 2.1). This explains the superscript ‘E’.

In the ZAMO frame, characterized by the tetrad

ê•(t) =
1√

ΞΣ∆
[Ξ∂t + 2Mar∂ϕ] ,

ê•(θ) =
1√
Σ
∂θ ,

ê•(r) =

√
∆

Σ
∂r ,

ê•(ϕ) =

√
Σ√

Ξ sin θ
∂ϕ ,

where Ξ ≡ (r2 + a2)2 − a2∆ sin2 θ, the electric field E and the magnetic field B have the

following components:

E(a) = Fαβ ê
•α
(a)ê
•β
(t) , B(a) = −1

2
εαβγδF

γδ ê•α(a)ê
•β
(t) ,
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with εαβγδ ≡
√−g [αβγδ], where [αβγδ] is the four-dimensional Kronecker delta. The

leading-order terms of E(a) and B(a) are then given by

E0(r) = −iλE
0

e−iωt

r
R

[∞]
0 Yj,mj ,

E0(θ) = i
e−iωt

r
R

[∞]
0 ∂θYj,mj ,

E0(ϕ) = i
e−iωt

r sin θ
R

[∞]
0 ∂ϕYj,mj ,

B0(r) = 0 ,

B0(θ) = − e−iωt

r sin θ

dR
[∞]
0

dr
∂ϕYj,mj ,

B0(ϕ) =
e−iωt

r

dR
[∞]
0

dr
∂θYj,mj ,

or

E0 = i
e−iωt

r
R

[∞]
0

[
r∇− λE

0 ê(r)

]
Yj,mj

= i
√

2j + 1
e−iωt

r
R

[∞]
0 ×

{√
j Y j−1

j,mj
, for j − ` = +1√

j + 1 Y j+1
j,mj

, for j − ` = −1
,

B0 =
e−iωt

r

dR
[∞]
0

dr
[r ×∇]Yj,mj = i

√
j(j + 1)

e−iωt

r

dR
[∞]
0

dr
Y j
j,mj

,

where we used the fact that ê•(a) → ê(a) as r → +∞. The electric field E0 depends on the

difference j − `, whereas the magnetic field B0 does not.

When α� 1, the angular eigenstates and eigenvalues for the electric-type states may

be written as an expansion in α. The next-to-leading order corrections to the angular

eigenfunctions induce couplings to vector spherical harmonics of the same parity and thus

the angular functions Q have definite parity. For future reference, we present the expansion

for the angular eigenvalues below [37]:

λE
± =

∞∑

n=0

λE
n,±α

n , (2.27)

where the first terms of the series are given by

λE
1,± = − mja

MλE
0,±

, (2.28)

λE
2,± = −

λE
0,±

2n̂2(2λE
0,± − 1)

+
a2(λE

0,± + 1)[(λE
0,±)2 −m2

j ]

M2(λE
0,±)3[2(λE

0,±)2 + 1]
, (2.29)

λE
3,± =

mja

M

[
1

n̂2(2λE
0,± − 1)

+
a2(λE

0,± + 2)[(λE
0,±)2 −m2

j ]

M2(λE
0,±)5(2λE

0,± + 1)

]
, (2.30)

with n̂ ≡ n+ `+1. n̂ ∈ N is the principal quantum number and n ∈ N0 is the node number

— see subsubsection 2.3.3.

Equation (2.23) allows us to recover the electric-type states of Aa solely. The magnetic-

type states with j = ` = |mj |, the only ones which are known to be captured by the LFKK

ansatz, can be recovered considering the limits

λM
0 ≡ lim

α→0
λM = 0 , χ ≡ lim

α→0

a

M

α

λM
= mj ± 1 , (2.31)
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where the superscript ‘M’ labels all quantities related to magnetic-type states with j = |mj |.
As first shown in [37], the leading-order form of A is proportional to the vector spherical

harmonic Y j
j,j . Unluckily, no expansion of λM in powers of α is known. However, when

considering marginally-bound states (ω2 = µ2 = 1), the angular eigenvalue yields

lim
ω2→µ2

λM =
2a

mj + 1− aω +
√

(mj + 1− aω)2 + 4aω
, (2.32)

which vanishes in the Schwarzschild limit (a→ 0).

Both the third-order expansion in α for λE in eq. (2.27) and the limiting value of λM

(with j = |mj |) in eq. (2.32) suffice to perform the numerical integration of the radial

equation with great accuracy when α� 1 — see subsubsection 2.3.3.

2.3.2 Radial equation

The integration of the radial equation is performed via the expansion

R(r) =

N∑

n=0

cn(r − rH)n ,

for the radial function R in eq. (2.18). N is the number of terms of the partial sum and the

coefficients {cn}n=0,...,N are functions of5 rH, a, µ, mj and λ, which, in turn, depends on `

and j. Plugging the expansion into eq. (2.18) and equating coefficients order by order, it

is possible to write {cn}n=1,...,N in terms of c0. The latter is usually set to 1. The choice of

N should be a trade-off between computational time and accuracy. Once the coefficients

{cn}n=0,...,N are defined, one fixes the numerical values of rH, µ, `, j and mj , assigns a

guess value to a and computes the corresponding guess value for λ.

The radial equation is then integrated from r = rH(1 + δ), with δ � 1, to r =

r∞, where r∞ stands for the numerical value of infinity. The solution must satisfy the

boundary conditions

R(r = rH) = R(r = rH) , R′(r = rH) = R′(r = rH) , (2.33)

where the prime denotes differentiation with respect to r.

The previous step is repeated for different guess values of a, until the solution satisfies

the boundary conditions

R(r = r∞)→ 0 , R′(r = r∞)→ 0 . (2.34)

2.3.3 Results

When scanning the parameter space in search of stationary vector clouds with fixed quan-

tum numbers (`, j,mj), solutions with different numbers of nodes n (n ∈ N0) are found.

Thus, each vector state may be labelled using the notation |n, `, j,mj〉. Configurations with

n = 0 (n ∈ N) are dubbed fundamental (excited) states. The greater the node number

n, the more energetic the state. It is worth stressing out that, although the notation is

5In general, the coefficients {cn}n=0,...,N also depend on ω. However, here ω is fully defined via eq. (1.3).
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similar to the one introduced in ref. [37], these synchronised states were not explored there.

The notation |n, `, j,mj〉 refers here to bound states whose frequencies are real and defined

by eq. (1.3), and not to quasi-bound states, whose spectra was derived in ref. [37] and is

given by

ω
(V)
|n,`,j,mj〉 = 1− α2

2n̂2
− α4

8n̂4
+
fV(n, `, j)

n̂3
α4 +

hV(`, j)

n̂3

mja

M
α5 + . . . , (2.35)

with j = `± 1, ` and where6

fV(n, `, j) = − 4(6`j + 3`+ 3j + 2)

(`+ j)(`+ j + 1)(`+ j + 2)
+

2

n̂
,

hV(`, j) =
16

(`+ j)(`+ j + 1)(`+ j + 2)
.

The frequencies and corresponding instability rates were computed analytically in [37] via

matched asymptotic expansions, except for the magnetic-type (j = `) vector states. The

expression in eq. (2.35) for j = ` is a conjecture. Nonetheless, the authors of [37] confirmed

that the conjectured frequencies do agree with those found numerically without relying on

separability of the Proca equation. In fact, the analytic approximation is accurate when

α . 0.2, even for near-extremal Kerr BHs.

Vector instability rates are proportional to the factor (ω − mjΩH) and thus vanish

whenever the synchronization condition holds. In that case, the contour lines for which

ω
(V)
|n,`,j,mj〉 = mjΩH (2.36)

constitute an analytical approximation to the existence lines of stationary vector clouds in

the parameter space of Kerr BHs. For future reference, theses curves will be referred to as

analytical existence lines (AEL), whereas those obtained via the numerical algorithm laid

out in subsubsection 2.3.2 will be named numerical existence lines (NEL). Additionally,

all existence lines will be presented in a (M,ΩH)-plane normalized to the boson’s mass µ,

in which the domain of existence of Kerr BHs is shaded light green.

The mass spectrum of Kerr BHs which support stationary vector clouds may be derived

by solving eq. (2.36) for α. This yields

α = n̂(2$)1/2

[
1− 1

4
gV$ +

7

32
g2

V$
2 − 33

128
g3

V$
3 + . . .

]
, (2.37)

where

$ = 1−mjΩH , gV = 1− 8n̂fV . (2.38)

6Note that [37] ω
(V)

|n,j,j,mj〉 = ω
(S)

|n,j,mj〉, where ω
(S)

|n,j,mj〉 denotes the frequency of a massive scalar quasi-

bound state with quantum numbers {n, j,mj}. This suggests that the magnetic-type vector states are

equivalent to the scalar states with the same total angular momentum. If so, it should be possible to

show that eq. (2.18) for magnetic-type states and its scalar counterpart are equivalent, at least in some

limiting case.
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The first two terms in eq. (2.37) depend on n, ` and mj , but not on j. The next-to-leading-

order term, which depends on j through gV, must be taken into account to capture the

leading-order behavior of stationary vector clouds.

The existence lines for the vector states |0, `, 1, 1〉 with7 ` ∈ {0, 1, 2} are shown in

figure 1 (top panel). When mj = 1, the line corresponding to the lowest values of ΩH

belongs to the electric-type state |0, 0, 1, 1〉, which is therefore the fundamental mode with

mj = 1. The analytical existence line for the electric-type state |0, 0, 1, 1〉 is in agreement

with its numerical counterpart when α � 1. As α increases to values near the extremal

case a = M (black solid line), the two lines diverge from each other. This behavior appears

to be a generic feature of existence lines corresponding to states for which j = mj and ` < j

(see figure 1 — bottom panel). The discrepancy, whose source remains unclear, suggests

that higher-order corrections to the α-expansion in eq. (2.35) are needed when describing

clouds around rapidly-rotating Kerr BHs. On the other hand, the analytical and numerical

existence lines for the electric-type state |0, 2, 1, 1〉, for which j = mj but ` > j, appear to

overlap over the full range of α.

When {n, j,mj} are fixed, the existence lines move towards greater values of ΩH as the

orbital angular momentum ` increases. In fact, the larger the value of `, i.e. the greater the

energy of the state, the greater must the angular velocity ΩH be for stationary equilibrium.

Moreover, the existence lines converge in the limit of vanishing mass, i.e. M → 0, which

reflects the fact that the spacetime becomes insensible to the cloud’s features. These trends

were also found for stationary scalar clouds around Kerr BHs [21].

The variation of the node number n when {`, j,mj} are fixed yields identical behavior.

The existence lines for the vector states |n, 0, 1, 1〉 with n ∈ {0, 1, 2} are plotted in figure 1

(bottom panel). The node number plays a similar role to that of the principal quantum

number in the description of hydrogen’s energy levels: the larger the node number n, the

more energetic the state. Given two existence lines with the same {`, j,mj}, the one with

the largest node number n lies to the right with respect to other in the (M,ΩH)-plane.

Additionally, they converge in the limit of vanishing M .

The radial profile of the clouds I, II and III in figure 1 (bottom panel) are displayed

in figure 2 (top panel). The function R is finite over the whole r domain outside the

event horizon and vanishes (exponentially) as r → +∞, as required by asymptotic flatness.

Besides, the local maximum closest to the event horizon decreases with increasing n.

Finally, figure 2 (bottom panel) shows the dependence of the radius of the cloud,

hereafter denoted by rC, on the rotation parameter a for different vector stationary clouds

with n = 0. rC is defined as the value of r closest to rH that locally maximizes the function

4π|R|2. Its value diverges in the Schwarzschild limit (a → 0), in accordance with the fact

that Schwarzschild BHs cannot carry stationary vector clouds. Moreover, the minimum of

rC, which occurs at a = M , is finite, which means that Kerr BHs do not support sufficiently

tight clouds. Similar observations were already reported for stationary scalar clouds in [21].

7The existence of clouds with vanishing orbital angular momentum (` = 0) is a distinctive feature of

stationary vector clouds. This is intimately linked to a non-vanishing intrinsic angular momentum, as

stationary scalar clouds with ` = 0 do not exist.
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Figure 1. Existence lines for the vector stationary clouds in the (M,ΩH)-plane. The black solid

line refers to extremal (a = M) Kerr BHs. (Top panel) |0, `, 1, 1〉 with ` ∈ {0, 1, 2}. The ` = 0

vector states are the least energetic, as they correspond to lower values of ΩH. The energy increases

with `. (Bottom panel) |n, 0, 1, 1〉 with n ∈ {0, 1, 2}. The n = 0 vector states are the least energetic,

as they correspond to lower values of ΩH. The energy increases with n.

It is worth clarifying the limitations of the linear analysis presented herein: eq. (2.18)

was integrated using expansions for λ around α = 0. These are good approximations as long

as α . 0.2 [37]. The existence lines shown in figure 1 comprises values of α = Mµ ranging

between 0 and 1. Although the quantitative results for α & 0.2 may be less accurate, their

qualitative features are rather robust and not compromised by the approximations. Indeed,

the numerical existence line for the fundamental mj = 1 state, which spans greater values

of α, is consistent with the “bald” boundary of the domain of existence of Kerr BHs with

Proca hair to be presented in the following section.
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Figure 2. (Top panel) Radial profiles of the bound states I, II and III in figure 1 (bottom panel),

characterized by µrH = 0.5. The radial functions are normalized so that R(rH) = 1. The cloud is

especially close to the event horizon when n = 0. (Bottom panel) Radius of different stationary

vector clouds with n = 0, as a function of a/M .

3 Non-linear analysis: hairy black holes and Proca stars

We now address the fully non-linear solutions of the Einstein-complex-Proca model, de-

scribed by the action

S =

∫
d4x
√−g

(
R

16π
+ LM

)
, (3.1)

where LM is the Proca Lagrangian density (2.4). Varying this action one obtains the Proca

equations (2.5) and the Einstein equations

Rαβ −
1

2
Rgαβ = 8πTαβ , (3.2)
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where the Proca energy-momentum tensor is:

Tαβ =
1

2
(FασF̄βγ + F̄ασFβγ)gσγ − 1

4
gαβFστ F̄

στ +
1

2
µ2
[
AαĀβ + ĀαAβ − gαβAσĀσ

]
.

(3.3)

We follow the conventions of [10]. More details on the formalism can be found therein. If

one linearises the model (3.1) in the Proca field, one ends up with the vacuum Einstein

equations and a test Proca field on a fixed curved background (that solves the vacuum

Einstein equations). This corresponds precisely to the analysis of section 2.

3.1 The ansatz

To find the hairy BHs that bifurcate from the linear clouds that were studied in section 2

we use the metric ansatz8

g = −e2F0Ndt2 + e2F1

(
dr2

N
+ r2dθ2

)
+ e2F2r2 sin2 θ (dϕ−Wdt)2 , (3.4)

where

N ≡ 1− rH

r
, (3.5)

and Fi,W are functions of the spheroidal coordinates (r, θ). The parameter rH is the radial

coordinate of the event horizon, which is θ-independent.

For the Proca potential, we use an ansatz that depends on four functions (V,Ha).

All these functions depend on (r, θ). The ansatz has a harmonic time and azimuthal

dependence, which introduces a (positive) frequency, ω > 0, and the azimuthal harmonic

index, m ∈ Z:

A = ei(mϕ−ωt) (iV dt+H1dr +H2dθ + iH3 sin θdϕ) . (3.6)

Here, m should be identified with mj of section 2 and we shall focus on m = 1. We follow

closely [10], wherein all details can be found, namely: the explicit equations of motion for

this ansatz (in appendix B therein) and the boundary conditions at the horizon, spatial

infinity and on the axis (in section 4 therein). Details on the numerical method can be found

in section 3.3 of [45]. The key feature for the existence of these BHs is the synchronisation

condition (1.3), where ΩH = W (rH), the non-diagonal metric function in eq. (3.4), which

on the horizon is independent of θ, and m,ω are the parameters in the Proca ansatz (3.6).

3.2 Domain of existence

When finding solutions via a relaxation method, such as the Newton-Raphson method

used for this work, the initial guess plays a key role to guarantee convergence to the

desired solutions. In [45], the construction of hairy BHs started from the spinning Proca

stars in [16], which have one node for the temporal component of the Proca potential, V .

Consequently, the hairy BHs reported in [45] also have one node in V . At that point, it

was found no evidence for nodeless solutions of either spinning Proca stars or BHs with

8The Kerr metric in this coordinate system, together with the relation between r in eq. (3.4), used in this

section, and the radial Boyer-Lindquist coordinate used in section 2, can be found in appendix A of [45].
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Figure 3. Domain of existence of the n = 0 (fundamental state) and n = 1 (excited state) BHs

with synchronised Proca hair with m = 1 in an ADM mass vs. angular velocity diagram, in units

of µ. The black solid line corresponds to extremal Kerr BHs; non-extremal Kerr BHs exist below

that line, in the light green shaded region. Two Proca star solutions and two hairy BH solutions

were highlighted (as stars and triangles), to be analysed in section 3.3.

Proca hair, even though it was stated in [45] that no proof for the inexistence of nodeless

solutions could be established (except for spherical Proca stars).

These results were reconsidered after the numerical evolutions of the Kerr superradiant

instability have been reported [7]. The data describing the equilibrium points attained in

these evolutions matched spinning BHs with Proca hair and a nodeless Proca potential

temporal component V , first constructed in [8], wherein their domain of existence was

exhibited. This domain of existence is shown in figure 3, together with the domain of

existence of the nodeful (n = 1) solutions reported in [45]. The hairy BHs exist in the blue

shaded regions. In each case (n = 0 or n = 1) the domain of existence is bounded by the

solitonic limit (red solid lines) wherein the hairy BHs become spinning Proca stars with the

same n, and by the bald limit (blue dotted lines), wherein they meet the Kerr parameter

space at the corresponding existence line, with mj = m, the same n and (`, j) = (0,mj).

Thus, the two blue dotted lines plotted in figure 3 correspond to the blue (n = 0) and

yellow (n = 1) numerical existence lines plotted in figure 1 (bottom panel).

The existence line from which the fundamental non-linear solutions bifurcate follows a

similar rationale to that observed for the scalar case [9]. For a given m = mj , the existence

line with ` = 0 and j = mj is the leftmost one in the Kerr parameter space plotted in

figure 1. Thus it represents the threshold between the Kerr BHs that are stable against

all modes with that mj and the ones that are unstable against at least one such mode.

Since mj is the only of the three quantum numbers (`, j,mj) that remains significant in

the non-linear theory — it is associated to an isometry –, for each mj the existence line

whence the hairy BHs bifurcate is the one with (`, j) = (0,mj). BHs emerging from the
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Figure 4. Similar representation of the domain of existence as in figure 3, but now comparing

the (n,m) = (0, 1) (fundamental states) Kerr BHs with synchronised scalar and Proca hair. The

inset shows a detail of the backbending of the fundamental Proca stars line, as it attains the

minimal frequency.

other existence lines with m = 1 are likely to exist but are excited states, with either more

radial or angular nodes.

Inspection of figure 3 reveals two main features. Firstly, as expected, the excited states

(n = 1) can attain a larger ADM mass; secondly, the fundamental states of the BHs with

Proca hair exist for a larger ω-range; this also seems intuitive: excited states require a

larger minimum angular velocity.9 The same trends are observed when comparing the

fundamental states (n,m) = (0, 1) of the scalar and the Proca hairy BHs — figure 4, with

the scalar case playing the role of the excited Proca family, in this comparison. This had

already been observed for the solitonic limit in [48]. In the bald limit, this means that

the fundamental Proca existence line spans lower ΩH BHs. This is a manifestation of the

well-known fact that the superradiant instability is stronger for the vector case [5].

Unlike the scalar or the excited Proca case, in the case of n = 0 spinning Proca stars,

that compose the (red solid line) boundary of the domain of existence, it was not possible to

explore the domain of solutions after the backbending, i.e. when the minimum frequency is

attained — see inset in figure 4. The reason is that these solutions become rather compact

and hence strong gravity configurations, making their computation numerically challenging.

To assess this, we have used the same measure of compactness as, e.g. in [45, 58], namely:

Compactness−1 ≡ R99

2M99
, (3.7)

where R99 is the perimetral radius that contains 99% of the star’s mass, M99. We recall

that bosonic stars do not have a surface where a discontinuity of the energy density occurs;

9A similar trend can be observed in the scalar case, comparing n = 0 with n = 1 solutions [46].
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Figure 5. Inverse compactness of the three families of solutions: n = 0 and n = 1 Proca stars (red

solid lines) and n = 0 scalar boson stars (black dotted line), all with m = 1. The inset exhibits a

detail of the n = 1 Proca stars line. The squares mark the first occurrence of an ergo-region along

the family of bosonic stars.

rather, they decay exponentially, vanishing only at infinity. The perimetral radius is a

geometrically meaningful radial coordinate R: a circumference along the equatorial plane

has perimeter 2πR. The inverse compactness of the n = 0, 1 Proca stars and n = 0 scalar

boson stars, all with m = 1, is shown in figure 5. One observes that the inverse compactness

is always greater than unity, meaning that all these stars are less compact than a BH.

Moreover, the fundamental Proca stars become the most compact ones, precisely at the

backbending, where they attain an inverse compactness . 1.1.

Another token of strong field gravity is the formation of ergo-regions in spinning space-

times. In the solitonic limit, both the scalar and vector spinning stars do not have ergo-

regions when ω → µ (see figures 3 and 4), corresponding to the dilute regime where the

stars are not compact and not strongly relativistic. Moving along the spiral and away from

this dilute regime, in all cases the ergo-region appears in the first branch, i.e., before the

first backbending and for quite compact stars. The first occurrence of an ergo-region along

the sequence of bosonic stars is marked with a square in figure 5. The comparison between

the three different cases shows that compactness is not the only factor determining the

existence of an ergo-region. For all three cases (Proca with n = 0, 1 and scalar with n = 0)

the ergo-region of these stars is toroidal. In the family of the hairy BHs, this toroidal region

adds up to the ergo-sphere around the spinning horizon. We have not scanned in detail

the parameter space but one will get a rich ergo-region structure, including ergo-Saturns,

analogous to those found for BHs with synchronised scalar hair (n = 0) [59], Proca hair

(n = 1) [10] and other cousin models, e.g. [34, 35, 60, 61].

– 19 –



J
H
E
P
0
7
(
2
0
2
0
)
0
1
0

3.3 Analysis of specific solutions

In order to get a better intuition on the impact of the node number on the solutions let

us consider a comparative study between the profile functions of two spinning Proca stars,

one with n = 0 and another with n = 1, and both with the same frequency ω/µ = 0.9.

These two configurations are highlighted as two stars in figure 3.

In figure 6 we compare the metric functions of the two illustrative Proca stars in terms

of a compactified radial coordinate, to have an overview of the whole radial domain, and for

three different θ-values. Whereas in the fundamental state all metric functions are rather

smooth and monotonic, in the first excited state there is some extra structure, mostly

noticeable along the equatorial plane (θ = π/2). The metric function W , in particular, is

no longer monotonic. The nodeless vs. nodeful structure of the n = 0 vs. n = 1 spinning

Proca stars becomes evident in figure 7. One observes, in particular, that all four Proca

potential functions have the same number of nodes, n = 0 or n = 1, for each star. Moreover,

the temporal and radial component of the potential have a trivial structure along the

θ = 0 symmetry axis. Finally, the extra structure of the excited states becomes clear when

analysing more invariant quantities, such as the Noether charge density, the Ricci curvature

scalar and the Komar energy density, that are exhibited in figure 8.

The Noether charge results from the global U(1) symmetry of eq. (3.1), which is invari-

ant under the global transformation Aβ → eiχAβ , where χ is a constant. Thus, a conserved

4-current exists

Jα =
i

2

[
F̄αβAβ − FαβĀβ

]
, ∇αJα = 0 . (3.8)

The Noether charge, Q, which is interpreted as the particle number (indeed becomes the

particle number upon quantisation), is obtained integrating the time component of this

current on a spacelike hypersurface Σ:

Q =

∫

Σ
d3x J t . (3.9)

The Noether charge density is thus J t, which is plotted in the top panel of figure 8.

The Komar energy density results from the Komar mass computed at infinity. Using

Gauss’s law, one relates the latter with the horizon Komar mass MH (in the cases which

have a horizon) and a volume integral on a spacelike hypersurface between the horizon and

infinity. One obtains [45] (where kα is the asymptotic timelike Killing vector field):

M = MH − 2

∫

Σ
dSα

(
Tαβ k

β − 1

2
Tkα

)
≡MH +M (P) , (3.10)

where M (P) is the energy contained in the Proca field (outside a horizon, in case there

is one):

M (P) ≡ −
∫

Σ
drdθdϕ

√−g(2T tt − Tαα ) . (3.11)

The integrand is the Proca energy density, which is plotted in the second from bottom

panels of figure 8. A similar analysis can be done for the Komar angular momentum
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Figure 6. Metric functions of two Proca stars: n = 0 (left panels) and n = 1 (right panels).
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Figure 7. Same as in figure 6, but for the Proca potential functions.
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Figure 8. Same as in figures 6 and 7, but for some physical quantities.
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density, showing that the Komar angular momentum density is T tϕ [45], plotted in the

bottom panels of figure 8.

All invariant quantities in figure 8 demonstrate that whereas the n = 1 stars have a

Saturn-like morphology — which was observed in [45] –, with the energy density or the

particle number having a global maximum at the centre and a local maximum at some

radial distance, the fundamental states are spheroidal. This contrasts with the toroidal

shape of the fundamental spinning scalar boson stars [14]. This morphological difference

was argued to be related to the different dynamical stability of the fundamental states of

scalar/vector spinning bosonic stars [17].

We now turn to hairy BHs. The single most important observation concerning hairy

BHs in this model is that they can be quite Kerr-like or strongly non-Kerr-like. This follows

from the fact that the hairy BHs interpolate between the Kerr family and a solitonic limit

(Proca stars) whose properties and phenomenology can be quite different from Kerr. So,

here we shall focus on two illustrative solutions that exemplify this range of possibilities.

First, we consider an example of a fairly Kerr-like BH with Proca hair, with n = 0. It

is chosen in the region where these BHs matched the endpoint of the dynamical evolutions

reported in [7] — see [8]. Moreover, within this region, it is chosen to be as hairy as those

evolutions suggest a hairy BH can be, when forming dynamically from the superradiant

instability of Kerr BHs. This hairy BH, labelled HBH1, has10 [all quantities in eqs. (3.12)

and (3.13) are given in units of µ, which was omitted]

[
M,

MH

M
; J,

JH

J
; j, jH; ΩH, rH

]

1

= (0.239, 0.905; 0.055, 0.607; 0.98, 0.726; 0.97, 0.3) ,

(3.12)

where j ≡ J/M2 and jH ≡ JH/M
2
H are the dimensionless spin in terms of global and

horizon quantities, respectively. Thus, HBH1 has 9.5% of its energy and 39.3% of its spin

outside the horizon. These were roughly the maximal values of extraction via superradiance

observed in [7]. Also note that both j and jH are smaller than unity; thus the hairy BH

obeys the Kerr bound, both in terms of horizon and asymptotic quantities. It is known

that spinning BHs with synchronised hair can violate the Kerr bound — see e.g. [9, 62].

Second, we consider an example of a fairly non-Kerr-like BH with Proca hair, with

n = 0. This hairy BH, labelled HBH2, has

[
M,

MH

M
; J,

JH

J
; j, jH; ΩH, rH

]

2

= (0.501, 0.231; 0.392, 0.022; 1.56, 0.642; 0.93, 0.2).

(3.13)

Thus, HBH2 has 76.9% of its energy and 97.8% of its spin outside the horizon. Moreover,

this BH violates the Kerr bound in terms of asymptotic quantities, since j = 1.56 > 1,

but not in terms of horizon quantities. In this sense it behaves more like a star. Both

these solutions are marked with triangles, and labelled with the corresponding numbers,

in figure 3.

In figure 9 we exhibit the metric functions outside the horizon for the two hairy BHs. In

the case of HBH1, the insets show a comparable Kerr BH, that is with the same total mass

10Do not confuse the dimensionless spin j in this section with the total angular momentum j of section 2.
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Figure 9. Metric functions of HBH1 (left panel) and HBH2 (right panel).
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M and angular momentum J . In order to make the latter comparison, the Kerr metric is

expressed in the gauge (3.4) — see appendix A in [45]. No comparable Kerr BH exists for

HBH2, as the latter violates the Kerr bound. Again we use a compactified radial coordinate.

The metric functions of HBH1 already show some qualitative differences relatively to those

of the comparable Kerr BH. The latter has a considerably higher ΩH/µ ' 1.72; indeed

HBH1 and the comparable Kerr roughly correspond to the two points in figure 5 of [8],

representing the longest migration. On the other hand, the metric functions of HBH2 are

a hybrid between the Kerr metric functions and those of a Proca star — see figure 6 (left

panels). Indeed, as can be seen from the physical parameters in eq. (3.13), HBH2 has over

three quarters of the total mass and almost the totality of the angular momentum stored

in the Proca field outside the horizon. Thus, it is more accurately described as a spinning

Proca star with a BH horizon at its centre, than as a BH horizon surrounded by a Proca

cloud. The latter is an appropriate description for HBH1.

In figure 10 the Proca potentials are shown for the two hairy BHs. One can appreciate

the difference in boundary conditions as compared to the Proca stars in figure 7. V,H2, H3

are non-zero on the BH horizon and zero at the origin, for stars; H1 is the opposite.

On the other hand, the most apparent differences between HBH1 and HBH2 are the larger

magnitude of the Proca potential functions for the latter, together with a steeper behaviour.

This is intuitive from the fact the second BH has a much larger fraction of its energy in

the Proca field.

Finally, in figure 11 we represent some physical quantities of the two hairy BH solutions.

The Noether charge density is one order of magnitude larger for HBH2 and with a steeper

profile. This impacts on the Ricci scalar curvature, known to manifest the spacetime

deformation due to matter, which has a clear lump outside the horizon for the hairiest

solution. The Komar energy and angular momentum densities are also larger in magnitude

and with sharper profiles, becoming asymptotically more similar to those of the Proca star

exhibited in figure 8 (left panels).

4 Conclusion

In this paper we have analysed linear vector clouds of a massive Proca field around a Kerr

BH and the BHs with synchronised Proca hair that can be considered as the non-linear

realisations of these clouds. Our analysis has been inspired by a series of fairly recent

developments that motivates revisiting the Einstein-(complex)-Proca model and its BH

and solitonic solutions. Notice, however, that the linear analysis in section 2 does not

depend on the fact that the Proca field is complex, unlike the analysis in section 3, where

the existence of the stationary solutions describing hairy BHs and Proca stars relies on the

field being complex.

Concerning the linear analysis of section 2, the key physical property of these bound-

state configurations is the synchronization of their phase angular velocity with the event

horizon angular velocity. Furthermore, they resemble the hydrogen’s atomic orbitals and

can be described in terms of {n, `, j,mj}. The quantum numbers label the existence lines

of stationary vector clouds in the two-dimensional parameter space of Kerr BHs. These
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Figure 10. Proca potential functions of HBH1 (left panel) and HBH2 (right panel).
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Figure 11. Some physical quantities for HBH1 (left panel) and HBH2 (right panel).
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curves mark the bifurcation of the Kerr family towards the new family of BHs with Proca

hair and constitute one of the boundaries of the domain of existence of the latter [10].

As for massive scalar bosons [21], the analysis of the vector clouds shows that, for

a fixed value of the azimuthal total angular momentum mj , the cloud’s energy, which is

proportional to its phase angular velocity, is mainly determined by the node number n,

and the orbital angular momentum `. The bound-state |0, 0, 1, 1〉 has the lowest possible

energy and higher values of n and/or ` correspond to higher-energy states. Thus, the

existence line of this bound state is wherein the fundamental states of the hairy BHs

bifurcate from. Moreover, despite not having a relevant impact on the cloud energy, the

total angular momentum j allows for the existence of ` = 0 bound states, which is rooted

in the non-vanishing intrinsic angular momentum of the bosons.

The existence lines obtained numerically were compared with analytical approxima-

tions recently reported in the literature [37]. In general, the agreement is excellent for all

values of the Kerr BH’s rotation parameter, except when j = mj and ` < j. In this case, a

discrepancy arises for near-extremal Kerr BHs; the reason behind this observation remains

to be clarified.

The analysis’ starting point was the LFKK ansatz [42] for the separation of the Proca

equation. This ansatz prevents the need for approximations or time-consuming numeri-

cal algorithms when studying massive vector bosons in Kerr-NUT-(A)dS spacetimes and

has already been used to address quasi-bound states in the Kerr and Kerr-Newman back-

grounds [37, 42–44, 63]. This ansatz, however, does decouple and separate the torsion-

modified Proca equation (known as Troca equation) in the Chong-Cvetič-Lü-Pope space-

time of D = 5 minimal gauged supergravity [44] and in the Kerr-Sen spacetime of low-

energy heterotic string theory [44]. Note that all these works focused on the dynamics

of massive vector bosons in the frequency domain, in which the particles are described as

monochromatic waves. Future research should then dive into a yet-to-be-explored time-

domain analysis of these simplified equations of motion. Of particular interest would be to

perform long-time evolutions of massive vector Gaussian wave packets in superradiance-

prone spacetimes.

Concerning the non-linear analysis in section 3, here we have exhibited the domain of

existence of the fundamental states of BHs with synchronised Proca hair and compared

some of their properties with the first excited states, discussed in [10], and the cousin hairy

BHs obtained in the scalar case [9, 45]. Then, we have analysed some illustrative solutions

of both the solitonic limit (Proca stars) and hairy BHs. We emphasise that all the solutions

considered here have azimuthal harmonic index m (≡ mj) = 1. Higher m solutions also

exist, corresponding to another sort of excitation.11 There are two main ideas to retain

from our results.

Firstly, there are morphological differences between the cases compared herein, which

may have various implications. This is summarised in figure 12, where surfaces of constant

11Higher m increases the number of nodes in the azimuthal direction. An in-depth study of the higher

m solutions in the scalar case is found in [34]. Some particular higher m solutions in the Proca case can be

found in [17]. We remark that n = 0 spinning Proca stars with m > 1 possess surfaces of constant energy

density with a toroidal morphology.
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Figure 12. Morphology of the surfaces of constant energy density of scalar (n = 0) and vec-

tor/Proca (n = 0 and n = 1) spinning bosonic stars (top panels) and BHs with synchronised hair

of the corresponding type (bottom panels). For the BHs, the black disk represents the horizon. All

these solutions have m = 1. The hairy BHs bifurcate from clouds with ` = 0. Besides further radial

excitations (with higher n), these families of solutions possess azimuthal excitations (with higher

m) and also further polar-angular excitations (corresponding, in the linear limit, to higher `).

scalar or Proca density for stars and hairy BHs are exhibited for the three families of

solutions we have compared. Spinning scalar bosonic stars (n = 0) are toroidal; spinning

vector stars with n = 0 are spheroidal and with n = 1 have a Saturn-like morphology.

The corresponding hairy BHs are a non-linear bound state of such a star with a horizon,

deforming the star’s morphology.

Secondly, in all these families of hairy BHs, in particular in the n = 0 BHs with

Proca hair, there are Kerr-like solutions, but also rather non-Kerr-like examples. At the

moment, at least one formation channel for the hairy Kerr-like solutions is known —

superradiance; HBH1 discussed in section 3.3 belongs to this set. The solution shows

already some interesting deviations from Kerr and it will be very interesting to analyse how

these deviations impact on astrophysical observables. In this respect, one could reconsider

some of the analysis done for the scalar case or for the excited BHs with Proca hair,

namely of shadows [64, 65], X-ray spectroscopy [66, 67] or quasi-periodic oscillations [68].

Of course, one of the most interesting open questions concerns the dynamical properties of

these BHs, including quasi-normal modes. The recently established dynamical robustness

of spinning Proca stars [17] has paved the way to perform dynamical evolutions of these

BHs, from which one could, in particular, extract waveforms for binary evolutions. Work

in this direction is underway.
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A Vector spherical harmonics

The components of the first few (‘pure-orbital’) vector spherical harmonics Y `
j,mj

in terms

of the spherical unit vectors {ê(r), ê(θ), ê(ϕ)} are
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Their real part are displayed in figure 13.
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Figure 13. Real part of the first few (‘pure-orbital’) vector spherical harmonics Y `
j,mj

in the

three-dimensional real coordinate space (x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ).
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Massive bosons in the vicinity of Kerr–Newman black holes can form pure bound
states when their phase angular velocity fulfills the synchronization condition, i.e. at

the threshold of superradiance. The presence of these stationary clouds at the linear

level is intimately linked to the existence of Kerr black holes with synchronized hair at
the nonlinear level. These configurations are very similar to the atomic orbitals of the

electron in a hydrogen atom. They can be labeled by four quantum numbers: n, the

number of nodes in the radial direction; `, the orbital angular momentum; j, the total
angular momentum; and mj , the azimuthal total angular momentum. These synchro-

nized configurations are solely allowed for particular values of the black hole’s mass,

angular momentum and electric charge. Such quantization results in an existence sur-
face in the three-dimensional parameter space of Kerr–Newman black holes. The phe-

nomenology of stationary scalar clouds has been widely addressed over the last years.
However, there is a gap in the literature concerning their vector cousins. Following the

separability of the Proca equation in Kerr(–Newman) spacetime, this paper explores

and compares scalar and vector stationary clouds around Kerr and Kerr–Newman black
holes, extending previous research.

Keywords: Black holes; massive bosons; superradiance.

1. Introduction

Energy extraction from Kerr black holes was first devised in 1969 by Penrose,1 who

conceived a gedankenexperiment whereby a particle disintegrates within the ergore-

gion of a Kerr black hole into two other particles in such a way that the black hole

loses energy. In general, the efficiency of the Penrose process is low: the extracted
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energy is at most about a fifth of the infalling energy for particles decaying close

to the event horizon of extremal Kerr black holes.2,3 More importantly, the mini-

mum relative velocity between the two end-products of the decay must be greater

than half the speed of light for energy to be extracted. The Penrose process is thus

unlikely to occur and be relevant in conceivable astrophysical scenarios.

In 1971, Zel’Dovich showed that low-frequency electromagnetic waves scat-

tered off a rotating conducting cylinder are amplified, later suggesting that, un-

der particular circumstances, this enhancement occurs for any wave impinging on

a rotating object.4,5 Misner conjectured that Kerr black holes would not be an

exception.6 This rather odd proposal opened the door to black hole superradiance,7

which may be thought as the wave analogue of the Penrose process.

For Kerr black holes, superradiance is triggered when the phase angular velocity

ω of a boson state satisfies

ω

mj
< ΩH ≡

a

r2
+ + a2

, (1)

where mj is the boson’s azimuthal total angular momentum and ΩH and r+ =

M +
√
M2 − a2 are, respectively, the black hole’s horizon angular velocity and

event horizon (Boyer–Lindquist) radial coordinate, written in terms of the black

hole’s ADM mass M and total angular momentum J = Ma. When the bosons

are massive, they remain trapped in the vicinity of the black hole — as if they

were enclosed by a reflective cavity. When Eq. (1) is fulfilled, bosons extract energy

from the black hole and, as a result, the trapped boson states grow exponentially

with time, creating superradiant instabilities.8 These arise even when the bosons’

backreaction on the geometry is negligible — a fairly good approximation for a

plethora of astrophysical systems —, which means that superradiance is a linear

phenomenon, although it persists at fully nonlinear level.9

From a dynamical viewpoint, energy extraction from the black hole stalls as

soon as Eq. (1) saturates, i.e.

ω

mj
= ΩH . (2)

The endpoint is a classical boson condensate — colloquially referred to as cloud or

hair — which is stationary with respect to the slowed-down black hole.10–12 These

equilibrium configurations are solutions of Einstein’s gravity minimally coupled

to complex massive bosons, first unveiled for scalar bosons13 and then extended

to vector bosons.14 Kerr black holes with synchronized hair evade well-known

uniqueness theorems15 — which state that asymptotically-flat stationary black

holes in scalar– or vector–(electro–)vacuum general relativity are necessarily Kerr(–

Newman) black holes16–18 — and defy the no-hair conjecture — according to which

the gravitational collapse in the presence of any type of matter-energy must give

birth to a Kerr(–Newman) black hole.19,20

These hairy black holes reduce to synchronized bound states between Kerr black

holes and (scalar or vector) bosons at the linear level. These states exist at the
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threshold of superradiance and are commonly known as stationary clouds. They

are very similar to the atomic orbitals of the electron in a hydrogen atom in the

sense that they are regular on and outside the event horizon, decay exponentially

at spatial infinity and can be labeled by four quantum numbers: n, the number of

nodes in the radial direction; `, the orbital angular momentum; j, the total angular

momentum; and mj , the projection of the total angular momentum along the black

hole’s axis of symmetry.

These synchronized bound states were first found for massive scalar bosons

around extremal (a = M) Kerr black holes21 and later around rapidly-rotating

black holes.22 While the phenomenology of stationary scalar clouds has been widely

addressed in the literature over the last years,23–40 little is known about the physical

properties of their vector cousins.25 This discrepancy makes sense under the view

that, as opposed to the Klein–Gordon equation,41,42 the decoupling and separation

of the Proca equation in Kerr spacetime was solely achieved very recently via the

Lunin–Frolov–Krtouš–Kubizňák (LFKK) ansatz.43 Following this breakthrough,

which extends to the Kerr–NUT–(A)dS family of spacetimes, the properties of mas-

sive vector bosons started to be further explored in a number of spacetimes,44–49

most notably the Kerr spacetime.

The main goal of this paper is to apply the LFKK ansatz to characterize and

compare stationary scalar and vector clouds around Kerr(–Newman) black holes,

complementing some results presented in Refs. 24 and 49.

The paper is organized as follows. Section 2 reviews some key features of Kerr–

Newman spacetime. Section 3 introduces the Klein–Gordon and Proca equations

and the corresponding ansätze for their separability and presents the separated

equations. Section 4 covers a comparative analysis of stationary scalar and vector

clouds around Kerr and Kerr–Newman black holes. An overview of this paper is

sketched in Sec. 5, together with some closing remarks.

2. Kerr–Newman geometry

The Kerr–Newman solution is the most general black hole solution to the

Einstein–Maxwell equations for an asymptotically flat, stationary and axisymmet-

ric spacetime with a connected event horizon. It describes a black hole with mass

M , angular momentum J and electric charge Q (as measured from spatial infin-

ity). A Kerr–Newman black hole is said to be sub-extremal if a2 + Q2 < M2 and

extremal if a2 + Q2 = M2, where a = J/M is the specific angular momentum. In

Boyer–Lindquist coordinates (t, r, θ, ϕ), the solution reads

g = Σ

(
−∆

Ξ
dt2 +

dr2

∆
+ dθ2

)
+

Ξ

Σ
sin2 θ(dϕ− Ωdt)2,

A− Qr

Σ
(dt− a sin2 θdϕ),

(3)
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where

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2 +Q2,

Ξ = (r2 + a2)2 −∆a2 sin2 θ, Ω =
(2Mr −Q2)a

Ξ
.

(4)

The line element has a curvature singularity at Σ = 0 and coordinate singularities

at ∆ = 0 when a2 + Q2 ≤ M2, which solves for r = r± ≡ M ±
√
M2 − a2 −Q2.

The hypersurface r = r+ (r = r−) is the outer (inner) horizon.

Being stationary and axisymmetric, the Kerr–Newman spacetime does not

depend explicitly on t nor on ϕ. The two linearly independent Killing vectors asso-

ciated with these two isometries are ξ = ∂t and η = ∂ϕ, respectively. The Killing

vector ξ is null on the hypersurface r = rE ≡M+
√
M2 −Q2 − a2 cos2 θ, known as

stationary limit surface or ergosphere. This hypersurface is timelike except in the

points in which η = 0, where it coincides with the outer horizon and becomes null.

ξ is timelike outside the ergosphere and spacelike in the spacetime region between

the outer horizon and the ergosphere (r+ < r < rE). The points where η = 0 define

the axis of symmetry.

The dragging potential Ω is constant on r = r+, where it has the value

ΩH ≡
a

r2
+ + a2

. (5)

ΩH is thus the angular velocity of the outer horizon. The Killing vector χ = ξ+ΩHη

is null on the hypersurface r = r+ and is timelike outside it. Observers moving along

curves of constant r and θ with angular velocity ΩH follow the integral curves of χ

and thus rotate rigidly with the black hole.

The Kerr–Newman solution admits a principal tensor, i.e. a nondegenerate

closed conformal Killing–Yano 2–form h which obeys the equationsa

∇h = g ∧ ξ, ξ =
1

3
∇ · h . (6)

This reads

h = r(dt− a sin2 θdϕ) ∧ dr − a cos θ
[
adr − (r2 + a2)dϕ

]
∧ d cos θ . (7)

The Hodge dual of h is a Killing–Yano tensor f = ?h, whose square is the Killing

tensor

K = −f · f = h · h− 1

2
gh2, (8)

which relates to the Killing vectors by η = K · ξ.

aThe dot (·) denotes contraction of two subsequent tensors with respect to their two neighbor

indices.
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3. Equations of motion

The dynamics of massive scalar (Φ) and vector (A) bosons in curved spacetimes is

ruled by similar equations:

(�− µ2
s )Φ = 0, (9)

(�− µ2
v)A = 0, (10)

where � ≡ ∇a∇a is the D’Alembert operator and µs/µv stands for the mass of the

scalar/vector boson. Equation (9) is the Klein–Gordon equation, whereas Eq. (10)

is the Proca equation. The Proca equation is nothing but a set of four Klein–Gordon

equations, supplemented by the Lorenz condition

∇ ·A = 0, (11)

which is automatically satisfied, thanks to the nonvanishing mass µv.

It has long been known that the Klein–Gordon equation in Kerr–Newman space-

time allows a multiplicative separation of variables of the form50,51

Φ(t, r, θ, φ) = e−iωtRs(r)Qs(θ, φ), Qs(θ, φ) = Ss(θ)e
+imjφ, (12)

where ω and mj are the eigenvalues of iξ and −iη, respectively. This ansatz reduces

Eq. (9) to two linear differential equations in the coordinates r and θ. These equa-

tions take the form

d

dr

[
∆

dRs

dr

]
+

[
K2
r

∆
− (µ2

sr
2 + a2ω2 − 2mjaω + λs)

]
Rs = 0, (13)

1

sin θ

d

dθ

[
sin θ

dSs

dθ

]
−
[
m2
j

sin2 θ
− ν2 cos2 θ − λs

]
Ss = 0, (14)

where Kr = (r2 + a2)ω − amj and ν2 ≡ a2(ω2 − µ2
s ) is the degree of spheroidicity.

Equations (13)–(14) are only coupled via the boson mass µs, the Killing eigenvalues

{ω,mj}, the black hole parameters {M,a,Q} and the separation constant λs. When

ν = 0 (i.e. when the degree of spheroidicity vanishes), Eq. (14) reduces to the

associated Legendre equation and the separation constant becomes λs = j(j + 1),

j ∈ N0. The canonical solutions are the associated Legendre polynomials of degree

j and order mj . The angular dependence of Φ is thus described by the scalar

spherical harmonics of degree j and order mj when either a = 0 or ω2 = µ2
s . In

general, however, it is given by scalar spheroidal harmonics. When ν � 1, the

separation constant can be written as a series expansion around ν = 0,

λs =

+∞∑

k=0

f (k)
s ν2k, with f (0)

s = `(`+ 1), f (1)
s = h(`+ 1)− h(`)− 1, . . . ,

where h(`) ≡ 2`(`2 −m2)/(4`2 − 1). Series expansions for large and real ν and for

large and pure imaginary ν are also known.52 For generic degree of spheroidicity,

Mathematica built-in function SpheroidalEigenvalue, for instance, retrieves

high-precision results.
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The Proca equation, on the other hand, was believed not to separate in the

Kerr–Newman spacetime. Until recently, the Hartle–Thorne formalism for slowly

rotating spacetimes53 was the only available (semi-)analytical technique to study

massive vector bosons in Kerr spacetime.54,55 However, a new ansatz by Lunin

for the separability of Maxwell’s equations in the Myers–Perry-(A)dS family of

spacetimes56 was further developed by Frolov–Krtouš–Kubizňák,57,58 who realized

that the separability does extend to the Proca equation (and the Lorenz condi-

tion) in the Kerr–NUT–(A)dS family.43 The LFKK ansatz relies on the existence

of hidden symmetries and allows Eq. (9) to be separated into ordinary differential

equations. This novel approach has already been applied to separate the torsion-

modified Proca equation (known as Troca equation) in the Chong–Cvetič–Lü–Pope

spacetime of D = 5 minimal gauged supergravity45 and to study the superradiant

instability of massive vector bosons in the Kerr–Newman and Kerr–Sen space-

times.48

The LFKK ansatz for A takes the strikingly simple form

A = P ·∇Z, (15)

where P is the polarization tensor and Z is a complex scalar function. P is

covariantly defined in terms of the metric g and the principal tensor h as

P ·
(
g +

i

λv
h

)
= 1, (16)

where λv is a complex constant and 1 is the four-dimensional identity matrix.

Given the ansatz in Eq. (15), the Proca equation and the Lorenz condition allows

a multiplicative separation of variables for Z,

Z(t, r, θ, φ) = e−iωtRv(r)Qv(θ, φ), Qv(θ, φ) = Sv(θ)e+imjφ, (17)

where, as before, ω and mj are the eigenvalues of iξ and −iη, respectively. The

separated equations in Kerr–Newman spacetime areb

qr
d

dr

[
∆

qr

dRv

dr

]
+

[
K2
r

∆
+

2λ2
v − qr
qr

σλv − qrµ2
v

]
Rv = 0, (18)

qθ
sin θ

d

dθ

[
sin θ

qθ

dSv

dθ

]
−
[
K2
θ

sin2 θ
+

2λ2
v − qθ
qθ

σλv − qθµ2
v

]
Sv = 0, (19)

where

qr = r2 + λ2
v, qθ = λ2

v − a2 cos2 θ,

σ = a(mj − aω)/λ2
v + ω, Kθ = mj − aω sin2 θ .

(20)

Just like Eqs. (13)–(14), Eqs. (18)–(19) are only coupled via the boson mass µv, the

Killing eigenvalues {ω,mj}, the black hole parameters {M,a,Q} and the complex

bThe explicit form of the polarization tensor P in the Kerr(–Newman) spacetime can be found

written in Boyer–Lindquist coordinates in Ref. 49.
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constant λv. The latter may be loosely interpreted as a separation constantc. Equa-

tion (18) shares two singular points with Eq. (13), r = r±, and features additional

poles at r = ±iλv. When a = 0, Eq. (18) reduces to the associated Legendre equa-

tion provided that λE
v (λE

v−1) = j(j+1), which solves for λE
v,− = −j and λE

v,+ = j+1,

where the superscript “E” refers to the electric-type states. Indeed, an asymptotic

analysis of Eq. (18) reveals that the angular dependence of the leading-order form

of the spatial part ofA is described by the electric-type “pure-orbital” vector spher-

ical harmonics in flat space.59,60 More concretely, λE
v,∓ correspond to the j = `± 1

electric–type states and can be written as a series expansion around Mµv = 0,46

λE
v,± =

+∞∑

k=0

f
(k)
v,±(Mµv)k, (21)

where

f
(0)
v,+ = j + 1, f

(0)
v,− = −j

f
(1)
v,+ = − mja

j(j + 1)M
, f

(1)
v,− =

mja

jM
, . . .

The magnetic-type states with j = ` = |mj | can be recovered by taking the limits44

lim
Mµv→0

λM
v = 0, lim

Mµv→0

µva

λM
v

= mj ± 1, (22)

where the superscript “M” refers to states with j = |mj |. Unluckily, no series

expansion of λM
v around Mµv = 0 is known. In the marginally-bound limit (ω2 =

µ2
v), however, the separation constant takes the value

lim
ω2→µ2

v

λM
v =

2a

mj + 1− aω +
√

(mj + 1− aω)2 + 4aω
, (23)

which vanishes in the Schwarzschild limit.

A potential caveat concerning the use of the LFKK ansatz is the fact that it

might not capture all magnetic-type states. To the best of the authors’ knowledge,

only electric-type states and magnetic-type states with j = |mj | have so far been

reported.43,44,46

4. Stationary scalar and vector clouds

Quasi-bound states have frequencies whose real part is smaller than the boson mass

µ, Re(ω) < µ. Also, they behave as purely ingoing waves in the outer horizon’s

vicinity and decay exponentially at spatial infinity (as measured by a comoving

observer), i.e.

R|y→−∞ ∼ e−i(ω−mjΩH)y, R|y→+∞ ∼ y−1e−
√
µ2−ω2y, (24)

cIn Ref. 43, the authors first perform the separation of the Lorenz condition. This yields the
separated equations, but with an additional constant, which is the actual separation constant.

When separating the Proca equation, however, the new constant is fixed in terms of the boson

mass µv and the complex constant λv. That is why λv can be referred to as a separation constant.
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where the subscripts “s” and “v” were (and will hereafter be) omitted to avoid

clutter and y is the tortoise coordinate, defined by

y(r) = r +
r2
+

r+ − r−
log(r − r+)− r2

−
r+ − r−

log(r − r−) . (25)

These states can be labeled by four “quantum” numbers: n ∈ N0, the number

of nodes in the radial direction; `, the orbital angular momentum; j, the total

angular momentum; and mj , the projection of the total angular momentum along

the black hole’s axis of symmetry, which defines the number of nodes in the az-

imuthal direction. In general, only n and mj are legitimate “quantum” numbers in

the sense that they describe values of conserved quantities. Both orbital and total

angular momenta are not conserved in rotating spacetimes. However, it is still con-

venient to use ` and j to label scalar (j = `) and vector (j = `− 1, `, `+ 1) states,

always bearing in mind that they are only physically meaningful in Minkowski

spacetime.

When the (phase angular velocity of the) boson and the (horizon angular velocity

of the) black hole synchronize, the oscillatory behavior close to the outer horizon

vanishes and the resulting radial profiles become similar to those of the atomic

orbitals of the electron in a hydrogen atom. In the following, synchronized scalar

and vector states will be labeled with |n, j,mj〉 and |n, `, j,mj〉, respectively.

These synchronized states are only supported by Kerr–Newman black holes

in a particular domain of the 3-parameter space described by the dimensionless

quantities {Mµ, aµ,Qµ} or, equivalently,d {r+µ, aµ,Qµ} — the latter is the gauge

used in this paper. A simple direct-integration shooting method61 suffices to scan

the parameter space in search of synchronized (scalar and vector) states. To impose

the desired behavior close to the outer horizon, R is written as a series expansion

around r = r+,

R|r→r+ ∼
+∞∑

k=0

c(k)(r − r+)k, (26)

where c(0) = 1 and the coefficients {c(k)}k>0 are obtained by solving either Eq. (13)

or (18) order by order. The coefficients depend on the boson mass µ, the Killing

eigenvalues {ω,mj}, the black hole parameters {r+, a,Q} and the corresponding

separation constant. Fixing {`, j,mj} and the black hole parameters {r+µ,Qµ},
for instance, Eq. (13) or (18) is then integrated from r = r+(1 + δ+), with δ+ � 1,

to r = r∞, where r∞ stands for the numerical value of the radial coordinate at

spatial infinity.

Numerical solutions with the appropriate boundary conditions at spatial infinity

are found via the shooting method. They only exist for discrete values of the spe-

cific angular momentum a, each corresponding to a different node number n. In

other words, bound states between Kerr–Newman black holes and synchronized

dEquations (13) and (18) can be written in terms of the black hole parameters {r+, a,Q} using

∆(r+) = 0.
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states are thus restricted to closed surfaces in the 3-parameter space spanned by

{Mµ, aµ,Qµ}. Fixing Qµ, for instance, these surfaces reduce to line segments in

the 2-parameter space spanned by {Mµ, aµ} or, alternatively, {Mµ,ΩH/µ}. These

are commonly known as existence lines. This paper’s main goal is to determine

and compare the existence lines of synchronized scalar and vector states around

Kerr and Kerr–Newman black holes. The defining features of these lines will be

outlined, without loss of generality, for the Kerr spacetime (Qµ = 0). This is also

particularly convenient for the reader to compare the results presented herein with

those already reported in the literature.13,14,24,49 The subtleties introduced by a

nonvanishing electric charge will then be briefly addressed.

4.1. Kerr black holes

When the black hole’s gravitational radius, RG = M , is much smaller than the

boson’s reduced Compton wavelength, λC = µ−1, the frequency spectra of scalar

and vector quasi-bound states in Kerr spacetime can be written in the form46,62,63

ω
(s)
|n,j,mj〉 = µ

(
1− α2

2n2
− α4

8n4
+
g(n, j, j)

n3
α4 +

h(j, j)

n3

mja

M
α5 + · · ·

)
, (27)

ω
(v)
|n,`,j,mj〉 = µ

(
1− α2

2n2
− α4

8n4
+
g(n, `, j)

n3
α4 +

h(`, j)

n3

mja

M
α5 + · · ·

)
, (28)

where α = Mµ � 1 is the so-called gravitational fine-structure constant, n ≡
n+ `+ 1 (n ∈ N) may be referred to as principal quantum number and

g(n, `, j) = − 4(6`j + 3`+ 3j + 2)

(`+ j)(`+ j + 1)(`+ j + 2)
+

2

n+ `+ 1
,

h(`, j) =
16

(`+ j)(`+ j + 1)(`+ j + 2)
.

Note that ω
(v)
|n,j,j,mj〉 = ω

(s)
|n,j,mj〉, which suggests that the magnetic-type vector

states are somehow equivalent to the scalar states with the same total angular

momentum. However, it is worth pointing out that, as opposed to the frequencies of

the electric-type states, computed analytically via matched asymptotic expansions,

Eq. (28) with j = ` is nothing but a conjecture. Nevertheless, all approximations

are fairly accurate when α . 0.2, even for near-extremal Kerr black holes.63

The instability rates of the quasi-bound states are proportional to the factor

sign w, where w ≡ (ω−mjΩH), i.e. the states: grow exponentially with time when

sign w = −1, thus being unstable; decay exponentially with time when sign w =

+1, thus being stable; and are stationary (infinitely long-lived) when w = 0. The

unstable states are superradiant, while the stable states are nonsuperradiant. The

stationary states, which are synchronized with the black hole, exist precisely at the

threshold of superradiance. Their existence lines will be presented for fixed values

of Qµ in the (Mµ,ΩH/µ)-plane, in which the existence domain of Kerr(–Newman)

black holes is shaded light gray. Note that the contour lines for which

ω
(s)
|n,j,mj〉 = mjΩH, (29)
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ω
(v)
|n,`,j,mj〉 = mjΩH (30)

constitute an analytical approximation to the existence lines of scalar and vector

states, respectively. A comparison between analytical and numerical existence lines

of some vector states can be found in Ref. 49. Overall, the agreement is excellent,

except when j = mj and ` < j.

When Qµ = 0, the existence lines cover the entire range of the specific angular

momentum a, with the endings matching the Schwarzschild (a = 0) and extremal

(a = M) limits. The former (latter) coincides with the minimum (maximum) al-

lowed value for the gravitational fine-structure constant α = Mµ.

For a given mj , the fundamental state does not possess any node in the radial

direction and always has its total angular momentum completely aligned with the

black hole’s axis of symmetry (j = mj). |0,mj ,mj〉 thus represents fundamental

scalar states. The fundamental vector states are those which cumulatively have the

smallest possible orbital angular momentum, which corresponds to the electric-type

states |0,mj − 1,mj ,mj〉. The existence lines for the fundamental scalar and vector

states with mj = 1, 2, 3 are shown in Fig. 1, where the markers pinpoint extreme

(a = M) scalar states obtained by solving analytically Eq. (13) in terms of confluent

hypergeometric functions.21 These particular existence lines represent the threshold

between Kerr black holes which are stable against all states with a given mj and the

ones which are unstable against at least one such state. Fundamental vector states

0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Kerr black holes

Fig. 1. Existence lines of the first fundamental scalar and vector states with j = mj in the

(Mµ,ΩH/µ)-plane. The gray solid line refers to extremal (a = M) Kerr black holes. The markers
pinpoint extreme (a = M) scalar states found analytically.21 The vector states are less energetic

than the corresponding scalar states, as they correspond to lower values of ΩH.
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always lie to the left with respect to the scalar state with the same mj . The ΩH-

interval of the vector states are greater than that of the corresponding scalar cousins

— e.g. it is approximately 10 times greater for |0, 0, 1, 1〉 than for |0, 1, 1〉. Put it

differently, for a given boson mass µ, Kerr black holes with sufficiently small horizon

angular velocity may support vector, but not scalar states. These properties are a

natural manifestation of the difference in strength of the superradiant instability,

which is stronger for massive vector bosons.8

Excited states, on the other hand, must lie to the right with respect to the

corresponding fundamental states in the (Mµ,ΩH/µ)-plane. For example, fixing

{n, j,mj}, existence lines migrate towards greater and greater horizon angular

velocities as ` increases. This behavior is illustrated in Fig. 2. The impact of

the orbital angular momentum on the existence lines is particularly relevant for

near-extremal Kerr black holes. In the Schwarzschild limit, the lines converge to

(M,ΩH) = (0, µ), which amounts to saying that Schwarzschild black holes do not

admit synchronized (scalar nor vector) bound states.13 Figure 2 also shows the

energy ordering of vector states with fixed j: the electric-type states |n, j + 1, j,mj〉
are more energetic than the magnetic-type states |n, j, j,mj〉 and the latter more

energetic than the electric-type states |n, j − 1, j,mj〉. This hierarchy matches the

one found in the frequency spectrum of vector quasi-bound states.46

A similar rationale holds true when fixing {`, j,mj} and varying n, as shown in

Fig. 3 for the states |n, 1, 1〉 and |n, 0, 1, 1〉, n = 0, 1, 2. The node number n plays

a role somehow akin to that played by the orbital angular momentum `. Large-n

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Kerr black holes

Fig. 2. Existence lines of the scalar states |0, `, 1〉, ` = 1, 2, 3 and vector states |0, `, 1, 1〉, ` = 0, 1, 2
in the (Mµ,ΩH/µ)-plane. The gray solid line refers to extremal (a = M) Kerr black holes. The

` = 0 vector states are the least energetic, as they correspond to lower values of ΩH. The energy

increases with `.
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0.80 0.85 0.90 0.95 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Kerr black holes

Fig. 3. Existence lines of the scalar states |n, 1, 1〉 and vector states |n, 0, 1, 1〉, n = 0, 1, 2 in the

(Mµ,ΩH/µ)-plane. The gray solid line refers to extremal (a = M) Kerr black holes. The n = 0

states are the least energetic, as they correspond to lower values of ΩH. The energy increases with
n. The plot markers are states with r+µ = 0.5, whose radial profiles are shown in Fig. 4.

states require larger minimum horizon angular velocities for stationary equilibrium.

Vector states are still less energetic than their scalar cousins. The radial profile of

the states marked with bullets in Fig. 3 is depicted in Fig. 4. These states exist

for Kerr black holes with r+µ = 0.5 and have n + 1 extrema. However, while the

extrema of scalar states decrease towards spatial infinity, those of vector states

increase. Vector states thus have wider spatial distributions.

The numerical solutions found using the direct-integration shooting method

can be integrated from r = r+(1− δ+) to r = r−(1 + δ−), with δ− � 1. Since the

appropriate boundary conditions at both the outer horizon and spatial infinity are

already imposed, there is no freedom left to set the desired behavior at the inner

horizon. The latter rotates with an angular velocity different from ΩH and therefore

synchronization is not possible there. The radial profiles of the states |0, 1, 1〉 and

|0, 0, 1, 1〉 marked in Fig. 3 is shown in Fig. 5 in the black hole’s interior. They

exhibit oscillatory character close to r = r−. This suggests that Kerr black holes

with synchronized hair do not possess a smooth Cauchy horizon, but rather a

curvature singularity at r = r−.64

4.2. Kerr–Newman black holes

The state of affairs does not change much when looking at synchronized states

around Kerr–Newman black holes. The existence lines obtained when fixing the

additional parameter Qµ coincide with those found for Kerr black holes (Qµ = 0)

in the (Mµ,ΩH/µ)-plane. However, each point on the line now represents a black
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8

Fig. 4. Radial profiles of the states marked in Fig. 3 (bottom panel), characterized by µr+ = 0.5.

The radial functions are normalized so that R(r+) = 1.
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-0.5

0.0

0.5

1.0

1.5

2.0

-8 -6 -4 -2 0

-0.5

0.0

0.5

Fig. 5. Radial profiles of the states |0, 1, 1〉 (left panel) and |0, 0, 1, 1〉 (right panel) marked in

Fig. 3 inside the Kerr black hole, characterized by r+µ = 0.5. The radial functions are normalized

so that R(r+) = 1.

hole with nonvanishing specific electric charge Q/M . Moving towards greater

horizon angular velocities, the specific angular momentum a/M decreases, whereas

the specific electric charge Q/M increases. The black holes close to the line

Mµ = 0 may be described as slowly-rotating extremal (Q = M) Reissner–

Nordström black holes. Figure 6 shows where Kerr–Newman black holes with

a/M ∈ {0.50, 0.80, 0.90, 0.95, 0.99} lie on the existence line of the scalar state |0, 1, 1〉
for different values of Qµ. Similar trends are found for vector states.
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0.0
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0.2

0.3

0.4
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0.95 0.96 0.97 0.98 0.99 1.00 0.95 0.96 0.97 0.98 0.99 1.00 0.95 0.96 0.97 0.98 0.99 1.00

Fig. 6. Existence lines of the scalar states |0, 1, 1〉 in the (Mµ,ΩH/µ)-plane for Kerr–Newman

black holes with different normalized charges Qµ. The gray solid line refers to extremal (a = M)
Kerr black holes. The specific electric charge is presented for black holes with different specific

angular momenta.

5. Conclusion

This paper aimed at providing a comparative analysis of stationary scalar and vector

clouds around Kerr and Kerr–Newman black holes. The key physical property of

these bound states is a solidary rotation of the cloud with the black hole. These

configurations are akin to the atomic orbitals of an electron in a hydrogen atom and

can similarly be described in terms of {n, `, j,mj}. This set of quantum numbers

label the existence lines of synchronized states in the parameter space of Kerr–

Newman black holes and are continuously connected Kerr–Newman black holes

with synchronized hair, solutions of Einstein–Maxwell theory minimally coupled to

complex massive bosons.

In general, vector bound states have lower energies than their scalar cousins

and also occur for Kerr–Newman black holes in a wider domain of the normalized

horizon angular velocity. The fundamental states match in both cases the most

unstable quasi-bound state and are characterized by j = mj , n = 0 and the least

possible value for the orbital angular momentum `. The latter two have similar

impact on the cloud’s energy for fixed {j,mj}. Additionally, states with vanishing

orbital angular momentum (` = 0) are exclusive of vector bosons and are linked to

a nonvanishing intrinsic angular momentum.

The motivation behind a new glance at stationary clouds around Kerr–Newman

black holes follows from the recent separation of the Proca equation in the Kerr–

NUT–(A)dS family of spacetimes. It would be of interest to apply the newfound

ansatz to find synchronized states in other spacetimes and to construct stationary

clouds in the time domain.

2041013-14

In
t. 

J.
 M

od
. P

hy
s.

 D
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
E

X
E

T
E

R
 L

IB
R

A
R

Y
 o

n 
07

/1
6/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 11, 2020 9:27 IJMPD 2041013 page 15

Stationary scalar and vector clouds around Kerr–Newman black holes

Acknowledgments

The authors are especially grateful for the hospitality during their visit to Pará
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As the electron in the hydrogen atom, a bosonic field can bind itself to a black hole occupying a discrete 
infinite set of states. When (i) the spacetime is prone to superradiance and (ii) a confinement mechanism 
is present, some of such states are infinitely long–lived. These equilibrium configurations, known as 
stationary clouds, are states “synchronized” with a rotating black hole’s event horizon. For most, if not 
all, stationary clouds studied in the literature so far, the requirements (i)–(ii) are independent of each 
other. However, this is not always the case. This paper shows that massless neutral scalar fields can form 
stationary clouds around a Reissner–Nordström black hole when both are subject to a uniform magnetic 
field. The latter simultaneously enacts both requirements by creating an ergoregion (thereby opening up 
the possibility of superradiance) and trapping the scalar field in the black hole’s vicinity. This leads to 
some novel features, in particular, that only black holes with a subset of the possible charge to mass 
ratios can support stationary clouds.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Neutron stars and black holes in binary systems feed some 
of the most powerful astrophysical events in the Universe. Their 
gravitational–wave luminosity can reach a peak of approximately 
1057 erg s−1 [1,2], only comparable to the electromagnetic lumi-
nosity of the most luminous gamma–ray bursts [3]. The Advanced 
LIGO/Virgo’s first and second observation runs reported the detec-
tion of gravitational waves from ten different binary black hole 
mergers and a single binary neutron star merger. During the first 
half of the third observing run, a total of 39 gravitational–wave 
candidate events were observed, three of which may have origi-
nated from neutron star–black hole mergers [4]. Joint detections of 
gravitational and electromagnetic waves from neutron star–black 
hole coalescences are of particular interest for constraining the 
equation of state of dense nuclear matter [5] and measuring the 
Hubble constant [6]. Furthermore, some neutron stars, known as 
magnetars, are endowed with super–strong magnetic fields reach-
ing 1012–1015 G [7]. For instance, the magnetar SGR J1745–2900, 
which orbits the supermassive black hole Sagittarius A∗ , has a 
surface dipolar magnetic field of 1014 G. Neutron star–black hole 

* Corresponding author.
E-mail addresses: nunomoreirasantos@tecnico.ulisboa.pt (N.M. Santos), 

herdeiro@ua.pt (C.A.R. Herdeiro).

binary systems are thus natural laboratories for probing the intri-
cate interaction of black holes with magnetic fields.

A magnetic field B0 permeating a black hole with mass M
curves the spacetime in a non-negligible way beyond a threshold 
value set by M B ∼ 1 [8], or reinstating familiar units

B ≡ c4

G3/2M
∼ 1019

(
M�
M

)
G , (1)

where M� is the solar mass. A magnetic field of order B or larger 
warps significantly spacetime in the vicinity of the event hori-
zon (without changing its topology). Since the field strength of a 
magnetic dipole falls off as the cube of the distance from it, it is 
unlikely that stellar–mass black holes or even supermassive black 
holes are subject to magnetic fields of order B .

Even if its strength is significantly smaller than B , the impact 
of a magnetic dipole on fields interacting with black holes may 
be non–negligible, as they can acquire an effective mass and be 
trapped in its vicinity. A massless field traversing the black hole’s 
vicinity would then behave as if it had non–vanishing mass and 
its effective mass would depend on the magnetic field strength. In 
addition, if the field is bosonic, it can induce black–hole superra-
diance, i.e. the extraction of energy and angular momentum from 
rotating black holes (for a review, see [9]). Black–hole superradi-

https://doi.org/10.1016/j.physletb.2021.136142
0370-2693/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ance takes place when the phase angular velocity w of the bosonic 
field satisfies

w < m�H , (2)

where m is the azimuthal harmonic index and �H is the black 
hole’s angular velocity. Together with a natural confinement mech-
anism, black–hole superradiance is responsible for bosonic fields 
to form quasi–bound states. These are continuously fed the ex-
tracted black hole’s energy and angular momentum until Eq. (2)
saturates, i.e. w = m�H , and they become bound states. The new 
equilibrium state is expected to be a classical bosonic condensate 
in equilibrium with the slowed–down black hole, which for a com-
plex bosonic field is a hairy black hole [10–14].

The bosonic field remains trapped in the vicinity of the black 
hole when it is massive. A non–vanishing intrinsic mass, however, 
is not always mandatory. Trapping can be attained even when the 
field is massless. For instance, a massless bosonic field interacting 
with a black hole immersed in a magnetic field is likely to form 
bound states. The magnetic field creates a potential barrier, confin-
ing the field into the neighborhood of the black hole.

An example that naturally embodies this idea is the interac-
tion of a massless scalar field with a Reissner–Nordström black 
hole embedded in a uniform axial magnetic field.1 The latter is de-
scribed by the Reissner–Nordström–Melvin (RNM) solution [15,16], 
obtained via a solution–generating technique known as Harrison 
(or “magnetizing”) transformation. Interestingly, the RNM solution 
is a stationary (rather than a static) solution of the Einstein–
Maxwell theory. The rotation is sourced by the coupling between 
the black hole’s electric charge and the external magnetic field. 
Besides, the spacetime features an ergoregion and, as a result, 
is prone to black–hole superradiance even for electrically neutral 
bosonic fields. This contrasts with the case of asymptotically–flat 
Reissner–Nordström black holes wherein (charged) superradiance 
is possible but only for charged bosonic fields [17] and a superra-
diant instability does not follow from a mass term; it requires, for 
instance, enclosing the black hole with a reflecting mirror – see, 
e.g., [18–20].

The present paper focuses on bound states between a massless 
scalar field and a RNM black hole (cf. [21]). These real–frequency 
states are characterized by the threshold of superradiance w =
m�H , hereafter referred to as synchronisation condition, and were 
first reported in [22], in which the author named them stationary 
clouds. Much attention has been paid to such synchronized states 
since their discovery [14,23–42], yet most works rely on intrin-
sically massive fields. For the case under consideration here, the 
fields need not have a non-vanishing mass for stationary clouds 
to arise.2 A peculiar feature of this model is that the scalar field’s 
effective mass is proportional to the black hole’s angular velocity, 
the proportionality constant being a function of the specific elec-
tric charge Q /M alone, where M and Q are, respectively, the black 
hole’s mass and electric charge. Curiously enough, the condition for 
the existence of bound states is only met for values of Q /M in a 
subset of [−1, 1].

The paper is organized as follows. First, the Einstein–Maxwell 
theory minimally coupled to a complex, ungauged scalar field is 
introduced in section 2. Together with a constant scalar field, the 
RNM solution is a particular case of the theory. Its main features 
are outlined in section 2.1, followed by a linear analysis of scalar 
field perturbations in section 2.2. The main results on stationary 
clouds are presented in section 3. A summary of the work can be 
found in section 4.

1 Although this is not a realistic astrophysical scenario, it suffices to sketch the 
main argument of the paper.

2 The same is true for AdS asymptotics – see, e.g., [26].

Natural units (G = c = 1) are consistently used throughout the 
text. Additionally, the metric signature (−, +, +, +) is adopted.

2. Framework

The action for the Einstein–Maxwell theory minimally coupled 
to a complex,3 ungauged scalar field � is

S = 1

4π

∫
d4x

√−g

[
R

4
− F 2

4
− (∇μ�∗)(∇μ�)

]
, (3)

where F = dA is the electromagnetic tensor and A is electromag-
netic four–potential.

The corresponding equations of motion read

Gμν = 2
[

T (A)
μν + T (�)

μν

]
, �� = 0 , ∇μF μν = 0 , (4)

where � ≡ ∇μ∇μ is the d’Alembert operator and

T (A)
μν ≡ Fμ

σ Fνσ − 1

4
gμν Fσλ F σλ, (5)

T (�)
μν ≡ 2∂(μ�∗∂ν)� − gμν(∂λ�

∗)(∂λ�) (6)

are the stress–energy tensors of the electromagnetic and scalar 
fields, respectively. The action has a global U (1) invariance with 
respect to the scalar field thanks to its complex character.

This field theory admits all of the stationary solutions of gen-
eral relativity. These are characterized by � = �0, for some con-
stant �0. Linearizing the equations of motion around � = �0, one 
obtains the ordinary Einstein–Maxwell equations together with the 
Klein–Gordon equation for the scalar field perturbation δ� ≡ (� −
�0). This system describes the linear or zero–backreaction limit of 
the theory: the limit in which the backreaction of both the gravita-
tional and electromagnetic fields to a non–constant scalar field is 
negligible. This first–order approximation suffices to capture po-
tentially relevant astrophysical phenomena such as superradiant 
scattering. The framework allows one to solve the Klein–Gordon 
equation �(δ�) = 0 for a known solution {g, A} of the Einstein–
Maxwell equations.

2.1. Reissner–Nordström–Melvin black holes

This paper will focus on scalar field perturbations of RNM black 
holes. These solutions belong to a family of electrovacuum type 
D solutions of the Einstein–Maxwell equations which asymptoti-
cally resemble the magnetic Melvin universe. The latter describes 
a non–singular, static, cylindrically symmetric spacetime represent-
ing a bundle of magnetic flux lines in gravitational–magnetostatic 
equilibrium. It can be loosely interpreted as Minkowski spacetime 
immersed in a uniform magnetic field; but it should be kept in 
mind that such magnetic field, no matter how small, changes the 
global structure of the spacetime, in particular its asymptotics.

Given an asymptotically–flat, stationary, axi–symmetric solution 
of Einstein–Maxwell equations, it is possible to embed it in a 
uniform magnetic field via a solution–generating technique called 
Harrison transformation (also commonly known as “magnetizing” 
transformation). This possibility, first realized by Harrison [44], 
was explored for the Schwarzschild and Reissner-Nordström solu-
tions [15] and for the Kerr and Kerr–Newman solutions [45].

The RNM solution, which describes a Reissner–Nordström black 
hole permeated by a uniform magnetic field, reads [16]

3 Stationary clouds are not exclusive to complex scalar fields. A single real scalar 
field can equally form infinitely long–lived states at linear level – see [43].
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g = |
|2
(

−�

r2
dt2 + r2

�
dr2 + r2dθ2

)

+ r2 sin2 ϑ

|
|2 (dϕ − �dt)2 ,

A = �0dt + �3(dϕ − �dt) (7)

where t ∈ (−∞, +∞), r ∈ (0, +∞), ϑ ∈ [0, π ], ϕ ∈ [0, 2π) and

� = r2 − 2Mr + Q 2 ,


 = 1 + 1

4
B2

0(r
2 sin2 ϑ + Q 2

0 cos2 ϑ) − i Q B0 cosϑ ,

� = −2Q B0

r
+ Q B3

0r

2

(
1 + �

r2
cos2 ϑ

)
,

�0 = − Q

r
+ 3

4
Q B2

0r

(
1 + �

r2
cos2 ϑ

)
,

�3 = 2

B0
− 1

|
|2
[

2

B0
+ B0

2

(
r2 sin2 ϑ + 3Q 2 cos2 ϑ

)]
.

B0 is the strength of the magnetic field, which is assumed to be 
much weaker than the threshold value (1), i.e. M B0 
 M B = 1.

When applied to the Reissner–Nordström solution, the Harri-
son transformation produces a stationary (rather than a static) 
solution. The dragging potential � is directly proportional to the 
coupling Q B0, which suggests that the interaction between the 
charge Q and the magnetic field B0 serves as a source for rota-
tion.

The solution possesses two (commuting) Killing vectors, ξ = ∂t

and η = ∂ϕ , associated to stationarity and axi–symmetry, respec-
tively. The line element has coordinate singularities at � = 0 when 
Q 2 ≤ M2, which solves for r± = M ±

√
M2 − Q 2. The hypersurface 

r = r+ (r = r−) is the outer (inner) horizon. Besides, there is an 
ergo–region that extends to infinity along the axial direction, but 
not in the radial direction. Here, ergo–region means the regions 
outside the outer horizon wherein ξ is spacelike.

The dragging potential � is constant (i.e. ϑ–independent) on 
r = r+ , where it has the value

�H ≡ −2Q B0

r+

(
1 − r2+B2

0

4

)
. (8)

�H is the angular velocity of the outer horizon. The Killing vector 
χ = ξ + �Hη becomes null on the hypersurface r = r+ and it is 
timelike outside it.

2.2. Scalar field perturbations

In general, the Klein–Gordon equation �(δ�) = 0 does not ad-
mit a multiplicative separation of variables of the form

δ�(t, r) = e−iwt R(r)S(ϑ)e+imϕ , (9)

where w is the phase angular velocity, R and S are respectively 
the radial and angular functions and m ∈ Z is the azimuthal har-
monic index. However, in the limit of sufficiently “weak” mag-
netic fields, i.e. neglecting terms of order4 higher than O(B2

0), the 
ansatz (9) actually reduces the problem to two differential equa-
tions in the coordinates r and ϑ . The radial and angular equations 
read [21]

4 For a straightforward identification of the order of each term, it is convenient 
to introduce the dimensionless quantities {t B0, rB0, M B0, Q B0, w/B0} so that all 
physical quantities are measured in units of the magnetic field strength. Note that 
the first four quantities are of order O(B0), whereas the last is of order O(B−1

0 ).

d

dr

(
�

dR

dr

)
+

[
K 2

�
− (m2 B2

0r2 + λ)

]
R = 0 , (10)

1

sin ϑ

d

dϑ

(
sinϑ

dS

dϑ

)

+
(

λ − m2

sin2 ϑ
− 3m2 Q 2 B2

0 cot2 ϑ

)
S = 0 , (11)

respectively, where K = r2 w + 2mQ B0r and λ is the separation 
constant. Equations (10)–(11) are both confluent Heun equations: 
the former (latter) has singular points at r = r± (ϑ = 0, π ). They 
are coupled via the Killing eigenvalues {w, m}, B0, Q and the sepa-
ration constant λ and remain invariant under the discrete transfor-
mation {w, mQ B0} → {−w, −mQ B0}. This guarantees that, with-
out loss of generality, one can take sgn(w) = sgn(B0) = +1. When 
mQ B0 = 0, the angular equation reduces to the general Legen-
dre equation, whose canonical solutions are the associated Legen-
dre polynomials of degree � and order m, Pm

� (ϑ), provided that 
λ = �(� + 1). Thus, if |mQ B0| 
 1, the angular dependence of δ�
is approximately described by the scalar spherical harmonics of 
degree � and order m, Y m

� (ϑ, ϕ) = Pm
� (ϑ)e+imϕ .

Equation (10) can be cast in Schrödinger–like form, yielding

−d2ρ

dy2
+ V eff(y)ρ = w2ρ , (12)

where ρ ≡ rR and y is the tortoise coordinate, defined by

y(r) = r + r2+
r+ − r−

log(r − r+) − r2−
r+ − r−

log(r − r−) ,

which maps the interval r ∈ [r+, ∞) into r∗ ∈ (−∞, +∞). The ef-
fective potential V eff, whose expression is omitted here, has the 
following limiting behavior:

lim
y→−∞ V eff(y) = w2 − (w − m�H)2 , (13)

lim
y→+∞ V eff(y) = m2 B2 . (14)

The last limit suggests that a non–vanishing external mag-
netic field makes the scalar field acquire an effective mass μeff =√

m2 B2
0. It is important to remark, however, that the problem at 

hand is not equivalent to that of a massive scalar field perturba-
tion on an asymptotically–flat stationary spacetime, wherein the 
mass dominates the asymptotic behavior of the field. Besides pro-
viding the field an effective mass, the magnetic field also changes 
the asymptotic behavior at infinity (to be that of the Melvin mag-
netic universe), which has similarities with AdS asymptotics in the 
sense that it is naturally confining.

Fig. 1 shows the effective potential as a function of the radial 
coordinate r for different (negative) specific electric charges. In an 
asymptotically–Melvin spacetime, the magnetic field acts like a po-
tential barrier at rB0 ∼ 1, whose maximum, about ten times larger 
than O(B2

0), approaches the outer horizon with decreasing Q /M
(i.e. tending to extremality). Moreover, there is a potential well 
for all positive specific electric charges (not plotted in Fig. 1) as 
well as for negative ones above a certain threshold (away from 
extremality). The effective potential resembles a mirror placed at 
rB0 ∼ 1 and confines (low–frequency) scalar field perturbations 
in the black hole’s vicinity [46,47]. It is then natural to impose a 
Robin (or mixed) boundary condition at r = r0 as the outer bound-
ary condition,

tan(ζ ) = − R(r0)

R ′(r0)
, (15)

3
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Fig. 1. Effective potential for scalar field perturbations with � = m = 1 and w =
0.5B0 of RNM black holes with M B0 = 0.1. (Inset) Zoom near rB0 ∼ 1 to display 
the maximum of the effective potential.

where r0 is of order O(B−1
0 ), ζ ∈ [0, π), with ζ = 0 (ζ = π/2) 

corresponding to a Dirichlet (Neumann) boundary condition, and 
the prime denoting differentiation with respect to r.

In realistic astrophysical scenarios, magnetic fields occur in ac-
cretion disks around black holes. The “magnetic” potential barrier 
is then at a radial distance smaller than about the mean radius D
of the disk, i.e. r0 � D . Since the matter in the accretion disk is ex-
pected to be close to the innermost stable circular orbit, D ∼ 3M
and it follows that M B0 � 0.1, which clashes with the assump-
tion M B0 
 1 (for a more complete discussion, see [47]). Despite 
this caveat, the main argument of the paper holds at least from a 
purely theoretical perspective.

Furthermore, physically meaningful solutions to the radial equa-
tion satisfy the inner boundary condition

R|y→−∞ ∼ e−i(ω−m�H)y , (16)

i.e. they behave as waves falling into (emanating from) the black 
hole when w > m�H (0 < w < m�H).

3. Stationary scalar clouds

When the scalar field’s phase angular velocity is a natural mul-
tiple of the black hole’s angular velocity, i.e.

w = m�H = −2mQ B0

r+
+ O(B3

0) , (17)

bound states, known as stationary clouds, are found. Equation (17)
is called synchronisation condition and does depend on the scalar 
field’s effective mass, μeff =

√
m2 B2

0. The ratio |w/μeff| = 2|Q |/r+
is independent of B0 and its absolute value is smaller than or 
equal to 2. Since it was assumed that sgn(w) = sgn(B0) = +1, 
the synchronisation condition dictates that the bound states sat-
isfy sgn(mQ ) = −1.

The synchronisation occurs in one–dimensional subsets of the 
two–dimensional parameter space of Reissner–Nordstöm–Melvin 
black holes, described by {M, Q }. These subsets – known as ex-
istence lines – are disjoint and can be labeled with a set of three 
“quantum” numbers: the number of nodes in the radial direction5

5 The number of nodes in the radial direction does not include the node at r = r0

when ζ = 0 (Dirichlet boundary condition).

n, the orbital/total angular momentum � and the azimuthal har-
monic index m. These states will be labeled with |n, �, m〉.

In the following, stationary scalar clouds around RNM black 
holes are obtained both (semi–)analytically and numerically. The 
existence lines will be plotted in the (M, Q )–plane normalized to 
the magnetic field strength B0.

3.1. Analytical approach

The eigenvalue problem at hand can be solved using the 
matched asymptotic expansion method (see, e.g., [48]), i.e. con-
structing approximations to the solutions of (10) that separately 
satisfy the inner and outer boundary conditions. The interval 
r ∈ [r+, r0] is thus split into two: (i) the inner region, r − r+ 
 λc , 
where λc = μ−1

eff ≤ r+/(m|Q |B0) is the scalar field’s Compton 
wavelength; inspection shows that λc � M; and (ii) the outer 
region, r − r+ � M . The inner and outer expansions are then 
matched in the overlap region, where both conditions can hold 
simultaneously, defined by M 
 r − r+ 
 λc .

3.1.1. Outer region
The outer region is well–defined only if the outer boundary is 

sufficiently far from the black hole, i.e. as long as r0 � M . Given 
that Q 2 ≤ M2, one can take � ∼ r2. Besides, if r2 � |2mQ B0/w|, 
then K ∼ wr2. When the synchronization condition (17) holds, the 
latter approximation is equivalent to r � r+ , which is consistent 
with r − r+ � M .

The radial equation (10) then reduces to that of a massless 
scalar field perturbation with phase angular velocity defined by 
� 2 ≡ w2 − μ2

eff = m2 B2
0(4Q 2/r2+ − 1) and angular momentum �

in Minkowski spacetime,6

d2

dr2
(rR+) +

[
� 2 − �(� + 1)

r2

]
(rR+) = 0 , (18)

where R+(r) ≡ limr→r0 R(r). The general solution is

R+(r) = α+ j�(� r) + β+ y�(� r) , (19)

where j� and y� are the spherical Bessel functions of the first and 
second kinds, respectively, and α+, β+ ∈C. For sufficiently large r, 
the spherical Bessel functions are a linear combination of ingo-
ing and outgoing waves if � is real, i.e. if w2 > μ2

eff. The Robin 
boundary condition (15) fixes the quotient

γ ≡ β+
α+

=
[
− j�(� r) + tan(ζ ) j′�(� r)

y�(� r) + tan(ζ )y′
�(� r)

]∣∣∣∣
r=r0

. (20)

The small–r behavior of the asymptotic solution (19) is

R+(r) ∼ α+
(� r)�

(2� + 1)!! − β+
(2� − 1)!!
(� r)�+1 . (21)

3.1.2. Inner region
Near the outer horizon, the radial equation (10) reduces to

d

dr

(
�

dR−
dr

)
− �(� + 1)R− = 0 , (22)

where R−(r) ≡ limr→r+ R(r). Introducing the radial coordinate z ≡
(r−r+)/(r−r−) and defining R−(z) = (1 −z)�+1 F (z), one can bring 
the radial equation (22) into the form

z(1 − z)
d2 F

dz2
+ [c − (a + b + 1)z]

dF

dz
− abF = 0 , (23)

6 Alternatively, one could say that Eq. (18) describes a scalar field with mass √
m2 B2, phase angular velocity m�H and angular momentum �.
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with a = b ≡ � + 1 and c ≡ 1. Equation (23) is a Gaussian hy-
pergeometric equation, which has three regular singular points: 
z = 0, 1, ∞. The most general solution is [11,49]

F (z) =α− F (a,a;1; z)

+ β−

⎡
⎣F (a,a;1; z) log z + 2

+∞∑
j=1

f( j)z j

⎤
⎦ , (24)

where

f( j) =
[

(a) j

j!
]2

[ψ(a + j) − ψ(a) − ψ( j + 1) + ψ(1)]

and (a) j = �(a + j)/�(a) and ψ is the digamma function. The sec-
ond term in Eq. (24) diverges logarithmically as z → 0 (r → r+). 
As the inner boundary condition must be regular, the constant β−
must vanish. In terms of the radial function R− , the solution thus 
reads

R−(z) = α−
(2� + 1)!

(�!)2

[
(−1)2�+1 R(D)(z) + R(N)(z)

(� + 1)2

]
,

where

R(D)
− (z) = (1 − z)�+1 F (� + 1, � + 1;2� + 2;1 − z) ,

R(N)
− (z) = (1 − z)−� F (−�,−�;−2�;1 − z) .

When r � M , z ∼ 1 and (1 − z) ∼ (r+ − r−)/r, meaning that

R(D)
− (z) ∼ (r+ − r−)�+1r−�−1 ,

R(N)
− (z) ∼ (r+ − r−)−�r� .

3.1.3. Matching
It is clear that the larger–r behavior of the asymptotic solu-

tion R− exhibits the same dependence on r as the small–r behav-
ior of the asymptotic solution R+ . Matching the two solutions, one 
gets

γ = (� + 1)2

(2� + 1)!!(2� − 1)!! [�(r+ − r−)]2�+1 . (25)

Using Eq. (20), one finally obtains

tan(ζ ) = − j�(� r0) + γ y�(� r0)

j′�(� r0) + γ y′
�(� r0)

, (26)

which establishes the existence condition for stationary scalar 
clouds around (non–extremal) RNM black holes. These exist as 
long as the field perturbation has a radial oscillatory character and 
therefore can satisfy a Robin boundary condition at r0 B0 ∼ 1. This 
requirement is met provided that � is real, i.e. if

w2 > μ2
eff ⇔ 4Q 2

r2+
> 1 =⇒ Q 2

M2
>

16

25
, (27)

or |Q /M| ∈ (0.8, 1.0), where sgn(Q ) = ±1 for sgn(m) = ∓1 so 
that sgn(w) = +1. Note that this restriction on the specific electric 
charge is a by–product of the proportionality between w = m�H
and μeff.

3.2. Numerical approach

Stationary clouds can also be found by solving numerically the 
coupled equations (10)–(11). For that purpose, it is convenient to 
replace the mass M by the outer horizon radius r+ and work with 
the dimensionless quantities {r+ B0, Q B0, �H/B0}. To impose the 

correct inner boundary condition the radial function may be writ-
ten as a series expansion around r = r+ [50],

R|r→r+ ∼
+∞∑
j=0

a( j)(r − r+) j . (28)

The coefficients {a( j)} j>0 are obtained by plugging (28) into (10), 
writing the resulting equation in powers of (r − r+) and setting 
the coefficient of each power separately equal to zero. The result-
ing system of equations must then be solved for {a( j)} j>0 in terms 
of a(0) . The latter is set to 1 without loss of generality. The coef-
ficients {a( j)} j>0 depend on the black hole’s parameters {r+, Q }, 
the Killing eigenvalue m and the separation constant λ. Instead 
of solving the angular equation (11), one approximates the latter 
by �(� +1), which is accurate enough if mQ B0 
 1. Since Q 2 ≤ M2

and M B0 
 M B = 1, the approximation is valid for moderate val-
ues of m.

The parameters {r+, �, m} are assigned fixed values. By virtue 
of the regular singular point at r = r+ , Eq. (10) must be integrated 
from r = r+(1 + δ), with δ 
 1, to r = r0, where r0 is the outer 
boundary radial coordinate. A simple shooting method finds the 
Q –values for which the numerical solutions satisfy a Robin bound-
ary condition at r = r0.

3.3. Existence lines

Fig. 2 displays the (numerical) existence lines for stationary 
clouds |0, 1, 1〉 with r0 B0 ∈ {4, 6, 8, 10} and ζ ∈ {0, π2 , π4 }. The 
shaded bands represent the allowed regions of the parameter 
space for the existence of bound states. The upper boundary, de-
fined by Q 2 = M2, corresponds to the extremal line. The RNM black 
holes in the lower boundary satisfy Q 2 = 0.64M2, in accordance 
with the conclusion at the end of section 3.1.3.

The panels below the main plots show the absolute difference 
σ between each existence line and that corresponding to r0 B0 = 4
and the absolute difference ε between the numerical and analyt-
ical existence lines. As expected, given that the analytical condi-
tion (26) is valid when M B0 
 1, ε → 0 as M B0 → 0.

All existence lines lie within the shaded bands. Also, they con-
verge to (M, Q ) = (0, 0), i.e. σ → 0 as M B0 → 0, which is in 
agreement with the expectation that scalar field perturbations can-
not attain stationary equilibrium with respect to asymptotically–
Melvin black holes. Fixing M B0, as the region of influence of the 
magnetic field decreases, i.e. as r0 B0 decreases, the Coulomb en-
ergy of the black hole supporting the stationary cloud increases. 
Vaster clouds thus require lower angular velocities so that they do 
not collapse into the black hole. Also, there is an overall decrease 
in the Coloumb energy as ζ varies continuously from 0 (Dirichlet 
boundary condition) to π

2 (Neumann boundary condition).
The existence lines for the states |0, �, m〉 with � = m = 1, . . . , 4, 

r0 B0 = 4 and ζ = 0 are plotted in Fig. 3. These approach the ex-
tremal line as � = m decreases, a trend already noticed in previous 
works (see, e.g., [25]).

The impact of the orbital angular momentum � is enlightened
in Fig. 4, in which the existence lines for the states |0, �, 1〉 with 
� = 1, . . . , 4, r0 B0 = 6 and ζ = 0 are shown. As � increases, so does 
|Q /M|, which suggests that stationary clouds |0, �, 1〉 with � > 1
are more energetic than |0, 1, 1〉.

4. Conclusion

The RNM black hole stands out as a toy model for a rotating 
black hole immersed in an external axial magnetic field. In fact, 
it is the simplest stationary (but not static) solution of Einstein–
Maxwell equations asymptotically resembling the magnetic Melvin 
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Fig. 2. Stationary scalar clouds |n, �, m〉 = |0, 1, 1〉 around Reissner–Nordström black 
holes embedded in a uniform axial magnetic field of strength B0, for different Robin 
boundary conditions, parametrized by ζ , at the outer boundary r0.

universe. Frequently overlooked due to its astrophysical irrele-
vance, it is still worth studying as it may offer some insights into 
the interaction of black holes with magnetic fields.

The present paper aimed precisely to explore the interplay be-
tween bosonic fields and black holes when permeated by a uni-

Fig. 3. Stationary scalar clouds |n, �, m〉 = |0, �, �〉 around Reissner–Nordström black 
holes embedded in a uniform axial magnetic field of strength B0 and satisfying a 
Dirichlet boundary condition (ζ = 0) at r0 B0 = 4.

Fig. 4. Stationary scalar clouds |n, �, m〉 = |0, �, 1〉, with � = 1, . . . , 4, around 
Reissner–Nordström black holes embedded in a uniform axial magnetic field of 
strength B0 and satisfying a Dirichlet boundary condition (ζ = 0) at r0 B0 = 6.

form magnetic field. It was shown in particular that RNM black 
holes support synchronized scalar field configurations known as 
stationary clouds. They are somehow akin to atomic orbitals of the 
hydrogen atom in quantum mechanics in that they are both de-
scribed by quantum number. In effect, stationary clouds are char-
acterized by the number of nodes in the radial direction, n, the 
orbital angular momentum, �, and the azimuthal harmonic index, 
m, which labels the projection of the orbital angular momentum 
along the direction of the magnetic field.

It is now well known that stationary equilibrium is possible 
whenever a bosonic field at the threshold of superradiant insta-
bilities (i.e. obeying the so–called syncrhonization condition) is 
confined in the black hole’s vicinity. The confinement mechanism 
(either natural or artificial) creates a potential barrier which may 
prevent the field from escaping to infinity. As a result, infinitely 
long–lived configurations arise. For example, a massive bosonic 
field can form such stationary clouds around Kerr black holes – 
with the field’s mass providing a natural confinement mechanism. 

6
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So does a massless charged scalar field in a cavity enclosing a 
Reissner–Nordström black hole – with the boundary of the cav-
ity, a reflective mirror, sourcing an artificial confinement mecha-
nism [18]. The properties of both equilibrium configurations are 
similar despite minor qualitative differences.

Additionally worth mentioning is the fact that, in two previous 
examples, the occurrence of superradiance does not rely on the 
existence of a confining environment; one could say that the two 
ingredients are added separately. However, in the setup under con-
sideration, the magnetic field of the RNM black hole is responsible 
not only for developing an ergoregion and hence trigger superradi-
ant phenomena but also for making low–frequency fields acquire 
an effective mass and thus be trapped, allowing the formation of 
stationary clouds. In view of this, it does not come as a surprise 
that both the black hole’s angular velocity �H and the field’s ef-
fective mass μeff – synonyms for superradiance and confinement, 
respectively – depend on B0.

Lastly, a by–product of considering the RNM black hole was the 
realization that the quotient m�H/μeff is a function of the black 
hole’s specific electric charge Q /M only. Consequently, the con-
dition for the existence of bound states constrains the values of 
Q /M for which stationary clouds can exist.
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The possibility of mining the rotational energy from black holes has far–reaching implications. Such 
energy extraction could occur even for isolated black holes, if hypothetical ultralight bosonic particles 
exist in Nature, leading to a new equilibrium state – a black hole with synchronised bosonic hair – whose 
lifetime could exceed the age of the Universe. A natural question is then: for an isolated black hole and 
at maximal efficiency, how large is the energy fraction ε that can be extracted from a Kerr black hole 
by the superradiant growth of the dominant mode? In other words, how hairy can the resulting black 
hole become? A thermodynamical bound for the total superradiance efficiency, ε � 0.29 (as a fraction 
of the initial black hole mass), has long been known, from the area law. However, numerical simulations 
exhibiting the growth of the dominant mode only reached about one third of this value. We show that if 
the development of superradiant instabilities is approximately conservative (as suggest by the numerical 
evolutions), this efficiency is limited to ε � 0.10, regardless of the spin of the bosonic field. This is in 
agreement with the maximum energy extraction obtained in numerical simulations for a vector field and 
predicts the result of similar simulations with a scalar field, yet to be performed.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The recent successes of radio [1] and gravitational–wave astron-
omy [2–4] have put general relativity (GR) to the test as never 
before. A key issue is the observational confirmation of the Kerr 
hypothesis: that all astrophysical black holes (BHs), regardless of 
their scale, are well described by Kerr’s solution to the vacuum 
Einstein’s field equations [5]. From a theoretical standpoint, this 
paradigm relies on: (i) the uniqueness theorems of vacuum GR 
[6–8], which establish that its most general solution, regular on 
and outside the event horizon, is the Kerr metric, solely defined 
by its global charges, mass M and angular momentum J ; (ii) a 
number of no–hair theorems (e.g. [9,10]) ruling out the existence of 
non–Kerr BHs in the presence of certain types of matter–energy, 
which otherwise could endow BHs with “hair”. Consequently, these 
theorems support the no–hair conjecture [11], according to which 
the gravitational collapse of any type of matter–energy in GR al-
ways yields a Kerr BH.

At the time of writing there is no clear tension between the 
Kerr hypothesis and observations. Yet, fundamental open issues 

* Corresponding author.
E-mail address: nunomoreirasantos@tecnico.ulisboa.pt (N.M. Santos).

such as dark matter, dark energy and the inevitability of singular-
ities in GR [12,13] strongly suggest going beyond GR and/or the 
standard model of particle physics. In this context, dynamically 
robust non–Kerr models are particularly welcome as exploratory 
scenarios of deviations from the Kerr hypothesis. Clearly, a forma-
tion scenario and sufficient stability are mandatory to make any 
alternative BH (or exotic compact object) model physically plausi-
ble and a potential actor on the astrophysical stage.

In this discussion, the phenomenon of superradiance [14] orig-
inates a novel possibility. Bosonic fields with a mass in an ap-
propriate range can efficiently transfer the rotational energy of a 
Kerr BH into a cloud of bosonic particles, spinning down the BH – 
see e.g. [15]. When the BH spins down enough to meet the phase 
angular velocity of the dominant superradiant mode, the process 
stalls. The detailed phenomenology depends on the type of bosonic 
field. Real fields have a rich phenomenology related to the de-
cay of the bosonic cloud via gravitational waves emission – see 
e.g. [15–17]. If the (scalar or vector) field is complex, on the other 
hand, the cloud is stationary after the synchronisation between the 
BH’s and the field’s angular velocities occurs, and a new stationary 
equilibrium state forms. This has been seen in the numerical evo-
lutions of East and Pretorius, focusing on the case of vector bosonic 
fields [18]. The new equilibrium states were shown to match BHs 

https://doi.org/10.1016/j.physletb.2021.136835
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with synchronised Proca hair [19], first reported in [20] following 
the construction of BH solutions with synchronised scalar hair [21].

The BHs with synchronised hair (BHsSH) formed from the su-
perradiant instability of Kerr are, themselves, prone to superradiant 
instabilities [22]. These, however, can be very long–lived; in partic-
ular, for supermassive BHs the lifetime of the superradiant instabil-
ity of the newly formed hairy BH can take a timescale larger than 
a Hubble time to develop [23]. In other words, superradiance can 
form a hairy BH on an astrophysical timescale, and the latter can be sta-
ble for a cosmological timescale. This makes these hairy BHs resulting 
from the growth of the dominant superradiant mode of Kerr plau-
sible players in astrophysical processes.

The superradiance scenario offers a formation mechanism for 
BHsSH with an interesting twist. Superradiance is quite sensitive 
to a matching of scales. The instability is strongest if the Comp-
ton wavelength of the bosonic particle, 1/μ, and the BH radius, 
∼ M , approximately match: Mμ ∼ 1. Away from this sweet spot, 
the timescale of the instability grows with the exponential of 
Mμ for Mμ � 1 [24] and as a large inverse power of Mμ for 
Mμ � 1 [25]. Thus, BHs only become efficiently hairy (on an astro-
physical timescale) in an island of the parameter space, determined 
by the mass of the bosonic particle μ. Sufficiently far from the 
resonance Mμ ∼ 1, Kerr BHs are effectively stable against super-
radiance. Thus, in this scenario, Kerr and hairy BHs may co–exist 
in the Universe, with the latter belonging to an island in a narrow 
mass range around μ (and non–zero spin) and Kerr BHs compos-
ing the surrounding ocean of the BH mass spectrum.

For astrophysical BHs, known to exist within the mass range 
M ∈ [1, 1010]M� , the resonance Mμ ∼ 1 means that the bosonic 
particle is ultralight, with the mass range μ ∼ [10−10, 10−20] eV. 
This connects to the particular class of dark matter models known 
as fuzzy dark matter [26,27], which could have a stringy ori-
gin [28], or otherwise be embedded in simpler extensions of the 
standard model – see e.g. [29].

The foregoing discussion yields the exciting possibility that BHs 
(and in this case the hairiness of BHs) can become particle detec-
tors of extremely light – and potentially inaccessible to colliders 
– dark matter particles, via astrophysical measurements. To as-
sess this possibility, however, it is important to understand how 
much energy can be extracted from a Kerr BH from the growth of 
the dominant superradiant mode. Or, in the context of the com-
plex bosons that endow BHs with hair, this translates into how 
hairy a BH can become, which naturally defines how non–Kerr its 
phenomenology may be. In his pioneering paper on the area law, 
Hawking noticed that no more than 29% of the initial BH mass 
could be extracted via superradiance [30]. Yet, the simulations by 
East and Pretorius, which followed the growth of the dominant su-
perradiant mode, only reached about 9%. Was this because of the 
choice of parameters? Could the value be much closer to 29%? Is 
there a difference between scalar and vector superradiance con-
cerning this maximal efficiency?

In this letter, we shall provide a simple argument that for both 
the scalar and vector case there is a roughly similar bound of 
around 10% for the maximal energy extraction due to the dom-
inant superradiant mode from a Kerr BH; thus the efficiency is 
ε � 0.1,1 regardless the spin of the bosonic field. This bound is 
based on: (i) a scanning of the BHs solutions with synchronised 
scalar and Proca hair that can result from the growth of the dom-
inant superradiant mode; (ii) the rationale that this superradiant 
evolution is approximately conservative, which is supported by the 
evolutions in [18]. Under this assumption, superradiance merely 
redistributes the mass and angular momentum of a Kerr BH, split-

1 ε is the fraction of the initial mass that is extracted in the process.

ting it amongst the trapped region and the bosonic hair. Since Kerr 
BHs have a dimensionless spin j that obeys j � 1 (Kerr bound), the 
corresponding hairy BH that forms after the superradiant growth 
from Kerr must also obey this bound. We observe that generic 
hairy BHs do not obey j � 1 [21]. Scanning the parameter space, we 
can identify the hairiest solutions, under the constraint 0 � j � 1. 
These occur precisely for hairy BHs with j = 1 and at a certain 
Mμ, which (slightly) depends on the spin of the field. Identifying 
the fraction of energy in the bosonic field in these solutions with 
the maximal efficiency, we obtain:

Scalar : εmax ∼ 0.099 (at Mμ ≈ 0.24) ;
Vector : εmax ∼ 0.104 (at Mμ ≈ 0.27) .

(1)

In particular we observe that, for the vector case, the maximal en-
ergy extraction reported in [18], of ∼ 9%, occurred for Mμ = 0.25, 
which shows an interesting agreement with (1). Equation (1) is the 
main result in this letter. It predicts that numerical evolutions (yet 
to be performed) similar to those in [18] for the scalar case will 
lead to a similar result for the maximal efficiency, smaller than 
10%. In the remaining of this paper we shall detail how the re-
sult (1) is obtained.

2. Black holes with synchronised hair

BHsSH are families of four–dimensional, asymptotically–flat, 
stationary solutions of Einstein’s gravity minimally coupled to a 
complex bosonic field ψ with non–vanishing mass μ. The bosonic 
field can be a scalar (first discussed in [21]) or a vector (first dis-
cussed in [20]). Such spacetimes are regular on and outside an 
event horizon. The simplest solutions arise for free bosonic fields, 
but generalizations with interacting fields and/or non–minimal 
couplings are possible and have been studied, e.g. [31]. Besides 
the field’s mass, which defines a scale and is set in the action, 
the space of solutions is conveniently characterised as a two–
dimensional domain, spanned by two continuous dimensionless 
parameters: the ADM mass in units of the field’s mass,2 Mμ, and 
the oscillation frequency of the matter field in units of the field’s 
mass, ω/μ. For each value of (ω/μ, Mμ) there is a single BH so-
lution in a certain two–dimensional domain – see Fig. 1. The range 
of physical masses M (say in solar masses) becomes defined after 
specifying the scale μ.

Actually, the continuous family of solutions just described is 
only one amongst an infinite discrete set of such continuous fami-
lies of hairy BHs. This discrete set is labelled by two integers: the 
number of nodes of the appropriate radial functions, n ∈ N0, and 
the azimuthal harmonic index, m ∈ Z+ , which, like ω, enters the 
bosonic field ansatz, ψ ∼ e−iωt+imϕ . Both n and m can be seen as 
excitation numbers. Here we shall focus on the fundamental solu-
tions with (n, m) = (0, 1), which are the ones that naturally emerge 
as the equilibrium configurations from the growth of the dominant 
superradiant mode in Kerr [19], but some of the excited solutions 
have also been explicitly constructed – see e.g. [32,33].

BHsSH rely on a synchronisation between the event horizon’s 
angular velocity �H and the field’s phase angular velocity ω/m, 
i.e. they satisfy the synchronisation condition

�H = ω

m
. (2)

Thus, the (ω/μ, Mμ) parameterization of the domain of existence 
can be equally seen as a (m�H /μ, Mμ) parameterization, which is 
a set of more physically intuitive quantities. Each solution in this 

2 For clarity we remark that, reinserting units, this dimensionless parameter is 
Mμ/M2

Pl , where MPl is the Planck mass.
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Fig. 1. Region of interest (cf. section 5) of the domain of existence of BHs with synchronised scalar (left panel) and vector (right panel) hair with (n, m) = (0, 1) in the Mμ
vs. ω/μ plane. The insets in both panels show the full domain of existence.

domain has two extra global quantities, besides the ADM mass: the 
total angular momentum, Jμ2, and the Noether charge associated 
with the global U (1) symmetry provided by the complex nature of 
the bosonic field, Q μ2. Unlike the mass and angular momentum, 
the Noether charge is not associated with a Gauss law, meaning 
it cannot be measured by an observer at infinity. Since the do-
main of existence is two–dimensional, the three global quantities 
(Mμ, Jμ2, Q μ2) are not independent, but no simple relation be-
tween them is known.

The global charges M and J can be expressed as M = MH + Mψ

and J = J H + Jψ , where MH and J H (Mψ and Jψ ) are the en-
ergy and angular momentum inside (outside) the event horizon, 
respectively. These are rigorously defined by Komar integrals – see 
e.g. [20,34]. It is convenient to define the dimensionless total and 
horizon angular momenta, j ≡ J/M2 and jH ≡ J H/M2

H , respec-
tively. BHsSH can violate the Kerr bound, in terms of asymptotic 
and/or horizon quantities [35], and in fact do so in large exten-
sions of their domain of existence, although their horizon linear
velocity never exceeds the speed of light [36].

The proportion of energy and angular momentum in the 
bosonic field (i.e. outside the event horizon), for a given solution, 
is measured by the fractions

p ≡ Mψ

M
, q ≡ Jψ

J
. (3)

The quantities p and q measure the hairiness of the solutions. Note 
that p, q ∈ [0, 1]. They reduce to Kerr BHs in equilibrium with 
linearised bosonic fields when p, q → 0 (Kerr limit) and to spin-
ning bosonic stars when p, q → 1 (solitonic limit). If a hairy BH is 
the equilibrium state obtained from the superradiance instability 
of Kerr, and under the aforementioned assumption of an approxi-
mately conservative process, then we identify the efficiency of the 
process as ε = p.

3. Domain of existence

Fig. 1 shows the domain of existence of BHs with synchronised 
scalar (left panel) and vector (right panel) hair with (n, m) = (0, 1). 
A detailed comparison between the two families can be found in 
[37]. The light grey shaded region represents the domain of ex-
istence of Kerr BHs in Einstein’s gravity, which satisfy the Kerr 
bound, i.e. j � 1. Solutions saturating this bound fall into the 
black solid line. The domain of existence of BHsSH is bounded 
by: (i) the existence line (blue dotted line), a line segment com-
prised of solutions describing bound states between Kerr BHs and 

linearised bosonic fields (p = q = 0). This line segment joins the 
Minkowski limit (M, J → 0) to the Kerr bound line. It is half–open, 
including the upper endpoint only. The latter is known as the Hod 
point [38] and can be found analytically for the scalar case (blue 
point in the left panel of Fig. 1). And (ii) the bosonic star line
(red solid line), comprised of solutions describing spinning bosonic 
stars (p = q = 1).

As already discussed, the (dominant mode) superradiant insta-
bility of Kerr may form some of the hairy BHs in this domain of 
existence. This phenomenon occurs whenever the Kerr solution is 
exposed to a scalar field perturbation for which the field’s phase 
angular velocity satisfies the superradiant condition ω/m < �H . For 
a massless field, the rotational energy is radiated to infinity, leav-
ing a Kerr BH with lower mass and angular momentum, in fact 
decreasing j. But for a bosonic field with non–vanishing mass and 
with a Compton wavelength comparable to, or larger than, the Kerr 
BH, a superradiant instability sets in, driving the configuration to a 
new equilibrium state (for complex fields).

Kerr BHs which lie to the right of the existence line are un-
stable when they are perturbed by linearized bosonic fields with 
the m = 1 azimuthal mode. The seed solutions of the evolutions 
described in [18] were Kerr BHs with initial mass M and dimen-
sionless angular momentum j = jH = 0.99 in the presence of a 
vector field with mass Mμ ∈ {0.25, 0.30, 0.40, 0.50} and azimuthal 
number m = 1. These Kerr BHs gradually developed hair, attain-
ing equilibrium when the horizon and the field synchronised. The 
corresponding migrations can be observed in Fig. 5 in [19].

4. Analytic bounds on “hairiness” for j ��� 1

Hawking’s area theorem sets an upper limit of 29% for the ef-
ficiency of energy extraction from Kerr BHs by superradiance. This 
is simple to see. The horizon area of a Kerr BH with mass MH

and angular momentum J H is A = 8π M2
H (1 +

√
1 − j2

H ) (we re-

call that M = MH , J = J H for a vacuum Kerr BH). The irreducible 
mass Mirr is defined as the mass of the Schwarzschild BH that re-
sults when all angular momentum has been extracted by reversible 
transformations, i.e. leaving the horizon area unchanged. The area 
theorem (δA � 0) then dictates that δMirr � 0. Like the area of 
the horizon, the irreducible mass remains unchanged (increases) 
in (ir)reversible transformations.

Starting from a Kerr BH, the maximum amount of energy that 
can be extracted from it is

MH − Mirr = MH

[
1 − 1√

2

(
1 +

√
1 − j2

H

)1/2
]

, (4)
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Fig. 2. Fraction of energy in the bosonic hair p according to relation (5).

resulting in a Schwarzschild BH with mass Mirr . It is therefore pos-
sible to extract up to 1 − 1/

√
2 ≈ 29% of the energy, with the 

upper limit corresponding to an initial extremal Kerr BH ( jH = 1) 
and a final Schwarzschild BH. Of thermodynamic nature, this limit 
applies to any (reversible or irreversible) transformation whereby 
rotational energy is extracted from a Kerr BH, including superradi-
ance.

In light of this maximal theoretical efficiency, ε � 0.29, BHsSH 
grown from superradiance have p � 0.29. The simulations in [18]
showed, however, only up to 9% of the initial energy is transferred 
into the (vector) field. Furthermore, they exhibit negligible dissipa-
tion. This suggests that the evolution of superradiant instabilities is 
nearly conservative, i.e. preserves the energy M and angular mo-
mentum J , thus leaving j almost unchanged. Accordingly, j � 1
should be satisfied throughout the evolution, since it is satisfied
by the initial (Kerr BH) state.

It was already suggested in [19] that this upper limit on j
places tighter constraints on the hairiness than the thermodynamic 
limit. This was done using an analytical model proposed therein to 
describe physical quantities of the hairy BHs which are Kerr–like. 
According to this model, BHsSH which are sufficiently Kerr–like 
have a fraction of energy in the bosonic field p obeying

p = 1 +
1 −

√
1 − 16ω2

H ( jωH − 1)2

8ω2
H ( jωH − 1)

, where ωH = M�H . (5)

In Fig. 2 we show how p derived from this relation varies with j
and ωH . The analysis shows that j � 1 implies p � 0.10, approxi-
mately one third of the thermodynamic bound.

5. A bound on “hairiness” from scanning BHsSH

Instead of using an approximate analytical model, we can in 
fact use the data on hairy BHs to see how large is p for j � 1. 
The region of interest, containing BHsSH that could emerge from 
the superradiant instability of Kerr BHs, is a subset of the domain 
of existence (shaded light orange in Fig. 3), bounded by two lines: 
the existence line and the j = 1 line. These lines meet at the Hod 
point, which corresponds to an extremal Kerr BH ( j = jH = 1). The 
“hairiness” trend is that, for fixed Mμ, p increases as ω/μ in-
creases. Since the p = 0.29 line always lies to the right of the j = 1
line, the latter sets a tighter (frequency–dependent) upper limit on 
the hairiness than the former, as expected.

Table 1 lists the properties of BHsSH with j = 1 and Mμ ∈
{0.25, 0.30, 0.40, 0.50} for both the scalar and vector cases. These 
illustrative values were chosen to match the ones taken in the 

Table 1
“Hairiness” of BHsSH with (n, m) = (0, 1) and j = 1, for se-
lected values of Mμ.

Mμ ω/μ Mω p q

Scalar 0.25 0.9921 0.2480 0.0971 0.3856
0.30 0.9884 0.2965 0.0951 0.3132
0.40 0.9774 0.3910 0.0686 0.1669
0.50 0.9587 0.4794 0.0160 0.0303

Vector 0.25 0.9667 0.2417 0.1035 0.3984
0.30 0.9496 0.2849 0.1038 0.3259
0.40 0.9009 0.3604 0.0933 0.2057
0.50 0.8356 0.4178 0.0738 0.1221

Table 2
Properties of the “hairiest” BHsSH with (n, m) = (0, 1) which are comparable to Kerr 
BHs (i.e. obey j � 1). These are characterised by j = 1 and are pinpointed as black 
circles in Fig. 3.

Model Mμ ω/μ Mω p q jH

Scalar [21] 0.2445 0.9925 0.2426 0.0989 0.4010 0.7367
Vector [20] 0.2761 0.9584 0.2646 0.1042 0.3621 0.7981
Analytical [19] – – 0.2393 0.0973 0.4067 0.7282

simulations in [18], which were carried out for the vector case. Ac-
cording to our assumption that ε = p, these are the hairiest solu-
tions with such masses that can be formed from superradiance. For 
instance, a BH with synchronised scalar (vector) hair has at most 
about 9.7% (10.4%) of its energy in the field when Mμ = 0.25. 
The results in Table 1 are compatible with the findings reported in 
[18], suggesting in particular that the superradiant amplification of 
the (vector) field in the maximal efficiency case reported therein, 
Mμ = 0.25, is (approximately) as efficient as it can be.

A more comprehensive analysis is provided in Fig. 4. Starting 
from the Hod point, p increases as one moves downstream along 
the j = 1 line, reaching a maximum and then decreasing towards 
the Minkowski limit. Solutions with fixed j values below unity 
show a similar behaviour. The maximum occurs at larger (lower) 
values of ω/μ (ωH ) as j decreases. The global maximum of p
occurs at Mμ ≈ 0.24 (0.27) and it is about 0.099 (0.104) in the 
scalar (vector) case, as shown in Table 2, corresponding to the val-
ues reported in Eq. (1). This suggests the maximal efficiency is not 
very sensitive to the spin of the bosonic field. The corresponding 
solutions satisfy the Kerr bound in terms of horizon quantities as 
well. Table 2 also shows they are well described by the analytical 
model introduced in [19], valid for any bosonic field.

6. Remarks

Some final remarks are in order. Firstly, this new (tighter) up-
per bound on the “hairiness” of BHsSH grown from superradiance 
(those represented by the region of interest) does not exclude the 
possibility that hairier BHs can appear from other dynamical for-
mation channels, such as the merger of bosonic stars [39]. That is, 
the region of dynamically viable solutions, corresponding to those 
that can form by some mechanism and be sufficiently long–lived, 
can go beyond the region of interest discussed here.

Secondly, BHsSH in the region of interest can be arbitrarily close 
to Kerr BHs and therefore are quite Kerr–like: they are more accu-
rately described as event horizons surrounded by a bosonic cloud 
rather than bosonic stars with an event horizon at its centre [37]. 
For instance, the areal radius of their shadow is at most 11% larger 
than that of comparable Kerr BHs [40].

Thirdly, like Kerr BHs, BHsSHs are prone to their own superra-
diant instability [22]. At fixed m, they are unstable against bosonic 
field modes with m̃ > m. For constant Mμ, the strength of the in-
stability decreases as the BHs become hairier (i.e. as one moves 
away from the existence line) [23]. In the region of interest, it is 
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Fig. 3. Same as in Fig. 1, but with two additional lines: the dash–dotted black line separates BHsSH with less (to the left) and more (to the right) than 29% of the total 
energy in bosonic field, whereas the dashed orange line separates BHsSH satisfying (to the left) and violating (to the right) the Kerr bound. The light orange shaded region 
comprises BHsSH which satisfy this bound. The black circles represent the “hairiest” solutions in the region of interest (cf. Table 2).

Fig. 4. Fraction p of the total energy contained in the bosonic field of BHs with synchronised scalar (left panels) and vector (right panels) hair for selected values of j. The 
top (bottom) panels show the dependence of p on ω/μ (ωH = M�H ). The circles pinpoint the corresponding maximum.

minimum for BHs on the j = 1 line. If the timescale of the instabil-
ity is larger than the age of the Universe, the hairy BH is effectively 
stable [23]. Effective stability is expected to occur for Mμ � 0.25. 
Interestingly, the “hairiest” BHs are characterised by Mμ ≈ 0.25
(see Table 2) and thus might be stable on cosmological timescales, 
for the appropriate mass range.

Finally, let us comment on three potential limitations of our 
approach. The first one is that we have assumed that the evo-
lution from Kerr into a hairy BH is conservative, unaltering j. If 

that would not be the case, and some of the system’s energy is 
dissipated towards infinity by gravitational waves or gravitational 
cooling [41] (i.e. ejection of the bosonic field), would this chal-
lenge the bound? For the Kerr BH, superradiance with dissipation 
(e.g. via the scattering of a massless bosonic field), has a net effect 
of increasing the reduced area A/M2. This implies a reduction of 
j. Thus, it seems likely that also for the hairy BHs any dissipation 
will reduce j further. Accordingly, the bound obtained under the 
assumption of a non–dissipative evolution is a robust, conservative 

5



C.A.R. Herdeiro, E. Radu and N.M. Santos Physics Letters B 824 (2022) 136835

bound. The second potential limitation is that we have obtained 
the bound (1) from a specific set of solutions of BHsSH, namely 
those of the simplest bosonic model, without self–interactions. If 
we allow for self–interactions, is the bound significantly affected? 
Since the bosonic field is small in the region of interest, as it is 
very close to the existence line (cf. Fig. 3), any non–linearities will 
be negligible. Thus, we expect this bound to be universal, in the 
sense of also applying to models with generic self–interactions. In-
deed, a preliminary investigation of the results reported in [31]
confirms this expectation. That work studied BHsSH in a model 
with a massive complex scalar field with a quartic self–interaction, 
while the case of synchronised BH solutions with a self–interacting 
vector field has not yet been considered in the literature. As a final 
possible limitation, we have only considered isolated BHs, avoiding 
the issue of accretion. Accretion is known to spin up BHs and thus 
it may counter–act the effect of superradiance – see e.g. [39,42]. 
Our bound, however, is obtained for BHs with j = 1. For the Kerr 
case, this means no further accretion is possible. A similar sharp 
statement cannot be applied for the hairy BHs, since j can exceed 
unity. Yet, since these are Kerr–like BHs, it seems plausible that the 
impact of accretion may be small.
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The local thermodynamic stability of a black hole (BH) in the canonical ensemble is defined by the
positivity of the specific heat at constant global charges. Schwarzschild BHs in thermodynamic equilibrium
with an energy reservoir are always unstable against small fluctuations of energy, whereas sufficiently near-
extremal Reissner-Nordström/Kerr BHs are stable. One could expect that asymptotically flat hairy BHs
branching off from such stable phases would also be, by continuity, locally thermodynamically stable for
vanishingly little hair. We show this is not the case in some models, including scalarized BHs bifurcating
from Reissner-Nordström and spinning BHs with synchronized hair bifurcating from Kerr. Specifically, it
is found that quasibald BHs are locally thermodynamically unstable in the canonical ensemble for all global
charges and regardless of being dynamically and entropically preferred over bald ones at fixed global
charges.

DOI: 10.1103/PhysRevD.106.124005

I. INTRODUCTION

In 1973, Bardeen et al. formulated the four laws of black-
hole mechanics [1] and noticed that the surface gravity κ and
area A of the (spatial sections of the) event horizon of a
stationary black hole (BH) bore a remarkable resemblance to
temperature and entropy in classical thermodynamics, respec-
tively. Soon after, Hawking made the remarkable discovery
that BHs emit particles at a steady rate as if they were black
bodies with temperature T ¼ κ=ð2πÞ [2,3]. These four laws
of black-hole mechanics are not mere analogies with the
standard laws of thermodynamics; they actually describe BHs
as thermodynamic systems. It is therefore natural to ask
whether BHs are thermodynamically stable or not.
Thermodynamic stability can be local or global. Local

stability refers to whether a certain equilibrium phase of a
system corresponds to a local maximum of the entropy. It
concerns the system’s response to small fluctuations, deter-
mined by its thermodynamic variables under some fixed
quantities, which amounts to a choice of ensemble. A system
is said to be in a locally stable phase if any fluctuations
produce a counteracting effect that ends up restoring the
thermodynamic equilibrium. Global stability, on the other
hand, refers to whether a certain equilibrium phase of a
system corresponds to a global maximum of the entropy.
The local stability can be monitored by linear response

functions such as the specific heat C. The specific heat

dictates how much a system’s temperature changes when it
absorbs heat from the environment. Consider, for instance,
a Schwarzschild BH with mass M at temperature T ¼
1=ð8πMÞ in contact with a heat reservoir R at fixed
temperature TR. Its specific heat is negative, C ¼
−1=ð8πTÞ. If T < TR (say), the BH will absorb energy
from R. As a result, its temperature will decrease. Thus, the
system runs away from thermal equilibrium and is (locally)
unstable from a thermodynamic viewpoint. It is worth
emphasizing that, in general, the thermodynamic stability
of a family of BHs does not provide any information about
its (linear) dynamical stability [4,5]. For instance,
Schwarzschild BHs can be dynamically stable while being
thermodynamically unstable.
In general, however, the BH may have nonvanishing

electric charge Q and/or angular momentum J. Suppose
now that a Kerr-Newman BH can exchange energy (at fixed
temperature), but not electric charge nor angular momen-
tum, with the reservoir (i.e.,Q and J are kept fixed). This is
the “canonical ensemble.” The local thermodynamic sta-
bility is then characterized by the positivity of the specific
heat at constant Q and J,

CQ;J ¼
�
∂M
∂T

�
Q;J

¼ T

�
∂S
∂T

�
Q;J

; ð1:1Þ

where S is the BH entropy. As it turns out, there is a
continuity with the Schwarzschild phase: the specific heat
(at constant electric charge and angular momentum) is
negative for sufficiently small Q and J. However, if [6]
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J4 þ 6J2M4 þ 4Q2M6 − 3M8 > 0; ð1:2Þ
it becomes positive and the system becomes locally
thermodynamically stable (in this ensemble). This corre-
sponds to the gray region in Fig. 1. For Reissner-Nordström
BHs (J ¼ 0), this occurs when

ffiffiffi
3

p
M=2 < jQj < M (hori-

zontal red solid line). For Kerr BHs (Q ¼ 0), on the other

hand, it holds for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

p
− 3

p
M2 < jJj < M2 (vertical blue

solid line). For ease of notation, hereafter CQ ≡ CQ;J¼0 and
CJ ≡ CQ¼0;J. The sign of the specific heat can be inferred
from the curve S ¼ SðTÞ for fixed Q and/or J. The inset of
Fig. 1 shows the entropy of Reissner-Nordström and Kerr
BHs as a function of their temperature. The black dotted
line (in the main panel), together with the markers (in both
panels), correspond to BHs with diverging specific heat,
separating the stable and unstable phases. Such infinite
discontinuity is commonly associated with second-order
phase transitions.
The above description exhausts the discussion concern-

ing electrovacuum BHs in the canonical ensemble. In the
last few years, however, a number of non-Kerr-Newman
(but still asymptotically flat) BHs became popular. They
possess new macroscopic degrees of freedom not associ-
ated with gauge charges and collectively referred to as
“hair”—see e.g., [7]. In particular, some of these models
branch off from the Kerr-Newman family, thus being

continuously connected to the electrovacuum BHs. In this
context, one might wonder if a similar thermodynamic
picture holds for asymptotically flat hairy BHs continu-
ously connected to BHs in general relativity (GR)—i.e., are
hairy BHs branching off from locally thermodynamically
stable GR BHs also locally thermodynamically stable (in
the same statistical ensemble)? By continuity, it seems
intuitive that the answer should be positive for BHs with
little hair. Indeed, this is what one observes in the Kerr-
Newman family: addingQ (J) to Kerr (Reissner-Nordström)
BHs, the Kerr-Newman solutions retain a positive specific
heat in the neighborhood of Kerr (Reissner-Nordström) BHs
with positive specific heat. However, the addition of hair
(rather than global charges associated with gauge sym-
metries) can spoil the local thermodynamic stability of such
electrovacuum BHs. In other words, locally thermodynami-
cally stable GR BHs may become unstable when they grow
(even very little) hair.
Asymptotically flat hairy BHs (in and beyond GR) may

emerge from the reconsideration of the assumptions of
no-hair theorems [7]. In the theories of relevance here, bald
and hairy BHs coexist and, at some scales, the former
become unstable to forming hair and evolve into the latter.
In other words, such hairy BHs have a dynamical formation
mechanism and are continuously connected to GR BHs in
the linear limit of the theories (when the hair is vanishingly
little) [8]. To address the question of local thermodynamic
stability of such hairy BHs, two illustrative families will be
considered here, both defined by the action

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ SM; ð1:3Þ

where R is the Ricci scalar of the metric gab with
determinant g, SM ¼ R

d4xLM is the action for the
matter field(s) and LM ¼ ffiffiffiffiffiffi−gp

L̂M is the corresponding

Lagrangian density (L̂M is a scalar).
The first family comprises scalarized BHs in Einstein-

Maxwell-scalar (EMS) theories [9–13]. These describe a
massless real scalar field ϕ minimally coupled to Einstein’s
gravity and nonminimally coupled to Maxwell’s electro-
magnetism, L̂M¼−2gabϕ;aϕ;b−fðϕÞI , where I¼FabFab,
F ¼ dA is the Maxwell tensor and fðϕÞ is a coupling
function. For a judicious choice of fðϕÞ, EMS theories
admit both GR and scalarized BHs. In particular, the former
can undergo spontaneous scalarization and become hairy
(similar to neutron stars in scalar-tensor theories [14]).
The second family is composed of BHs with synchron-

ized hair [15,16]. They are found in theories featuring a
massive complex bosonic field minimally coupled to
Einstein’s gravity: L̂M¼−Ψ�

;aΨ;a−μ2jΨj2 for a scalar field
Ψwith mass μ, whereas L̂M ¼ −FabF�

ab=4 − μ2AaA�
a=2 for

a vector field A with mass μ. Here, the asterisk denotes
complex conjugation. In either case, BHs with synchron-
ized hair coexist with Kerr BHs. At some scales, Kerr BHs

FIG. 1. Local thermodynamic stability of Kerr-Newman BHs in
the canonical ensemble. Sign of the specific heat at constant
electric charge Q and angular momentum J in the plane
ðjQj=M; jJj=M2Þ: CQ;J < 0 in the (inner) white region, whereas
CQ;J > 0 in the gray region. Inset: entropy of Reissner-
Nordström and Kerr BHs as a function of their temperature.
The markers in both plots refer to Reissner-Nordström (red star)
and Kerr (blue square) BHs with diverging specific heat.
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become unstable against superradiance, which results in the
transfer of energy and angular momentum to a bosonic
cloud orbiting the BH [8].
It is convenient to sketch the similarities and differences

between the two families of hairy BHs. Scalarized BHs
bear some resemblance with BHs with synchronized hair in
the sense that they emerge from the growth and saturation
of an instability. The instability (tachyonic for scalarized
BHs and superradiant for BHs with synchronized hair) is
present in the linear limit of the theory and is responsible
for the development of hair when nonlinear effects are
taken into account. Besides, both types of BHs are
dynamically preferred over their bald counterparts. In fact,
they are entropically favored, i.e., they maximize the
entropy of the system in the microcanonical ensemble,
i.e., for fixed global charges ðM;Q; JÞ.
There are, however, some differences one should note.

While BHs with synchronized hair reduce to bosonic stars in
the limit of vanishing horizon size, some EMS theories of
scalarized BHs do not possess solitons, as established by
some no-go theorems [17]. Even when they do, the solitons
may not be continuously connected with the hairy BHs [18].
Another important distinction between the two families
concerns the symmetries of the bosonic field. In the EMS
theories, the scalar field shares the symmetries with the
spacetime. As for BHs with synchronized hair, although the
spacetime is stationary and axisymmetric, the bosonic field
depends explicitly on time (but, since it is complex, the
corresponding energy-momentum tensor is time indepen-
dent). Finally, BHs with synchronized hair appear in models
with a globalUð1Þ symmetry, whichmakes the hair primary,
measured by a conserved (in the sense of a continuity
equation) Noether charge. By contrast, the hair in scalarized
BHs is secondary and the corresponding scalar “charge” is
not conserved in any meaningful sense.
The thermodynamics of asymptotically flat hairy BHs is

still poorly explored. Most studies focus on the thermo-
dynamic stability in the microcanonical ensemble. The
purpose of this paper is to provide an investigation of the
local thermodynamic stability of the aforementioned fam-
ilies of hairy BHs in the canonical ensemble. Their specific
heat (at constant global charges) is computed numerically
and found to be negative for quasi-GR BHs, regardless of
their specific electric charge or angular momentum.

II. SCALARIZED BLACK HOLES

In EMS theories, the equation of motion for the scalar
field reads □ϕ ¼ f;ϕI=4. ϕ ¼ 0 solves the equation of
motion if f;ϕð0Þ ¼ 0, in which case GR BHs remain
solutions. However, they are not unique in general and
coexist with BHs with a nontrivial scalar field (or “scalar
hair“). These are usually dubbed “scalarized BHs.”
One requires scalarized BHs to be continuously con-

nected to GR BHs (i.e., the former reduce to the latter in
the linear limit of the theory). These fall into subclass IIA

in [10]. Such bifurcation may arise when GR BHs are
afflicted by a linear tachyonic instability. The linearized
Klein-Gordon equation reads ð□ − μ2effÞϕ ¼ 0, with μ2eff ¼
f;ϕϕð0ÞI=4. The coupling function together with the source
term I act like a negative contribution to the field’s mass
provided that f;ϕϕð0ÞI < 0. In that case, GR BHs become
unstable to growing hair. For a purely electric field, I < 0
and the previous inequality reduces to f;ϕϕ ð0Þ > 0. Some
possible choices for the coupling function are then [10]
exponential coupling, fEðϕÞ ¼ e−αϕ

2

[9,11]; hyperbolic
cosine coupling, fCðϕÞ ¼ coshð ffiffiffiffiffiffiffiffiffi

−2α
p

ϕÞ [11]; and power
coupling, fPðϕÞ ¼ 1 − αϕ2 [11,19]. α will be referred to as
the coupling constant and must be negative so that
f;ϕϕð0Þ > 0. When α < 0, fE, fC and fP are monotonically
increasing functions of ϕ.
Any static, spherically symmetric solution to the equa-

tions of motion can be cast in the form

ds2 ¼ −NðrÞe−2δðrÞdt2 þ dr2

NðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ;

ð2:1Þ
in Schwarzschild coordinates ðt; r; θ;φÞ, where NðrÞ≡
1 – 2mðrÞ=r and mðrÞ is the Misner-Sharp mass function,
which can be regarded as the quasilocal mass contained
within a sphere of radius r. Spherical symmetry imposes an
electrostatic 4-vector potential (in the absence of a mag-
netic charge) as well as a radial-dependent scalar field, i.e.,
Aadxa ¼ VðrÞdt and ϕ ¼ ϕðrÞ, where V is the electrostatic
potential.
One assumes the existence of an event horizon at r ¼ rH,

which is the largest root ofN. The boundary conditions form,
δ,V andϕ at the event horizon are found by requiring them to
have a regular Taylor series at r ¼ rH, with rH ¼ 2mðrHÞ,
δðrHÞ ¼ δ0, VðrHÞ ¼ 0 and ϕðrHÞ ¼ ϕ0, where the gauge
conditionVðrHÞ¼0was imposed. In addition to fα; δ0;ϕ0g,
the solutions are characterizedby theArnowitt-Deser-Misner
(ADM) massM, the electric charge Q, the scalar charge Qs
and the (asymptotic) electrostatic potentialΦ. When ϕ ¼ 0,
all nonsingular (on and outside the event horizon) asymp-
totically flat, electrically chargedBHsbelong to theReissner-
Nordström family of BHs.
The BH entropy and temperature are

S ¼ πr2H; T ¼ e−δ0

4πrH

�
1 −

Q2

r2Hfðϕ0Þ
�
: ð2:2Þ

Since the temperature cannot be negative, r2Hfðϕ0Þ ≥ Q2.
The mass M, the electric charge Q, the electrostatic
potential Φ, the entropy S and the temperature T satisfy
the Smarr relation M ¼ 2TSþΦQ, the first law of BH
mechanics being dM ¼ TdSþΦdQ, and, what is more,
the nonlinear relation M2 þQ2

s ¼ 4T2S2 þQ2.
An important feature of these scalarized BHs is that the

electric charge Q does not necessarily coincide with the
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electric charge on the event horizonQH. The latter is simply
QH ¼ Q=fðϕ0Þ, which suggests that the nonminimal cou-
pling between the scalar field and the 4-vector potential
results in electric charge outside the event horizon. It is
convenient to introduce the “hairiness” parameter

h≡ 1 −
QH

Q
¼ 1 −

1

fðϕ0Þ
; ð2:3Þ

which measures (through ϕ0) the fraction of electric charge
outside the event horizon (or, loosely speaking, how hairy a
scalarized BH is). Note that h ∈ ½0; 1Þ. In the linear limit of
the theory (ϕ0 ¼ 0), fðϕ0Þ ¼ 1, Q ¼ QH and h ¼ 0.

A. Tachyonic instability and domain of existence

When f;ϕϕð0Þ > 0, the source term I ¼ FabFab pro-
vides the scalar field with an imaginary (effective) mass,
triggering a tachyonic instability. Such instability may arise
even for a test field ϕ ¼ δϕ, with jδϕjM ≪ 1, turning
Reissner-Nordström BHs unstable.
The scalar-free solutions at the onset of the tachyonic

instability form an “existence line” on the plane defined by
ðα; jQj=MÞ. Since the second-order Taylor expansion of fE
and fC around ϕ ¼ 0 coincides with fP, the existence line
is the same for the coupling functions considered herein.
For each α, scalarized BHs branch off from the existence
line and always have a charge-to-mass jQj=M ratio greater
than that of the Reissner-Nordström BH at the bifurcation
point. Moreover, they can exceed the usual extremal limit
and have Q2 > M2. The solution space of scalarized BHs
for the different couplings is qualitatively similar and can
be found in [11]. Besides the existence line, it is bounded
by a “critical line” composed of singular solutions, with
vanishing entropy.

B. Local thermodynamic stability

As mentioned in Sec. I, Reissner-Nordström BHs with
sufficiently small (large) electric charge-to-mass ratioQ=M
are locally thermodynamically unstable (stable) in the
canonical ensemble, i.e., their specific heat at constant
electric charge CQ is negative (positive). The state of affairs
changes with the addition of a scalar field nonminimally
coupled to electromagnetism to the theory. Scalarized BHs
always have negative specific heat (at constant electric
charge) in the linear limit, i.e., when ϕ0 → 0, as we shall
now discuss. This means scalarized BHs cannot be a local
minimum of the action and therefore must have a negative
mode [20], despite being dynamically preferred.
The blue lines in both panels of Fig. 2 correspond to

scalarized BHs with Q ¼ 0.4 for the different coupling
functions. The value of the coupling constant (α ¼ −2) was
chosen so that scalarized BHs bifurcate from locally
thermodynamically stable Reissner-Nordström BHs. ϕ0

(and thus h) increases monotonically as one moves down
along the blue lines (see inset in the right panel of Fig. 2),
signaling hairier and hairier BHs. The lines appear to
terminate at singular solutions with vanishing entropy. The
limiting behavior of the temperature differs: it appears to
diverge for f ¼ fE, to tend to a nonvanishing finite value
for f ¼ fC and to vanish for f ¼ fP.

1 This distinction is

FIG. 2. Left: entropy of the scalarized BHs withQ ¼ 0.4 as a function of their temperature, for different coupling functions. The inset
shows the behavior of the curves close to the bifurcation point (black dot). Right: specific heat at constant electric charge of Reissner-
Nordström (RN) BHs with Q ¼ 0.4 as a function of their charge-to-mass ratio Q=M. The vertical dot-dashed line corresponds to the
charge-to-mass ratio of the bifurcation point. The inset shows the hairiness h defined in Eq. (2.3).

1In the latter case, because the temperature starts decreasing as
the scalarized BHs become smaller and smaller, one could say
that their behavior is akin to that of extremal Reissner-Nordström
BHs. However, it should be kept in mind that extremal Reissner-
Nordström BHs, having a finite entropy, are not singular. One can
show in particular that these theories do not admit the near-
horizon geometry of extremal Reissner-Nordström BHs as a
solution.

SANTOS, HERDEIRO, and RADU PHYS. REV. D 106, 124005 (2022)

124005-4



connected to the higher-order terms in ϕ2 of the Taylor
expansion of fE and fC.
At first sight, the left panel of Fig. 2 may suggest that the

specific heat is negative for scalarized BHs with exponen-
tial and hyperbolic cosine coupling to electromagnetism,
but positive for those with a power coupling. On closer
inspection (see inset in the left panel of Fig. 2), though, it
becomes clear that the latter has negative specific heat in
the linear limit. This indicates that the curve S ¼ SðTÞ goes
through a point with infinite derivative (corresponding to a
BH with diverging specific heat, and thus a second-order
phase transition) and “turns around” at this point. SðTÞ is
then a multivalued function for f ¼ fP. Close to the critical
temperature TcQ ≈ 0.027, the specific heat is characterized
by the power-law CQ ∝ ðT − TcÞk, where the critical
exponent k is −1=2, with a deviation below 1.5%. The
specific heat at constant electric charge Q ¼ 0.4 of
Reissner-Nordström and scalarized BHs is shown in the
right panel of Fig. 2. As the charge-to-mass ratio
approaches its maximum value, it vanishes for f ¼
fE; fP and tends to a nonvanishing finite value for f ¼ fC.
Consider the case of the Reissner-Nordström BH at the

point of intersection of the two sets of solutions (black dot
in Fig. 2). This BH has CQ > 0. Suppose that it absorbs a
small amount of positive energy δM > 0 (without exchang-
ing electric charge). The total mass M of the BH will
increase by δM, thus reducing jQj=M. The BH moves up
along the red solid line, preserving its local thermodynamic
stability. The event horizon absorbs all the energy so that
the scalar field remains trivial. If, on the contrary, the
Reissner-Nordström BH absorbs a small amount of neg-
ative energy δM < 0, M will decrease, yielding a BH with
higher jQj=M. This could either be a Reissner-Nordström
BH or a scalarized BH. In general, in the region where
the Reissner-Nordström and scalarized BHs coexist, the
scalarized solutions maximize the entropy and thus are
thermodynamically favored. The negative energy feeds
the field, triggering the tachyonic instability, which results
in a nontrivial field in equilibrium with the BH. Further
absorption of negative energy enhances the tachyonic
instability so that the BH migrates downward along the
blue curves in Fig. 2 (left panel).

III. BLACK HOLES WITH SYNCHRONIZED
HAIR

BHs with synchronized hair are four-dimensional,
asymptotically flat, stationary solutions of Einstein’s grav-
ity minimally coupled to a complex bosonic field ψ with
nonvanishing mass μ. As solutions describing BHs, they
feature an event horizon at r ¼ rH, being regular on and
outside it. The matter field is characterized by a harmonic
time and azimuthal dependence, ψ ∼ e−iωtþimφ, where
ω > 0 and m ∈ Zþ are its frequency and azimuthal
harmonic index, respectively. The ansatz and correspond-
ing equations of motion as well as the boundary condition

at the event horizon, spatial infinity and on the axis can be
found in [21] for scalar hair (ψ ¼ Φ) and in [16] for vector
hair (ψ ¼ A).

A. Superradiant instability and domain of existence

This family of BHs is continuously connected to (a
subset of) the family of Kerr BHs. This means BHs with
synchronized hair can be realized in the linear limit of the
theory, in which the backreaction of the spacetime to a
nonconstant bosonic field is negligible. The corresponding
limiting solutions are bound states between Kerr BHs and
nontrivial bosonic fields, commonly known as “stationary
clouds.”
Stationary clouds are nothing but zero modes of the

superradiant instability, i.e., equilibrium states defined
by a bosonic field with vanishing momentum near the
event horizon, which amounts to the synchronization
condition

ΩH ¼ ω

m
; ð3:1Þ

where ΩH denotes the BH angular velocity. Equation (3.1)
sets the onset of superradiance in Kerr BHs, which occurs
whenever ω < mΩH. This condition follows directly from
the first and second laws of BH mechanics. BH super-
radiance is rooted in the existence of an ergoregion, within
which negative-energy physical states are possible.
However, such possibility does not automatically translate
into an instability, unless a confinement mechanism is
present. This is here naturally provided by the bare mass of
the bosonic field.
Linearizing the equations of motion around ψ ¼ ψ0,

for some constant ψ0, one can show that, when ω=ΩH is
not an integer, the field perturbation δψ ≡ ðψ − ψ0Þ has
a nonvanishing momentum and oscillates in space,
namely in the radial direction, near the event horizon.
On the contrary, when ω=ΩH is an integer, the field
becomes stationary and binds to the Kerr BH to form a
stationary cloud, pretty much like an electron in a
hydrogen atom.
When the backreaction of the spacetime is taken into

account and Eq. (3.1) is satisfied, (some) Kerr BHs grow
hair and turn dynamically into BHs with synchronized
hair. These solutions were originally found for free scalar
[15] and vector [16] fields and later generalized for self-
interacting fields and/or nonminimal couplings [22].
The solution space of BHs with synchronized hair is

fully described by (i) two continuous dimensionless
parameters, namely the ADM mass Mμ and the oscil-
lation frequency ω=μ or, equivalently, the ADM angular
momentum Jμ2, in units of the field’s mass; (ii) two
discrete parameters, namely the number of nodes in the
radial direction n ∈ N0 and the azimuthal harmonic index
m ∈ Zþ. The solutions live in a subset of the plane
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defined by ðω=μ;MμÞ (say). Fixing ðn;mÞ, they populate
a spiral-shaped region, regardless of the spin of the
bosonic field, a part of which is shown in Fig. 3 for
BHs with synchronized scalar (left panel) and vector
(right panel) hair with ðn;mÞ ¼ ð0; 1Þ. They belong to
the fundamental family of solutions, characterized by
the lowest maximum ADM mass. The solution space is
bounded by (i) the existence line, composed of stationary
clouds around Kerr BHs (solutions with vanishing field)
and (ii) the solitonic line, composed of spinning bosonic
stars (solutions with vanishing horizon). BHs with
synchronized hair interpolate between these two families
of limiting solutions.
The global chargesM and J, defined by Komar integrals,

can be expressed as M ¼ MH þMψ and J ¼ JH þ Jψ ,
where MH and JH (Mψ and Jψ ) are the mass and angular
momentum inside (outside) the event horizon, respectively.
As before, it is convenient to have some measure of the
hairiness of these solutions. These can be the proportion of
energy and angular momentum in the bosonic field

p≡Mψ

M
; q≡ Jψ

J
; ð3:2Þ

respectively, where p; q ∈ ½0; 1�. Stationary clouds (bosonic
stars) are characterized by p ¼ q ¼ 0 (p ¼ q ¼ 1).

B. Local thermodynamic stability

Just like Reissner-Nordström BHs, Kerr BHs with
sufficiently large (small) specific angular momentum
J=M2 are locally thermodynamically stable (unstable) in
the canonical ensemble. Given the similarities and
differences between scalarized BHs and BHs with
synchronized hair, a priori, it is not clear if the latter are

also locally thermodynamically unstable in the canonical
ensemble. Here, local thermodynamic stability is equiv-
alent to the positivity of the specific heat at constant angular
momentum CJ.
BHs with synchronized hair of constant angular momen-

tum Jμ2 define a line segment in the domain of existence
joining the Minkowski limit ðM; J → 0Þ to the existence
line ðp; q → 0Þ. As Jμ2 increases, the bifurcation point
approaches the extremal line (p ¼ q ¼ 0, J=M2 ¼ 1).
Figure 3 shows BHs with synchronized scalar (solid lines)
and vector (dotted lines) hair with Jμ2 ¼ 0.1 (red lines) and
Jμ2 ¼ 0.2 (orange lines). They bifurcate from locally
thermodynamically stable Kerr BHs (blue solid line), since

jJj >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

p
− 3

p
M2 ≈ 0.6813M2 (see Table I). However,

as in Sec. II B, the hairy BHs turn out to be unstable.
Indeed, the left panel of Fig. 4 shows their entropy
decreases as the temperature increases, which means that
CJ < 0. The hairiness p increases as the temperature
increases (see right panel of Fig. 4). In the Minkowski
limit, S vanishes and T diverges, with CJ approaching zero.
This behavior bears close resemblance to that of scalarized
BHs in EMS theories with an exponential coupling
(see Fig. 2).

FIG. 3. Domain of existence of BHs with synchronized scalar (left) and vector (right) hair with ðn;mÞ ¼ ð0; 1Þ in the ðω=μ;MμÞ plane
(light blue region). Kerr BHs live in the light gray region. The blue square separates Kerr BHs with jJj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

p
− 3

p
M2 (CJ < 0, dashed

blue line) and jJj >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

p
− 3

p
M2 (CJ > 0, solid blue line). The red and orange solid lines define BHs with synchronized hair with

Jμ2 ¼ 0.1 and Jμ2 ¼ 0.2, respectively. The circles represent the bifurcation points (cf. Table I).

TABLE I. Bifurcation points of BHs with synchronized hair
with ðn;mÞ ¼ ð0; 1Þ for the values of Jμ2 presented in Fig. 3.

Jμ2 Mμ ω=μ Mω J=M2

Scalar
0.10 0.3307 0.9847 0.3256 0.9146
0.20 0.4494 0.9684 0.4352 0.9904

Vector
0.10 0.3341 0.9280 0.3101 0.8958
0.20 0.4544 0.8534 0.3878 0.9686
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IV. CONCLUSION

The issue of thermodynamical stability of BHs does not
directly impact their astrophysical viability. For instance,
Schwarzschild and slowly rotating Kerr BHs are thermo-
dynamically unstable in the canonical ensemble. Yet, they
may exist in the cosmos. This is because (i) the timescale of
thermodynamic instabilities, dictated by the emission of
Hawking radiation, is much larger than the age of the
Universe for any astrophysical BH and (ii) Schwarzschild
and Kerr BHs are dynamically stable in GR.
In fact, considering the grand-canonical ensemble, where

BHs are also allowed to exchange electric charge (at fixed
electrostatic potential) or angular momentum (at fixed
angular velocity), all electrovacuum BHs are locally
thermodynamically unstable. This is because another
response function becomes negative precisely in the region
where the specific heat becomes positive for both the
Reissner-Nordström and Kerr cases [6].
Still, the issue of thermodynamic stability of BHs is

relevant and quite fruitful, for instance, in the context of
AdS=CFT [23]. Thus, it becomes an interesting question to
understand how adding extra properties, such as hair, to a
BH affects its thermodynamic stability.
This paper addressed the local thermodynamic stability

in the canonical ensemble of two families of BHs with
bosonic hair, namely scalarized BHs in a subclass of EMS
theories and BHs with synchronized hair. Both these
families are continuously connected to electrovacuum
BHs and, therefore, provide examples where the BH hair
can be arbitrarily small. Moreover, the former (latter) yields
an example of secondary (primary) hair.
By studying their corresponding specific heat, it was

found that the addition of a bosonic field minimally
coupled to Einstein’s gravity can change the thermody-
namic behavior of BHs, even when the field strength is
vanishingly small. Specifically, quasibald BHs are locally

unstable in this statistical ensemble, regardless of their
specific global charges (electric charge or angular momen-
tum). This is particularly surprising for hairy BHs branch-
ing off from thermodynamically stable GR BHs.
This analysis provides a contrast between thermody-

namical stability and dynamical stability. The Reissner-
Nordström (Kerr) BHs with high specific electric charge
(angular momentum) are the ones that are locally thermo-
dynamically stable in the canonical ensemble. But when we
enlarge the model to include the new fields and couplings
of the models above, they are simultaneously the BHs more
prone to the tachyonic (superradiant) instability that leads
to the branching off toward the hairy solutions. The latter
correspond to a new phase in which the BHs are thermo-
dynamically locally unstable in the canonical ensemble,
despite being entropically favored for fixed global charges
and therefore the ones preferred in a conservative dynami-
cal evolution.
Although the analysis herein was restricted to the

aforesaid families, similar results were found for vectorized
Reissner-Nordström BHs in Einstein-Maxwell-vector the-
ories [24] in a preliminary investigation, suggesting a
universal behavior. It would be interesting to perform a
similar analysis on other families of hairy BHs continuously
connected to the electrovacuum BHs of GR, e.g., scalarized
Schwarzschild [25,26] or Kerr BHs [27] in the extended
scalar-tensor Gauss-Bonnet theory. We emphasize that our
two examples cover both primary and secondary hair, and
that the observed behavior contrasts with the one observed
when adding global charges, e.g., adding Q to Kerr or J to
Reissner-Nordström, where a continuity in the thermody-
namic stability properties is observed.
Besides considering the thermodynamic behavior in the

canonical ensemble, one can also examine the stability of
the hairy BHs in the grand-canonical ensemble. In this
statistical ensemble, the electrostatic potential Φ and the
angular velocity ΩH of the event horizon are fixed and the

FIG. 4. Entropy (left) and hairiness p and q (right) of BHs with synchronized scalar and vector hair with ðn;mÞ ¼ ð0; 1Þ and
Jμ2 ¼ 0.1 (red lines) and Jμ2 ¼ 0.2 (orange lines) as a function of their temperature.
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electric charge Q and the angular momentum J are free to
vary. This is the most generic physical scenario. In this
ensemble the whole Kerr-Newman family is unstable. The
corresponding stability analysis of hairy BHs continuously
connected to the Kerr-Newman family is left for future
work.
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1 Introduction

Self-gravity is key to the understanding of the physics of compact objects, such as white
dwarfs, neutron stars, and black holes (BHs). Apart from the latter, which cannot support
themselves at all against gravitational collapse, the equilibrium of compact objects relies on
a balance between the attractive pull of gravity and a repulsive push of some sort. In the
case of white dwarfs and neutron stars, the repulsion is nothing but degeneracy pressure
of electrons and neutrons, respectively, caused by the Pauli exclusion principle and the
Heisenberg uncertainty principle.

If compact objects are composed of something else rather than ordinary baryonic matter,
they are said to be exotic. A number of exotic compact objects has been put forward over
the past decades (see [1] for a review). Examples include boson stars (BSs) [2, 3], anisotropic
stars [4], wormholes [5], gravastars [6], or fuzzballs [7]. BSs in particular have attracted much
attention recently (see [8–10] for reviews). As first conceived by Kaup, they are solitonic
solutions of Einstein’s gravity minimally coupled to a massive, complex scalar field with
harmonic time dependence. There is nothing special about scalar fields, though. Such
compact objects may also consist of massive, complex vector (or Proca) fields, in which
case they are known as Proca stars (PSs) [11]. Collectively, BSs and PSs are referred to as
bosonic stars. Unlike white dwarfs and neutron stars, they are supported against gravitational
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collapse by the Heisenberg uncertainty principle only. From a theoretical standpoint, bosonic
stars are particularly interesting because they appear in well-motivated and self-consistent
physical theories and have a formation mechanism, known as gravitational cooling [12, 13].
From an observational standpoint, they stand out from the plethora of exotic compact objects
as simple yet astrophysically viable compact objects, which can serve as a model (or a proxy)
for lumps of ultralight dark matter [14–16].

Among the most pressing questions around the astrophysical viability of compact objects
is that of stability. Bosonic stars are no exception: as hypothetical compact objects, they
should be stable with respect to sufficiently small perturbations (or, in case they are unstable,
be sufficiently long-lived). The linear stability of BSs was first addressed by Gleiser [17] and
Jetzer [18] in the 80s, following Chandrasekhar’s seminal work on perfect-fluid stars [19].
Both realized that, like normal stars, the fundamental set of BSs can be either radially
stable or unstable, depending on the field value at the star’s center ψ0, and estimated upper
bounds for the threshold of the instability. Gleiser and Watkins later solved numerically the
linear perturbation equations (also referred to as “pulsation equations”) and found that the
instability trigger value matched the BS maximum Arnowitt-Deser-Misner (ADM) mass [20].
Soon afterward, Seidel and Suen studied the linear and nonlinear radial stability of mini-BSs
using numerical relativity [21] and concluded that: stable mini-BSs oscillate (when perturbed),
emitting bosonic radiation and losing mass as they relax to a configuration with lower mass
and larger radius; unstable mini-BSs, on the other hand, either collapse to a black hole or
migrate to a configuration in the stable branch. More recently, this picture was confirmed and
extended, in both the time and frequency domains, to mini-BSs in the first excited mode [22]
as well as massive-BSs in the fundamental and first excited modes [23, 24], and spherically
symmetric PSs [25]. It has been reported in particular that some unstable solutions (also
in the case of fundamental mini-BSs) disperse altogether due to having more energy than
the corresponding collection of particles.

Radial perturbations correspond to physical, non-radiative degrees of freedom, describing
changes in the mass of the system [26]. More precisely, they refer to polar (or even or electric)
ℓ = 0 perturbations of the equilibrium (spherically symmetric) background in the context of
linear perturbation theory. Conclusions drawn from radial linear stability analysis must be
taken with a pinch of salt: a compact object that is stable with respect to sufficiently small
radial perturbations might be prone to instabilities grown out of an angular disturbance,
for instance. Non-radial linear stability of mini-BSs as well as of massive and solitonic BSs
has been studied in [27–29].

It is possible to analyze the radial linear stability of normal stars using the critical point
method [30, Chap. 6]. On a plot of the equilibrium mass M vs. ψ0, changes in stability,
dictated by zero-frequency modes, are linked to critical points, i.e. solutions satisfying
dM/dψ0 = 0. The linear perturbation equations pose a Sturm-Liouville boundary value
problem on the finite interval [0, R], where R is the star radius, for the perturbation frequency
squared Ω2. According to spectral theory, there are infinitely many real eigenvalues Ω2

0, Ω2
1,

Ω2
2, . . ., and the eigenfunction corresponding to the eigenvalue Ω2

n, n ∈ N0, has exactly n zeros
in the open interval (0, R), i.e. n nodes. An eigenfunction with an odd (even) number of nodes
is often referred to as an odd (even) mode. Additionally, the eigenvalues are ordered, i.e.

– 2 –
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Critical point(
dM

dψ0

= 0

)

Even mode
(n = 0, 2, 4, . . .)

dR

dψ0
> 0

no change

dR

dψ0
< 0

change
(zero mode)

Odd mode
(n = 1, 3, 5, . . .)

dR

dψ0
> 0

change
(zero mode)

dR

dψ0
< 0

change

Figure 1. Assessment of stability-instability transitions with the critical point method.

Ω2
0 < Ω2

1 < Ω2
2 < . . .. The stability can be analyzed by noting that dR/dψ0 > 0 (dR/dψ0 < 0)

at a critical point corresponds to a change of sign of an odd (even) mode. The critical point
method is summarized schematically in figure 1.

Unlike normal stars, BSs do not have a definite surface, i.e. a boundary outside which the
energy density vanishes. In fact, the field extends to spacelike infinity and, for that reason,
the corresponding linear perturbation equations form a singular Sturm-Liouville boundary
value problem. Strictly speaking, the previous result on the eigenvalues cannot be applied
to BSs. However, their energy density decay exponentially close to spacelike infinity, where
its value is much smaller than the maximum. It is then reasonable to define the “surface”
of a BS as a spherical surface enclosing most of its equilibrium mass. A popular choice is
the circumferential radius containing 99% of M . Such a definition ensures the validity of
the critical point method in this case.

While the critical point method suffices to identify zero-frequency modes and stability-
instability transitions across the parameter space, it does not provide any estimates of the
perturbation frequencies. These are important to understand the spectra of normal and
quasinormal modes of stable BSs. To this end, the most straightforward approach is to
(numerically) integrate the perturbation equations. One of the goals of this paper is to present
the eigenvalues Ω2

0 for mini-, solitonic [31] and axion [32] BSs as well as for PSs [11].
Another purpose of this paper is to clarify some ideas about BS stability present in the liter-

ature. An example is the statement [33] that the radial stability of a spherically symmetric BS
changes whenever dM/dψ0 = 0. While it is true that transitions from stable to unstable con-
figurations, and vice versa, only occur at critical points, defined by dM/dψ0 = 0, the examples
herein make clear that not all critical points signal such transitions, as illustrated in figure 1.

The rest of the paper is organized as follows. In section 2, the action, equations of
motion, and relevant physical quantities of different BS models are introduced. Section 3 is
devoted to a brief review of the formulation describing spherically symmetric BSs, whereas
section 4 formulates their first-order radial perturbations in the Zerilli gauge. In section 5, the
space of solutions of both equilibrium and perturbed solutions is presented in a side-by-side
comparison of the different models. An overview of the work is sketched in section 6, together
with some final remarks.
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Notation. In the following, the speed of light c and the Planck constant ℏ are set equal to
one (c = ℏ = 1), unless stated otherwise. The mostly positive metric signature (− + ++) is
adopted and Latin letters (a, b, c, . . .) are used for abstract index notation. Since the paper
addresses first-order perturbations, every tensor field A can be expanded in powers of a
bookkeeping parameter ϵ, A(ϵ) = A(0) + ϵA(1) + . . ., where A(0) is the unperturbed value
and A(1) is the first-order perturbation of A(ϵ).

2 Framework

Consider the action describing a complex spin-s field, s ∈ {0, 1}, minimally coupled to
Einstein’s gravity:

Ss =
∫

d4x
√−g

[
R

16πG + Ls
]
, (2.1)

where G is the gravitational constant, gab is the metric, with determinant g and Ricci scalar
R, and the matter Lagrangians read

L0 = −gab∇aΦ∇bΦ̄ − V0(ΦΦ̄) . L1 = −1
4FabF̄ab − V1(AaĀa) , (2.2)

Φ is a complex scalar field, Aadxa is a complex Proca field with strength F = dA, and Vs is
the corresponding spin-s field potential. Moreover, the overbar ·̄ denotes complex conjugation.

This paper focuses on three particular forms of the scalar-field potential, namely

V0(ΦΦ̄) =





µ2ΦΦ̄ (mini) , (2.3a)

µ2ΦΦ̄
(

1 − 2ΦΦ̄
v2

0

)2

(solitonic) , (2.3b)

2µ2f2
a

B


1 −

√√√√1 − 4B sin2
(√

ΦΦ̄
2fa

)
 (axionic) , (2.3c)

and on the simplest form of the Proca-field potential,

V1(AaĀa) = 1
2µ

2AaĀa . (2.4)

Bosonic stars in each model are known as mini-boson stars (MBSs), solitonic boson
stars (SBSs), axionic boson stars (ABSs), and Proca stars (PSs), respectively. In the
above potentials, {µ, v0, fa} are free parameters: µ = mc/ℏ is the inverse Compton wave-
length of the corresponding spin-s field (and m is its bare mass), v0 is the degenerate vacuum
of the solitonic potential (2.3b) and fa is the Peccei-Quinn symmetry breaking scale. Addi-
tionally, B = z/(1 + z)2 ≈ 0.22, with z ≡ mu/md ≈ 0.48 being the up-quark-to-down-quark
mass ratio. The second term in eq. (2.3c) is the standard QCD axion potential, which is
non-zero when Φ = 0. The first term is added so that V0(0) = 0 and hence asymptotic
flatness is ensured. Note that the potential in eq. (2.3a) is the linear approximation of both
eqs. (2.3b)–(2.3c) around1 ΦΦ̄ = 0.

1For the latter case, the linear approximation is valid when
√

ΦΦ̄ ≪ fa.
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Varying the action in eq. (2.1) with respect to the metric and to the matter field yields
the equations of motion, namely Einstein equations,

Eab ≡ Gab − 8πGT [s]
ab = 0 , (2.5)

where Gab is the Einstein tensor, and T [s]
ab is the energy-momentum tensor of the spin-s field,

T
[0]
ab = ∇aΦ∇bΦ̄ + ∇bΦ∇aΦ̄ − gab

[1
2g

cd
(
∇cΦ∇dΦ̄ + ∇dΦ∇cΦ̄

)
+ V0(ΦΦ̄)

]
, (2.6a)

T
[1]
ab = 1

2g
cd
(
FacF̄bd + F̄acFbd

)
− 1

4gabFcdF̄
cd + 1

2µ
2
(
AaĀb + ĀaAb − gabAcĀc

)
, (2.6b)

and the matter equations

∇a∇aΦ − ∂V0
∂(ΦΦ̄)

Φ = 0 , (2.7a)

∇aFab − µ2Ab = 0 . (2.7b)

Equation (2.7a) is the Klein-Gordon equation, whereas eq. (2.7b) is the Proca equation. The
latter implies the Lorenz condition ∇aAa = 0.

In either case, the action in eq. (2.1) possesses a global U(1) symmetry, i.e. it is invariant
under the transformation {Φ,Aa} → eiχ{Φ,Aa}, with χ constant. This implies the existence
of the four-currents

ja0 = i(Φ∇aΦ̄ − Φ̄∇aΦ) , ja1 = i

2
(
F̄abAb − FabĀb

)
, (2.8)

which are conserved, i.e. ∇aj
a
s = 0. There exists a Noether charge Qs, obtained by integrating

the timelike component of the four-currents on a spacelike surface Σ,

Qs =
∫

Σ
d3x j0

s . (2.9)

Upon quantization, Q is nothing but the particle number.
The Komar mass reads

Ms = 1
4πG

∫

Σ
dV Rabnaξb = 2

∫

Σ
dV

(
T

[s]
ab − 1

2gabT
[s]
)
naξb , (2.10)

where Σ is an asymptotically-flat spacelike hypersurface, nα is a future-pointing unit vector
normal to Σ, dV is the 3-volume form induced on Σ, and T [s] = gabT

[s]
ab is the trace of the

energy-momentum tensor T [s]
ab .

3 Equilibrium solutions

In this paper, only radial perturbations of spherically symmetric bosonic stars will be
considered. For completeness, the construction and physical properties of the equilibrium
solutions are reviewed in the following. The solutions are parametrized by the spin-s field value
at the star’s center ψ0. This section follows closely the definitions and conventions in [34].

– 5 –
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3.1 Ansätze and equations of motion

A line element compatible with a static spherically-symmetric spacetime is

ds2 = g
(0)
ab dxadxb = −σ(r)2N(r)dt2 + dr2

N(r) +r2
(
dθ2 + sin2 θ dφ2

)
, N(r) = 1− 2GM(r)

r
,

(3.1)
where M is the Misner-Sharp mass function. Unlike the metric tensor, the matter fields
are assumed to have a harmonic time-dependence:

Φ(0) = e−iωt ϕ(r) , (3.2a)
A(0)
a dxa = e−iωt[f(r) dt+ ig(r) dr

]
, (3.2b)

where {ϕ, f, g} are real functions. Without loss of generality, one assumes ω ∈ R+.
Restricted to the above ansätze, the equations of motion in eqs. (2.5) and (2.7) yield

a system of three (four) coupled ordinary differential equations for the scalar (Proca) field.
The only non-zero components of Eab are Ett, Err, Eθθ and Eφφ. The equations governing
the metric functions N and σ read

1
r2σ

∂r(rσN) − 1
r2 + 8πGVs = 0 , (3.3a)

∂rσ

σ
− 8πGWs = 0 , (3.3b)

where

V0 = V0, V1 = 1
2

(
∂rf − ωg

σ

)2
, (3.4)

and

W0 =
[
(∂rϕ)2 + ω2ϕ2

σ2N2

]
r , W1 = µ2

2

(
f2

σ2N
+ g2

)
r . (3.5)

On the other hand, the matter equations become

1
r2σ

∂r(r2σN∂rϕ) +
(
ω2

σ2N
− V ′

0

)
ϕ = 0 , (3.6a)

∂r

[
r2

σ
(∂rf − ωg)

]
− µ2 r

2f

σN
= 0 , ω(∂rf − ωg) + µ2σ2Ng = 0 , (3.6b)

where V (k)
0 ≡ dkV0(ϕ2)/d(ϕ2)k, k ∈ N. The Lorenz condition reads

1
r2∂r

(
r2σNg

)
+ ωf

σN
= 0 . (3.7)

3.2 Boundary conditions

Equations (3.3) together with eqs. (3.6) can be (numerically) integrated under the boundary
conditions (BCs) summarized in table 1. The inner BCs result from the smoothness at r = 0,

– 6 –
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Metric functions Matter functions

M σ ϕ ϕ′ f f ′ g

Inner BCs (r = 0) 0 σ0 ϕ0 0 f0 0 0
Outer BCs (r = ∞) M 1 0 0 0 0 0

H0 H2 ϕ± ϕ′
± f± f ′

± g±

Inner BCs (r = 0) h0 0 ϕ±(0) 0 f±(0) 0 0
Outer BCs (r = ∞) h∞ 0 0 0 0 0 0

Table 1. Boundary conditions (BCs) for both metric and matter functions of equilibrium and
perturbed bosonic stars (see section 3.1 and section 4.2 for definitions).

required to avoid the poles there. In fact, it can be shown that

M(r) = 4πG
3

[
ω2ϕ

2
0
σ2

0
+ Ṽ0

]
r2 + . . . , (3.8a)

σ(r) = σ0 + 4πGϕ2
0

σ0
ω2r2 + . . . , (3.8b)

ϕ(r) = ϕ0 − 1
6

[
ω2ϕ0
σ2

0
− Ṽ0

]
r2 + . . . , (3.8c)

f(r) = f0

[
1 + 1

6

(
µ2 − ω2

σ2
0

)]
r2 + . . . , (3.8d)

g(r) = −ω

3
f0
σ2

0
r + . . . , (3.8e)

where σ0 ≡ σ(0), ϕ0 ≡ ϕ(0) and f0 ≡ f(0) are as yet undetermined constants, and Ṽ0 ≡ V0(ϕ2
0).

Without loss of generality, one can assume that ϕ0, f0 ∈ R+ thanks to the Z2-symmetry of
the spin-s fields. Moreover, note that m′(0) = σ′(0) = 0.

On the other hand, the outer BCs (r = ∞) follow on from the requirement of asymptotic
flatness. The leading-order asymptotic behavior of the functions is

N(r) = 1 − 2GM
r

+ . . . , (3.9a)

log σ(r) = −c2
0
2

µ2ω2

(µ2 − ω2)3/2
e−2r

√
µ2−ω2

r
+ . . . , (3.9b)

ϕ(r) = ϕ∞
e−r

√
µ2−ω2

r
+ . . . , (3.9c)

f(r) = f∞
e−r

√
µ2−ω2

r
+ . . . , (3.9d)

g(r) = f∞
ω√

µ2 − ω2
e−r

√
µ2−ω2

r
+ . . . , (3.9e)

where {c0, ϕ∞, f∞} are constants.
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3.3 Physical quantities

The Noether charge (2.5) of the equilibrium solutions read

Q
(0)
0 = 8π

∫ ∞

0
dr r2ωϕ

2

σN
, (3.10a)

Q
(0)
1 = 4π

∫ ∞

0
dr r2 g

σ
(∂rf − ωg) , (3.10b)

whereas the Komar mass (2.7) yield

M
(0)
0 = 4π

∫ ∞

0
dr r2

σN

[
4
(
ω2 − µ2

2 σ
2N

)
ϕ2
]
, (3.11a)

M
(0)
1 = 4π

∫ ∞

0
dr r2

σN

[
N(∂rf − ωg)2 + 2µ2f2

]
. (3.11b)

Moreover, it is useful to introduce a definition for the radius. Unlike normal stars, such
quantity is ill-defined due to the Yukawa-like asymptotic behavior of the matter fields. Here,
the most common definition is adopted: the bosonic stars radius R is the circumferential
radius containing 99% of the ADM mass.2 The compactness of the equilibrium bosonic
stars is then C ≡ GM/(c2R).

4 Perturbed solutions

In a spherically symmetric spacetime, metric perturbations can be written as a sum of 10
tensor spherical harmonics of degree ℓ ∈ N0 and order |m̃| ≤ ℓ, which form an orthonormal
basis. They can in particular be separated into polar (or even or electric) and axial (or odd
or magnetic) perturbations according to their properties under parity transformations (see,
e.g., [35, Chap. 12]). This section addresses radial perturbations of equilibrium bosonic
stars. This amounts to considering polar ℓ = 0 perturbations (also known as monopolar
perturbations). Although in vacuum ℓ = 0 perturbations can be removed by a gauge
transformation (and do not contribute to radiative degrees of freedom of the gravitational
field), they are not spurious in this case.

4.1 Ansätze and equations of motion

In the Zerilli gauge [26], the metric perturbation reads

g
(1)
ab dxadxb = σ(r)2N(r)H̃0(t, r) dt2 + H̃2(t, r)

N(r) dr2 , (4.1)

while matter perturbations are assumed to have the form

Φ(1) = e−iωt ϕ1(t, r) , (4.2a)
A(1)
a dxa = e−iωt [f1(t, r) dt+ ig1(t, r) dr] , (4.2b)

where {H̃0, H̃2} are real functions, whereas {ϕ1, f1, g1} are complex functions.
2Different definitions can be found in the literature [8, II.C].
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The first-order equations of motion include terms that prevent the existence of monochro-
matic (single-frequency) solutions. The simplest solutions are a superposition of two monochro-
matic waves with frequencies ω± = ω ± Ω, where Ω is the perturbation frequency. The
perturbation functions are of the form

H̃0(t, r) = (e−iΩt + e+iΩt)H0(r) , (4.3a)
H̃2(t, r) = (e−iΩt + e+iΩt)H2(r) , (4.3b)
ϕ1(t, r) = e−iΩt ϕ+(r) + e+iΩt ϕ−(r) , (4.3c)
f1(t, r) = e−iΩt f+(r) + e+iΩt f−(r) , (4.3d)
g1(t, r) = e−iΩt g+(r) + e+iΩt g−(r) . (4.3e)

where {H0, H2, ϕ±, f±, g±} are real functions. The resulting first-order equations of motion
become an eigenvalue problem for Ω2, which is real, i.e. Ω is either purely real or purely
imaginary, the perturbed solution being either stable or unstable, respectively. Plugging
eqs. (4.1) and (4.2) into Ett, Etr and Err, and keeping linear terms in the bookkeeping
parameter ϵ, one gets, respectively,

1
r
∂r(NH2) + N

r2H2 − 8πGXs = 0 , (4.4a)

ΩH2 − 8πGrYs = 0 , (4.4b)
N

r
∂rH0 + N

r

(1
r

+ ∂rN

N
+ 2∂rσ

σ

)
H2 + 8πGZs = 0 , (4.4c)

where

X0 = ω2ϕ2

σ2N
H0 −N(∂rϕ)2H2 +N(∂rϕ)∂r(ϕ+ +ϕ−)+ϕ

(
ωω+
σ2N

+V ′
0

)
ϕ+ +ϕ

(
ωω−
σ2N

+V ′
0

)
ϕ− ,

(4.5a)
Y0 = (∂rϕ)(ω+ϕ+ −ω−ϕ−)−ωϕ∂r(ϕ+ −ϕ−) , (4.5b)
Z0 = X0 −2ϕV ′

0(ϕ+ +ϕ−) , (4.5c)

X1 = µ2

2
f

σ2N
(fH0 +f+ +f−)− µ2

2 Ng
2H2 − 1

2

[
ω+(∂rf−ωg)

σ2 −µ2Ng

]
g+−

− 1
2

[
ω−(∂rf−ωg)

σ2 −µ2Ng

]
g− + ∂rf−ωg

2σ2 [(∂rf−ωg)(H0 −H2)+∂r(f+ +f−)] , (4.5d)

Y1 = µ2

2 [g(f+ −f−)−f(g+ −g−)] , (4.5e)

Z1 = µ2Ng(g+ +g−)−X1 (4.5f)

When Xs = Ys = Zs = 0, eq. (4.4b) dictates that Ω = 0, and one obtains from eq. (4.4a)
that H2(r) ∝ (rN)−1. On the other hand, close to the outer boundary, eq. (4.4c) retrieves
H0(r) = a+H2(r), where a ∈ R is a constant. The first-order Klein-Gordon equation reads

1
r2σ

∂r(r2σN∂rϕ±)+
(
ω2

±
σ2N

−V ′
0 −ϕ2V ′′

0

)
ϕ±

= ϕ2V ′′
0 ϕ∓ + 1

2N∂rϕ∂r(H0 +H2)− ωϕ

2σ2N
[(ω+ω±)H0 +(ω−ω∓)H2]+ H2

r2σ
∂r(r2σN∂rϕ)

= ϕ2V ′′
0 ϕ∓ + 1

2N∂rϕ∂r(H0 +H2)− ω(ω+ω±)ϕ
2σ2N

(H0 +H2)+ϕV ′
0H2 , (4.6)
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whereas the first-order Proca equation yields

1
r2σ

∂r

[
r2

σ
(∂rf± − ω±g±)

]
+ H0 −H2

r2σ
∂r

[
r2

σ
(∂rf − ωg)

]

+ ∂rf − ωg

2σ2 ∂r(H0 −H2) − µ2

σ2N
(fH0 + f±) ,

= 1
r2σ

∂r

[
r2

σ
(∂rf± − ω±g±)

]
+ ∂rf − ωg

2σ2 ∂r(H0 −H2) − µ2

σ2N
(fH2 + f±) = 0 , (4.7a)

ω±(∂rf± − ω±g±) + ω + ω±
2 (∂rf − ωg)(H0 −H2) + µ2σ2N(g± − gH2)

= ω±(∂rf± − ω±g±) + µ2σ2N(g± − gH0) ∓ 1
2
ω+ − ω−
ω+ + ω−

µ2σ2Ng(H0 −H2) = 0 , (4.7b)

Finally, the first-order Lorenz condition is

1
r2∂r(r

2σNg±)−H2
r2 ∂r(r

2σNg)+ ω±f±
σN

+ (ω+ω±)f
2σN H0 − (ω−ω±)f

2σN H2 − 1
2Ng∂r(H0 +H2)

= 1
r2∂r(r

2σNg±)+ ω±f±
σN

+ (ω+ω±)f
2σN (H0 +H2)− 1

2Ng∂r(H0 +H2) = 0 . (4.8a)

4.2 Boundary conditions

The perturbed functions {H0, H2, ϕ±, f±, g±} must have regular Taylor series around r = 0.
Thus, the inner boundary conditions are

H0(r) =





h0− 8πG
3 ϕ0

{
2ω2ϕ0
σ2

0
h0+

[2ωω+
σ2

0
−Ṽ ′

0

]
ϕ+(0)+

[2ωω−
σ2

0
−Ṽ ′

0

]
ϕ−(0)

}
r2+. . . , s= 0 ,

h0− 8πG
3

µ2f0
σ2

0
[f0h0+f+(0)+f−(0)]r2+. . . , s= 1 ,

H2(r) =





8πG
3 ϕ0

{
ω2ϕ0
σ2

0
h0+

[
ωω+
σ2

0
+Ṽ ′

0

]
ϕ+(0)+

[
ωω−
σ2

0
+Ṽ ′

0

]
ϕ−(0)

}
r2+. . . , s= 0 ,

4πG
3

µ2f0
σ2

0
[f0h0+f+(0)+f−(0)]r2+. . . , s= 1 ,

ϕ±(r) =ϕ±(0)− 1
3

{
ω(ω+ω±)ϕ0

4σ2
0

h0+ 1
2

[
ω2

±
σ2

0
−Ṽ ′

0 −ϕ2
0Ṽ

′′
0

]
ϕ±(0)− 1

2ϕ
2
0Ṽ

′′
0 ϕ∓(0)

}
r2+. . . ,

f±(r) = f±(0)− 1
6

[(
ω2

±
σ2

0
−µ2

)
f±(0)+ω±(ω+ω±)

2 f0h0

]
r2+. . . ,

g±(r) = − 1
3σ2

0

[
ω±f±(0)+ω+ω±

2 f0h0

]
r+. . . ,

where {h0, ϕ±(0), f±(0)} are as yet undetermined constants, Ṽ ′
0 ≡ V ′(ϕ2

0) and Ṽ ′′
0 ≡ V ′′(ϕ2

0).
The first-order matter equations are linear, which means that both ϕ+(0) and f+(0) (say)
can be set to unity without loss of generality. Since ϕ+ = ϕ− and f+ = f− when Ω = 0, one
sets ϕ+(0) = ϕ−(0) and f+(0) = f−(0) and checks afterwards whether the outer boundary
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conditions hold,

H0(r) ≈ h∞ + a∞
r
, (4.10a)

H2(r) ≈ a∞
r
, (4.10b)

ϕ±(r) ≈ a±
e−r
√
µ2−ω2

±

r
, (4.10c)

f±(r) ≈ b±
e−r
√
µ2−ω2

±

r
, (4.10d)

g±(r) ≈ b±
ω±√

µ2 − ω2
±

e−r
√
µ2−ω2

±

r
. (4.10e)

where {h∞, a∞, a±, b±} are constants. The BCs are summarized in table 1.

4.3 Physical quantities

The Noether charge (2.5) and Komar mass (2.7) of the perturbed solutions are time-dependent,
yielding, respectively, Qs = Q

(0)
s + ϵQ

(1)
s + . . . and Ms = M

(0)
s + ϵM

(1)
s + . . ., where

Q(1)
s = 4π

∫ ∞

0
dr r2ρ

(1)
Qs
, (4.11a)

M (1)
s = 4π

∫ ∞

0
dr r2ρ

(1)
Ms

= 8π cos(Ωt)
∫ ∞

0
dr r2Xs , (4.11b)

and

ρ
(1)
Q0

= 2cos(Ωt) ϕ

σ2N
[2ωϕH0 +(ω+ω+)ϕ+ +(ω+ω−)ϕ−] , (4.12a)

ρ
(1)
Q1

= −cos(Ωt)
σ2 {g [(∂rf+ −ω+g+)+(∂rf− −ω−g−)]+(∂rf−ωg)[g+ +g− +2g(H0 −H2)]} ,

(4.12b)

The radial perturbations should leave the Noether charge unchanged, i.e. Qs = Q
(0)
s ,

and thus Q(1)
s = 0.

5 Results

The numerical results are obtained using Mathematica [36], namely the built-in symbols
NDSolve and FindRoot. The results are presented in terms of dimensionless quantities,
obtained from products or quotients of the mass m of the bosonic field. They are thus valid
for any value of m. Assigning a specific value to m sets the characteristic scale of the system.
To compare the physical properties of bosonic stars to those of other compact objects, one
can express {M,Q,R, ω,Ω2} in convenient units (where ℏ and c are reinstated for clarity):

M ≈ 1.336
(

10−10 eV/c2

m

)
× M

m2
P/m

[M⊙] , (5.1a)

Q ≈ 2.475
(

1016 eV/c2

m

)2

× Q

m2
P/m

2 [mol] , (5.1b)
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R ≈ 1.973
(

10−10 eV/c2

m

)
× R

ℏ/(mc) [km] , (5.1c)

ω ≈ 151.9
(

m

10−10 eV/c2

)
× ω

mc2/ℏ
[kHz] , (5.1d)

Ω2 ≈ 23082
(

m

10−10 eV/c2

)2
×
( Ω
mc2/ℏ

)2
[kHz2] , (5.1e)

where mP =
√
ℏc/G is the Planck mass. The values of the (dimensionless) quantities to

the right of the multiplication signs can be readily read from the plots for a given solution.
If M/(m2

P/m) ∼ O(1) (say), bosonic fields with m ≲ 10−10 eV/c2 are compatible with
stellar-mass or even supermassive objects.

5.1 Equilibrium solutions

To find equilibrium bosonic stars, one fixes ω < µ, provides an initial guess for ψ0 (either ϕ0
or f0), and solves the boundary value problem with the corresponding BCs. This amounts to
numerically integrating eqs. (3.3) and (3.6) from rµ = δ ≪ 1 (here, δ = 10−6) to Dµ ∼ O(10),
typically, where D is the (numerical) radial coordinate of the outer boundary.3 Once a solution
is found, the mass, Noether charge, radius, and compactness can be readily computed. The
solutions presented herein are uniquely identified by the field’s central value, thus being
particularly convenient to display most physical quantities as functions of either ϕ0 or f0.

Figure 2 (left column) shows the parameter space of fundamental MBSs (see also figure 4).
Their mass-radius relation is akin to that of neutron stars [30]. The minimum radius of
MBSs is 4.12/µ. Like neutron stars, they also have a maximum mass, M (max)

MBSs ≈ 0.633m2
P/m.

The maximum-mass solution also maximizes the Noether charge, but its binding energy is
negative. It is long known that this configuration marks a change in the stability of MBSs.
This will be addressed in the following section.

The general features outlined above might change when adding self-interactions to the
scalar-field potential. Recall, however, that both the solitonic and axionic potentials reduce
to that of MBSs when v0 ≫ |Φ| and fa ≫

√
ℏ|Φ|, respectively. Of particular interest here

are cases for which the mass has several critical points with respect to ϕ0. This can occur in
the complementary regimes v0 ≲ |Φ| and fa ≲

√
ℏ|Φ|, as it is clear from figure 2 (middle and

right columns) for fundamental SBSs with v0 = 0.20 and fundamental ABSs with fa = 0.08,
respectively. Their parameter space differs significantly from that of MBSs, displaying new
branches, and hence new mass extrema. The inclusion of self-interactions can in particular
make the first maximum a local (rather than a global) extremum. Although this is only
shown for SBSs, the same is possible for ABSs with sufficiently small values of fa [32]. In the
neighborhood of the new maxima lie configurations with negative binding energy. Additionally,
self-interacting BSs can be “smaller” and more compact than MBSs, as shown in figure 4.

The parameter space of fundamental MBSs and PSs, on the other hand, look very much
alike, with f0 playing the role of ϕ0 in the latter — see figure 3 and figure 4 (bottom row).
The maximum mass of PSs is significantly larger than that of MBSs, M (max)

PSs ≈ 1.058m2
P/m.

3The numerical value of D should be such that the hypersurface r = D encloses more than 99% of the
mass, i.e. D > R. The stars become dilute when approaching the Newtonian limit (ω → µ), in which one
takes Dµ ∼ O(100).
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Figure 2. Spherically symmetric spin-0 boson stars in equilibrium. Central value of the metric
function σ, σ0 (first row), frequency (second row), mass (third row), binding energy, ∆ ≡ M −mQ

(fourth row), and radius (fifth row), all as functions of the shooting parameter ϕ0, for mini-boson
stars (left column), solitonic boson stars with v0 = 0.20 (middle column), and axion boson stars with
fa = 0.08 (right column). The critical points, labeled numerically in the third row (cf. table 2), are
represented by open circles (maxima) and open triangles (minima). Stars along solid (dashed) curves
are stable (unstable), i.e. Ω2 > 0 (Ω2 < 0) (cf. figure 5).

As before, PSs can become heavier and more compact when (repulsive) self-interactions are
taken into account [37], but this case is not considered here.

5.2 Perturbed solutions

Each equilibrium solution is expected to have an infinite countable number of squared
perturbation frequencies {Ω2

n}∞
n=0, labeled by the node number n. The lowest-frequency

mode is called the fundamental mode, whereas modes with n > 0 are excited modes. When,
for a given solution, the fundamental mode is stable (Ω2

0 > 0), then all excited modes are
stable, because Ω2

0 < Ω2
1 < Ω2

2 < . . .. When it is unstable, the first excited mode can be
either stable or unstable, because Ω2

0 < Ω2
1. If stable, all higher-n modes are also stable. If
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Figure 3. Same as in figure 2
but for spherically symmetric
spin-1 boson stars in equilibrium
(cf. figure 6). f0 plays the role of
ϕ0 therein.

Figure 4. Mass-radius diagram (left column) and compactness
as a function of the shooting parameter ψ0 (right column) for the
spin-0 (top rows) and spin-1 (bottom row) boson stars in figure 2
and figure 3, respectively, where the colors match those therein.

unstable, the second excited mode can be either stable or unstable, because Ω2
1 < Ω2

2. The
very same reasoning can be generalized to the n-th mode. The fundamental mode is thus
the most relevant to linear stability. Still, in the following, both fundamental (n = 0) and
first (n = 1) excited modes are considered. The latter are only used to benchmark the results
against those available in the literature (see appendix A).

To find perturbed BSs, one takes an equilibrium solution, provides an initial guess for
{h0,Ω2}, and solves the boundary value problem defined by eqs. (4.4) and eqs. (4.6) or (4.7).
The squared fundamental frequencies Ω2

0 of the equilibrium solutions presented in the previous
section are shown in figure 5 and figure 6. As expected, they vanish in the Newtonian limit
(ω → µ). For MBSs and PSs, Ω2

0 first increases with increasing ϕ0 and f0, respectively,
reaches a maximum value and then drops to zero at the maximum-mass solution. The
frequency Ω0 ranges roughly between 0 and 10−2 (in units of mc2/ℏ) in the first branch of
both MBSs and PSs, but it is typically larger for the latter. The excited states are also
stable. The zero mode (Ω2

0 = 0) marks the onset of the instability. Indeed, Ω2
0 becomes

negative as ϕ0 and f0 increase beyond their maximum-mass values, with shorter and shorter
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instability timescales. In summary, both MBSs and PSs are linearly stable against radial
perturbations in the first branch but succumb to instabilities otherwise. The dynamical
evolution of perturbed MBSs [21, 22] corroborates this result: configurations in the first
branch are set into oscillation, dominated by the fundamental frequency Ω0, which results
in a leak of scalar radiation and a decrease in the mass; configurations in the remaining
branches either migrate towards the first branch, collapse into BHs or disperse altogether.
It is worth noting that the aforementioned dynamical evolutions were performed by enforcing
spherical symmetry, which prevents MBSs from decaying into non-spherical configurations
in case such decay channels would be dynamically favored. The authors are not aware of
any study of non-spherical perturbations of spherically symmetric bosonic stars. Lifting
this restriction would make it possible to trigger non-monopolar modes that could change
the dynamics. Given that spherical configurations are thought to be the ground state of
MBSs, it is likely, though, that their stability properties remain unaltered. As for spherical
PSs, recent dynamical evolutions have shown that, in the absence of spatial symmetries
or even imposing a Z2-symmetry, configurations in the first branch, supposed to be stable
according to linear perturbation theory, grow a dipolar mode and become prolate PSs [38].
This is because the former are not the true ground states of PSs, as first realized in the
Newtonian limit [39].

The parameter space of both MBSs and PSs feature two critical points: a (global)
maximum (1 and 10, respectively) and a (local) minimum (2 and 11, respectively). While
the maxima do correspond to a change in the stability of the fundamental mode, it is clear
from figure 5 and figure 6 that the minima do not signal any instability-stability transition,
but rather represent unstable configurations. The very same conclusions can be drawn by
applying the critical point method, i.e. computing the sign of dR/dψ0 at each critical point,
as illustrated in table 2. These results show that critical points are not always zero modes,
pinpointing stability reversals (either from stability to instability or vice versa).

Turning to self-interacting BSs, the spectrum of fundamental frequencies is richer, with
(at least) two stable and two unstable branches. As before, the first branch, which contains the
Newtonian limit, is stable, whereas the second branch is unstable. The instability timescale
has a minimum value, though, which depends on the parameters σ0 and fa. The local minima
4 and 7 correspond to zero modes, meaning that the third branch is also stable. The frequency
Ω0 also attains a maximum value in this branch, about one order of magnitude larger than
that of the first branch. The third and fourth branches are separated by the maxima 5 and 8,
for which Ω2

0 = 0. The parameter space of ABSs has another critical point, the local minimum
9, which is not a zero mode: the fourth and the fifth branches are both unstable. Once again,
the critical point method is in agreement with these conclusions, as shown in table 2.

6 Conclusion

Dynamical stability is a central notion in physics. A system in dynamic equilibrium is said to be
dynamically stable if, when perturbed, all physical quantities associated with the perturbation
remain bounded in time, and, ultimately, dynamic equilibrium is restored. Otherwise, the
system is said to be dynamically unstable. This notion encompasses those of linear dynamical
stability as well as mode stability. Although both refer to linear perturbations (i.e. sufficiently
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Figure 5. Perturbed spherically symmetric spin-0 boson stars. Central value of the metric function
H0, h0 (first row), and squared fundamental frequency Ω2

0, both as functions of the shooting parameter
ϕ0, for mini-boson stars (left column), solitonic boson stars with v0 = 0.20 (middle column), and
axion boson stars with fa = 0.08 (right column), in a similar fashion to that in figure 2.
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Figure 6. Same as in figure 5 but for spherically symmetric spin-1 boson stars. f0 plays the role of
ϕ0 therein.

small disturbances), the latter concerns mode (i.e. fixed-frequency) perturbations. Mode
stability guarantees that the system does not have exponentially growing mode solutions
(with Im Ω > 0).

Dynamical stability implies linear dynamical stability, which in turn implies mode
stability. It is then natural to assess the dynamical stability of a system by first studying
its mode stability. This amounts to considering mode solutions to the equations governing
linear perturbations. There has been a major effort to establish the mode stability of several
compact objects, such as fluid stars, BSs, and BHs. This problem is generally intractable unless
symmetries are imposed on the system. Spherical symmetry is frequently the starting point
for such analysis, as it greatly simplifies the perturbation equations. A further simplification
is to consider monopolar perturbations, i.e. study radial stability. Such oversimplification

— narrowing dynamical stability down to radial stability — may seem pointless. However,
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Critical point ψ0
ℏ/(mc)

ω

mc2/ℏ
M

m2
P/m

Q

m2
P/m

2
R

ℏ/(mc)
dR
dψ0

( Ω0
mc2/ℏ

)2

1 0.192 0.853 0.633 0.653 7.86 < 0 0
2 0.816 0.845 0.341 0.281 4.84 > 0 −0.606

3 0.109 0.924 0.426 0.432 11.1 < 0 0
4 0.342 0.802 0.388 0.388 5.37 < 0 0
5 0.563 0.629 0.436 0.457 3.54 < 0 0

6 0.132 0.905 0.493 0.503 10.0 < 0 0
7 0.366 0.820 0.358 0.347 5.39 < 0 0
8 0.560 0.637 0.429 0.445 3.55 < 0 0
9 0.955 0.770 0.294 0.241 3.69 > 0 −0.900

10 0.0971 0.874 1.06 1.09 12.0 < 0 0
11 0.858 0.898 0.496 0.412 7.28 > 0 −0.312

Table 2. Critical points identified in figure 2 and figure 3.

as far as spherically symmetric systems are concerned, radial stability analysis can provide
a good proxy for linear dynamics, as reported in [22, 24] for BSs.

This paper addressed the radial stability of spherically symmetric mini-, solitonic, and
axionic BSs as well as PSs. It focused on the numerical computation of their fundamental
squared perturbation frequency. Previous works mostly looked into MBSs, and results for
SBSs and ABSs were sparse or even lacking in the literature.4 The addition of self-interactions
to the scalar-field potential turns the parameter space more involved, with more branches
and also zero-frequency modes. As for PSs, their radial stability was preliminarily studied
in [11], wherein the fundamental mode frequency was presented for configurations in the
neighborhood of the maximum-mass PS. These results were extended herein to the whole
parameter space of PSs. Their spectrum turns out to bear a close resemblance to that of
MBSs, featuring a stable branch and an unstable branch, divided by the maximum-mass
solution. Nonetheless, spherically symmetric PSs along the stable branch (with respect to
spherical perturbations) are not dynamically stable, as they decay into prolate configurations,
the true ground states of static PSs [38]. This is a remarkable example of how (radial) mode
stability may not translate into dynamical stability. In light of this result, it would be of
particular interest to study dipolar perturbations of prolate PSs.

Another example of the aforementioned contrast is that of radially excited MBSs, i.e.
configurations with at least one node in the radial direction. Figure 7 shows the parameter
space of one-node MBSs is akin to that of the ground state, with a stable branch connecting
the Newtonian limit to the maximum-mass solution. Such putatively stable configurations
turn out to be dynamically unstable, either decaying to the ground state or collapsing into
a BH [41]. In other words, mode stability may not persist when non-linear effects are
taken into account.

4To the best of the author’s knowledge, the radial stability of SBSs was only partially addressed in [40].
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The main take-home message from this study is that dM/dψ0 = 0 is not a sufficient
condition for the existence of a zero-frequency mode and, therefore, for a stability-instability
transition (as far as spherically symmetric bosonic stars are concerned5). This statement is
not always made explicit in the literature — rather the opposite.6 As a result, the condition
dM/dψ0 = 0 can be easily misread as equivalent to Ω2 = 0. Table 2 makes the difference clear:
all solutions listed therein satisfy dM/dψ0 = 0 but only those with Ω2

0 = 0 pinpoint changes
in stability across the corresponding parameter space, as shown in figure 5 and figure 6. The
authors hope the examples presented herein help clear up any misconceptions about the
meaning of critical points on a plot of M vs. ψ0, as they can lead to fallacious conclusions.
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A Comparison with the literature

For completeness, some of the results presented in section 5 are benchmarked against those
available in the literature for the fundamental and first excited modes of MBSs [22, 24]. For
that purpose, it is convenient to define the rescaled frequencies

ω̂ ≡ ω

σ0
, Ω̂ ≡ Ω

σ0
, (A.1)

as they can be readily compared to those in [22]. Tables 3 and 4 (Tables 5 and 6) list
relevant quantities of this work’s solutions with values of ϕ0 matching those selected in [22]
([24]) for the fundamental and first excited state, respectively. The last two columns of
each table contains the values of ω̂ and Ω̂2

0 (ω and Ω2
0) reported therein. In general, the

agreement is excellent, as clearly shown in figure 8, although there are some discrepancies in
Ω2

0 or Ω̂2
0. This difference is likely to be linked to the cumulative errors when computing the

perturbed solutions. This computation amounts to solving the “pulsation equations” using
the equilibrium solutions, which, having been found numerically, already contain errors.
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Chapter 7

Outlook and perspectives

7.1 Outlook

Over the past decade, astronomers have made significant progress in testing the
black hole paradigm and the Kerr hypothesis. Although state-of-the-art observations are
consistent with the existence of Kerr black holes, the true nature of the most compact
and extreme astrophysical objects in the Universe remains elusive. The evasiveness of
black holes has its roots in the teleological nature of the event horizon [162], which refers
to the fact that its location is determined by the whole future history of spacetime,
i.e. by all the matter and energy that will ever fall into it. This results in its non-
detectability: astronomers cannot detect the event horizon itself, but only test the
consistency between observations and its existence. In addition to this property, the
event horizon of canonical black holes harbours singularities—wherein general relativity
breaks down—, and closed timelike curves—which violate causality. One can argue
that these features do not raise concerns if the event horizon keeps them cloaked in
secrecy, as suggested by the (weak) cosmic censorship conjecture. Even so, the event
horizon itself is directly linked to the information loss paradox, arguably the most
famous open problem in black hole physics.

The aforementioned theoretical challenges have prompted the search for alternatives,
lumped together under the umbrella term “exotic compact objects”, most of which (if
not all) are inextricably tied to new physics. Given the congruence between observations
and the current paradigm, one might ask oneself whether this is worth the effort. But
the truth is that conjecturing and exploring exotic compact objects helps to deepen
the understanding of the true nature of black holes, and gives a good head start on
explaining hypothetical deviations from the paradigm. The failure of a given alternative
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at describing the observable phenomenology of compact astrophysical objects reinforces
the current paradigm. Its success, on the other hand, can challenge the prevailing
framework in two ways: by either discarding the existence of astrophysical black holes
or adding a new species to the zoo of compact objects. In other words, exotic compact
objects can either take the place of black holes or coexist with them.

The design of astrophysically viable exotic compact objects is not an easy task:
they should be described within well-motivated physical theories, have a dynamical
formation mechanism, and be stable against sufficiently small perturbations [163]. Most
of the proposals listed in Chapter 1 do not meet (at least one of) these requirements.
Two families stand out from the rest in that regard: black holes with synchronized hair
and bosonic stars. Both appear in Einstein’s gravity minimally coupled to complex
bosonic fields, one of the simplest yet rich classical field theories featuring exotic matter
with potential astrophysical relevance—if ultralight, not only such putative bosonic
fields can be part of the dark matter content of the Universe, but they can also form
compact objects with astrophysical masses.

This doctoral thesis considered, for the most part, equilibrium properties of black
holes with synchronized hair and bosonic stars, with a focus on their link to the
formation and stability of these compact objects. Overall, the characteristics addressed
herein are not very sensitive to the spin (either 0 or 1) of the bosonic field. In truth,
minor differences apart, the parameter spaces of scalar and Proca field equilibrium
solutions look very alike in shape, and possess similar trends and limits. As for black
holes, the similitude extends to stationary clouds—e.g. their radial distribution is
similar, both inside and outside the event horizon. Additionally, the variation of their
“hairiness” in the neighborhood of the Kerr limit does not differ significantly, with
superradiance-grown black holes storing at most 10% of their energy in the bosonic field.
Finally, there is also no evidence that the spin has influence over the thermodynamic
stability of black holes with synchronized hair (at least in the canonical ensemble)—they
are unstable even if branched off from stable Kerr black holes.

Despite the close resemblance, there are, however, some relevant differences. Firstly,
fixing the mass of the hypothetical bosonic field, the parameter space of comparable
scalar and Proca field solutions spans over different ranges. The latter can be more
massive and rotate slower than the former. Secondly, the elliptic solutions differ
in the topology of the surfaces of constant energy density—they are spherical for a
scalar field, but toroidal for a Proca field. This subtle dissimilarity turns out to be
intimately connected with the dynamical stability of rotating bosonic stars [74]—boson
stars are dynamically unstable, whereas Proca stars are dynamically stable. From an
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astrophysical standpoint, Proca fields might be more viable than scalar fields. Whether
this result holds in the presence of an event horizon or not, it remains unclear. Lastly,
another difference, only briefly mentioned in Chapter 1 and Chapter 6, refers to the
ground state of static bosonic stars, which do not share the same spatial symmetries—
boson stars are spherical, and Proca stars are prolate.

The work presented herein fits into testing the theoretical and phenomenological
viability of both black holes with synchornized hair and bosonic stars. This is a
relevant and timely endeavour now that gravitational-wave astronomy is approaching
its first precision era: the Laser Interferometer Space Antenna (LISA), a mission led
by European Space Agency, is scheduled to launch in the mid-2030s, and is expected
to deliver the ultimate test of the black hole paradigm and the Kerr hypothesis.

7.2 Perspectives

Extensions of the work presented herein are manifold. A natural avenue for future
research is to obtain new equilibrium solutions of Einstein’s equations (coupled or not
to matter) describing compact objects. A fruitful approach to it has been looking for
instabilities of known (exact or numerical) equilibrium solutions, as they are often
associated with the existence of new ones.1 A paradigmatic example of this connection
is the Gregory-Laflamme instability of the black string [164, 165], whose zero mode
generates a family of non-uniform black string solutions [166, 167]. Similarly, black
holes with synchronized hair branch off from the zero mode of superradiant instabilities
of Kerr black holes. The aforementioned instabilities are linear, i.e. they manifest
themselves as exponentially-growing modes of the linearized equations of motion.
Perturbation theory thus turns out to be particularly helpful to find such instabilities
and provide approximations to new solutions (if any). This procedure has been used to
obtain the original black holes with synchronized hair and their variants. Recently, a
new variant has been suggested in the context of primordial magnetic monopoles [168].
If these are assumed to be magnetic black holes, massive charged bososnic fields can
be superradiantly unstable in their vicinity, and, as expected, zero modes exist at the
onset of the instability. Accordingly, new solutions branch out from them—they might
be called magnetic black holes with synchronized hair. A distinctive feature of this
family is that Dirac’s quantization condition not only allows for the bosonic field’s

1This is not necessarily the case. For instance, Myers-Perry black holes are prone to bar-mode
(i.e. non-axisymmetric) instabilities but they do not branch off to new families of solutions.
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winding number to be a rational number, but also can break its north-south symmetry.
Their construction is underway, and the results shall be published soon.

A slightly different avenue is to search for quasi-equilibrium solutions of Einstein’s
equations, i.e. dynamical solutions that remain virtually unchanged for sufficiently
long times (compared to either astrophysical or cosmological timescales). Dynamical
resonances are a typical case of meta-equilibrium in black hole physics. These solutions
describe slowly time-varying fields around black holes, and are closely related to quasi-
bound states: the oscillation frequency (decay rate) of the former matches the real
(imaginary) part of the frequency of the latter. However, while quasi-bound states are
unphysical, as their energy density diverges at the event horizon, dynamical resonances
are regular solutions with finite energy. They arise even when the metric is that of a
Schwarzschild black hole [169, 170], evading no-hair theorems thanks to their dynamical
nature. In the case of a massive scalar field, the half-life time of such solutions (also
known in the literature as “wigs”) can be larger than the Hubble time. The inclusion of
(either attractive or repulsive) quartic self-interactions impacts the spatial distribution
of the scalar field, but its effect upon the half-life time is subdominant [171]. An
interesting variation on this setting is to replace the potential of the complex scalar
field by a coupling to a real scalar field with a finite vacuum expectation value, that
is, to consider the Friedberg-Lee-Sirlin field theory [172]. In this theory, which can
be considered an ultraviolet completion of the aforementioned self-interacting scalar
field theory, the real field generates mass for the complex field via a Higgs mechanism.
A minimal coupling to Einstein’s gravity allows for both equilibrium [173, 174] and
quasi-equilibrium solutions. The computation and analysis of quasi-bound states and
dynamical resonances of Schwarzschild black holes in this context is a work in progress.

Another avenue for future research is to study the stability of compact objects,
a subject that is as crucial to their astrophysical viability as it is hard to tackle,
namely away from spherical symmetry. There are two main approaches to address this
issue: perturbation theory and numerical relativity. They typically offer different but
complementary perspectives to the subject, and have been proven successful for different
families of compact objects. Still, the stability of black holes with synchronized hair,
albeit of great relevance, remains, for the most part, an open and challenging question.
The only step in that direction concentrates on scalar hair and is based on linear
perturbation theory [139]. The authors showed in particular that it is always possible
to choose a gauge such that the linearized Klein-Gordon equation decouple from the
metric perturbations. It would be interesting to exploit this simplification so as to
extend the stability analysis therein, especially the computation of the quasinormal
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mode spectrum, which is instrumental in the interpretation of the ringdown phase of
compact binary mergers. Also of interest would be to consider Proca hair and check
whether or not it is prone to stronger supperradiant instabilities, just as it happens
in the absence of hair. Furthermore, a similar framework should likewise apply to
bosonic stars, whose dynamical stability deserves further investigation, despite some
enlightening recent developments [74, 9].





References

[1] N. M. Santos, C. L. Benone, L. C. B. Crispino, C. A. R. Herdeiro and E. Radu,
Black holes with synchronised Proca hair: linear clouds and fundamental
non-linear solutions, JHEP 07 (2020) 010 [2004.09536].

[2] N. M. Santos and C. A. R. Herdeiro, Stationary scalar and vector clouds around
Kerr–Newman black holes, Int. J. Mod. Phys. D 29 (2020) 2041013
[2005.07201].

[3] N. M. Santos and C. A. R. Herdeiro, Black holes, stationary clouds and
magnetic fields, Phys. Lett. B 815 (2021) 136142 [2102.04989].

[4] C. A. R. Herdeiro, E. Radu and N. M. Santos, A bound on energy extraction
(and hairiness) from superradiance, Phys. Lett. B 824 (2022) 136835
[2111.03667].

[5] N. M. Santos, C. A. R. Herdeiro and E. Radu, Thermodynamic stability of
quasibald asymptotically flat black holes, Phys. Rev. D 106 (2022) 124005
[2207.10089].

[6] N. M. Santos, C. L. Benone and C. A. R. Herdeiro, Radial stability of spherical
bosonic stars and critical points, JCAP 06 (2024) 068 [2404.07257].

[7] A. M. Pombo, J. M. S. Oliveira and N. M. Santos, Coupled scalar-Proca soliton
stars, Phys. Rev. D 108 (2023) 044044 [2304.13749].

[8] P. Ildefonso, M. Zilhão, C. Herdeiro, E. Radu and N. M. Santos, Self-interacting
dipolar boson stars and their dynamics, Phys. Rev. D 108 (2023) 064011
[2307.00044].

[9] C. A. R. Herdeiro, E. Radu, N. Sanchis-Gual, N. M. Santos and E. dos Santos
Costa Filho, The non-spherical ground state of Proca stars, Phys. Lett. B 852
(2024) 138595 [2311.14800].

[10] M. Carrasco-H., N. M. Santos and E. Contreras, Spontaneous scalarization in
Einstein-power-Maxwell-scalar models, Phys. Dark Univ. 45 (2024) 101529
[2405.20442].

[11] J. A. Wheeler, Our universe: the known and the unknown., American Scientist
56 (1968) 1.

https://doi.org/10.1007/JHEP07(2020)010
https://arxiv.org/abs/2004.09536
https://doi.org/10.1142/S0218271820410138
https://arxiv.org/abs/2005.07201
https://doi.org/10.1016/j.physletb.2021.136142
https://arxiv.org/abs/2102.04989
https://doi.org/10.1016/j.physletb.2021.136835
https://arxiv.org/abs/2111.03667
https://doi.org/10.1103/PhysRevD.106.124005
https://arxiv.org/abs/2207.10089
https://doi.org/10.1088/1475-7516/2024/06/068
https://arxiv.org/abs/2404.07257
https://doi.org/10.1103/PhysRevD.108.044044
https://arxiv.org/abs/2304.13749
https://doi.org/10.1103/PhysRevD.108.064011
https://arxiv.org/abs/2307.00044
https://doi.org/10.1016/j.physletb.2024.138595
https://doi.org/10.1016/j.physletb.2024.138595
https://arxiv.org/abs/2311.14800
https://doi.org/10.1016/j.dark.2024.101529
https://arxiv.org/abs/2405.20442


138 References

[12] J. Michell, On the Means of Discovering the Distance, Magnitude, &c. of the
Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in
Case Such a Diminution Should be Found to Take Place in any of Them, and
Such Other Data Should be Procured from Observations, as Would be Farther
Necessary for That Purpose., Phil. Trans. Roy. Soc. Lond. 74 (1784) 35.

[13] P. de Laplace and I. du Cercle-Social, Exposition du système du monde, no. vol.
2 in Exposition du système du monde. De l’Imprimerie du Cercle-Social, rue du
Théâtre Française, No. 4., 1796.

[14] A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Annalen der
Physik 354 (1916) 769.

[15] K. Schwarzschild, On the gravitational field of a mass point according to
Einstein’s theory, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1916
(1916) 189 [physics/9905030].

[16] J. R. Oppenheimer and H. Snyder, On Continued gravitational contraction,
Phys. Rev. 56 (1939) 455.

[17] R. P. Kerr, Gravitational field of a spinning mass as an example of algebraically
special metrics, Phys. Rev. Lett. 11 (1963) 237.

[18] M. Schmidt, 3C 273 : A Star-Like Object with Large Red-Shift, Nature 197
(1963) 1040.

[19] B. Carter, Axisymmetric Black Hole Has Only Two Degrees of Freedom, Phys.
Rev. Lett. 26 (1971) 331.

[20] D. C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975)
905.

[21] P. T. Chrusciel, J. Lopes Costa and M. Heusler, Stationary Black Holes:
Uniqueness and Beyond, Living Rev. Rel. 15 (2012) 7 [1205.6112].

[22] C. A. R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair:
a review, Int. J. Mod. Phys. D 24 (2015) 1542014 [1504.08209].

[23] M. S. Volkov, Hairy black holes in the XX-th and XXI-st centuries, in 14th
Marcel Grossmann Meeting on Recent Developments in Theoretical and
Experimental General Relativity, Astrophysics, and Relativistic Field Theories,
vol. 2, pp. 1779–1798, 2017, 1601.08230, DOI.

[24] S. Chandrasekhar, Shakespeare, Newton and Beethoven or patterns of creativity,
Current Science 70 (1996) 810.

[25] R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett.
14 (1965) 57.

[26] J. M. M. Senovilla, Singularity Theorems and Their Consequences, Gen. Rel.
Grav. 30 (1998) 701 [1801.04912].

https://doi.org/10.1098/rstl.1784.0008
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1002/andp.19163540702
https://arxiv.org/abs/physics/9905030
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1038/1971040a0
https://doi.org/10.1038/1971040a0
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1103/PhysRevLett.34.905
https://doi.org/10.1103/PhysRevLett.34.905
https://doi.org/10.12942/lrr-2012-7
https://arxiv.org/abs/1205.6112
https://doi.org/10.1142/S0218271815420146
https://arxiv.org/abs/1504.08209
https://arxiv.org/abs/1601.08230
https://doi.org/10.1142/9789813226609_0184
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1023/A:1018801101244
https://doi.org/10.1023/A:1018801101244
https://arxiv.org/abs/1801.04912


References 139

[27] NobelPrize.org, “All Nobel Prizes in Physics.”
https://www.nobelprize.org/prizes/lists/all-nobel-prizes-in-physics/, 2024.

[28] S. W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25
(1972) 152.

[29] R. Penrose, Gravitational collapse: The role of general relativity, Riv. Nuovo
Cim. 1 (1969) 252.

[30] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333.

[31] J. M. Bardeen, B. Carter and S. W. Hawking, The Four laws of black hole
mechanics, Commun. Math. Phys. 31 (1973) 161.

[32] S. W. Hawking, Black hole explosions, Nature 248 (1974) 30.

[33] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43
(1975) 199.

[34] S. W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys.
Rev. D 14 (1976) 2460.

[35] R. Genzel, F. Eisenhauer and S. Gillessen, Experimental studies of black holes:
status and future prospects, 2404.03522.

[36] R. Giacconi, H. Gursky, F. R. Paolini and B. B. Rossi, Evidence for x Rays
From Sources Outside the Solar System, Phys. Rev. Lett. 9 (1962) 439.

[37] R. Genzel, F. Eisenhauer and S. Gillessen, The Galactic Center Massive Black
Hole and Nuclear Star Cluster, Rev. Mod. Phys. 82 (2010) 3121 [1006.0064].

[38] Event Horizon Telescope collaboration, First Sagittarius A* Event
Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the
Center of the Milky Way, Astrophys. J. Lett. 930 (2022) L12 [2311.08680].

[39] Event Horizon Telescope collaboration, First M87 Event Horizon
Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J.
Lett. 875 (2019) L1 [1906.11238].

[40] LIGO Scientific, Virgo collaboration, Observation of Gravitational Waves
from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102
[1602.03837].

[41] KAGRA, VIRGO, LIGO Scientific collaboration, GWTC-3: Compact
Binary Coalescences Observed by LIGO and Virgo during the Second Part of the
Third Observing Run, Phys. Rev. X 13 (2023) 041039 [2111.03606].

[42] V. Cardoso and P. Pani, Testing the nature of dark compact objects: a status
report, Living Rev. Rel. 22 (2019) 4 [1904.05363].

[43] D. J. Kaup, Klein-Gordon Geon, Phys. Rev. 172 (1968) 1331.

https://www.nobelprize.org/prizes/lists/all-nobel-prizes-in-physics/
https://doi.org/10.1007/BF01877517
https://doi.org/10.1007/BF01877517
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF01645742
https://doi.org/10.1038/248030a0
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1103/PhysRevD.14.2460
https://arxiv.org/abs/2404.03522
https://doi.org/10.1103/PhysRevLett.9.439
https://doi.org/10.1103/RevModPhys.82.3121
https://arxiv.org/abs/1006.0064
https://doi.org/10.3847/2041-8213/ac6674
https://arxiv.org/abs/2311.08680
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://arxiv.org/abs/1906.11238
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.1103/PhysRevX.13.041039
https://arxiv.org/abs/2111.03606
https://doi.org/10.1007/s41114-019-0020-4
https://arxiv.org/abs/1904.05363
https://doi.org/10.1103/PhysRev.172.1331


140 References

[44] R. Ruffini and S. Bonazzola, Systems of selfgravitating particles in general
relativity and the concept of an equation of state, Phys. Rev. 187 (1969) 1767.

[45] R. L. Bowers and E. P. T. Liang, Anisotropic Spheres in General Relativity,
Astrophys. J. 188 (1974) 657.

[46] M. S. Morris, K. S. Thorne and U. Yurtsever, Wormholes, Time Machines, and
the Weak Energy Condition, Phys. Rev. Lett. 61 (1988) 1446.

[47] P. O. Mazur and E. Mottola, Gravitational vacuum condensate stars, Proc. Nat.
Acad. Sci. 101 (2004) 9545 [gr-qc/0407075].

[48] S. D. Mathur, The Fuzzball proposal for black holes: An Elementary review,
Fortsch. Phys. 53 (2005) 793 [hep-th/0502050].

[49] M. S. Volkov and D. V. Galtsov, NonAbelian Einstein Yang-Mills black holes,
JETP Lett. 50 (1989) 346.

[50] C. A. R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev.
Lett. 112 (2014) 221101 [1403.2757].

[51] D. D. Doneva and S. S. Yazadjiev, New Gauss-Bonnet Black Holes with
Curvature-Induced Scalarization in Extended Scalar-Tensor Theories, Phys. Rev.
Lett. 120 (2018) 131103 [1711.01187].

[52] H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou and E. Berti, Spontaneous
scalarization of black holes and compact stars from a Gauss-Bonnet coupling,
Phys. Rev. Lett. 120 (2018) 131104 [1711.02080].

[53] D. D. Doneva, F. M. Ramazanoğlu, H. O. Silva, T. P. Sotiriou and S. S.
Yazadjiev, Spontaneous scalarization, Rev. Mod. Phys. 96 (2024) 015004
[2211.01766].

[54] J. Bovy and S. Tremaine, On the local dark matter density, Astrophys. J. 756
(2012) 89 [1205.4033].

[55] C. F. McKee, A. Parravano and D. J. Hollenbach, Stars, Gas, and Dark Matter
in the Solar Neighborhood, Astrophys. J. 814 (2015) 13 [1509.05334].

[56] S. Sivertsson, H. Silverwood, J. I. Read, G. Bertone and P. Steger, The localdark
matter density from SDSS-SEGUE G-dwarfs, Mon. Not. Roy. Astron. Soc. 478
(2018) 1677 [1708.07836].

[57] W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev.
Lett. 85 (2000) 1158 [astro-ph/0003365].

[58] R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Instantons,
Phys. Rev. Lett. 38 (1977) 1440.

[59] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell,
String Axiverse, Phys. Rev. D 81 (2010) 123530 [0905.4720].

https://doi.org/10.1103/PhysRev.187.1767
https://doi.org/10.1086/152760
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1073/pnas.0402717101
https://doi.org/10.1073/pnas.0402717101
https://arxiv.org/abs/gr-qc/0407075
https://doi.org/10.1002/prop.200410203
https://arxiv.org/abs/hep-th/0502050
https://doi.org/10.1103/PhysRevLett.112.221101
https://doi.org/10.1103/PhysRevLett.112.221101
https://arxiv.org/abs/1403.2757
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131103
https://arxiv.org/abs/1711.01187
https://doi.org/10.1103/PhysRevLett.120.131104
https://arxiv.org/abs/1711.02080
https://doi.org/10.1103/RevModPhys.96.015004
https://arxiv.org/abs/2211.01766
https://doi.org/10.1088/0004-637X/756/1/89
https://doi.org/10.1088/0004-637X/756/1/89
https://arxiv.org/abs/1205.4033
https://doi.org/10.1088/0004-637X/814/1/13
https://arxiv.org/abs/1509.05334
https://doi.org/10.1093/mnras/sty977
https://doi.org/10.1093/mnras/sty977
https://arxiv.org/abs/1708.07836
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevLett.85.1158
https://arxiv.org/abs/astro-ph/0003365
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.81.123530
https://arxiv.org/abs/0905.4720


References 141

[60] F. F. Freitas, C. A. R. Herdeiro, A. P. Morais, A. Onofre, R. Pasechnik, E. Radu
et al., Ultralight bosons for strong gravity applications from simple Standard
Model extensions, JCAP 12 (2021) 047 [2107.09493].

[61] L. Hui, Wave Dark Matter, Ann. Rev. Astron. Astrophys. 59 (2021) 247
[2101.11735].

[62] J. A. Wheeler, Geons, Phys. Rev. 97 (1955) 511.

[63] F. E. Schunck and E. W. Mielke, General relativistic boson stars, Class. Quant.
Grav. 20 (2003) R301 [0801.0307].

[64] S. L. Liebling and C. Palenzuela, Dynamical boson stars, Living Rev. Rel. 26
(2023) 1 [1202.5809].

[65] L. Visinelli, Boson stars and oscillatons: A review, Int. J. Mod. Phys. D 30
(2021) 2130006 [2109.05481].

[66] P. Jetzer and J. J. van der Bij, CHARGED BOSON STARS, Phys. Lett. B 227
(1989) 341.

[67] E. W. Mielke and F. E. Schunck, Rotating boson stars, .

[68] S. Yoshida and Y. Eriguchi, Rotating boson stars in general relativity, Phys. Rev.
D 56 (1997) 762.

[69] T. D. Lee and Y. Pang, Nontopological solitons, Phys. Rept. 221 (1992) 251.

[70] S. Chandrasekhar, The maximum mass of ideal white dwarfs, Astrophys. J. 74
(1931) 81.

[71] M. Colpi, S. L. Shapiro and I. Wasserman, Boson Stars: Gravitational Equilibria
of Selfinteracting Scalar Fields, Phys. Rev. Lett. 57 (1986) 2485.

[72] R. Brito, V. Cardoso, C. A. R. Herdeiro and E. Radu, Proca stars: Gravitating
Bose–Einstein condensates of massive spin 1 particles, Phys. Lett. B 752 (2016)
291 [1508.05395].

[73] Z. Wang, T. Helfer and M. A. Amin, General relativistic polarized Proca stars,
Phys. Rev. D 109 (2024) 024019 [2309.04345].

[74] N. Sanchis-Gual, F. Di Giovanni, M. Zilhão, C. Herdeiro, P. Cerdá-Durán, J. A.
Font et al., Nonlinear Dynamics of Spinning Bosonic Stars: Formation and
Stability, Phys. Rev. Lett. 123 (2019) 221101 [1907.12565].

[75] E. Seidel and W.-M. Suen, Formation of solitonic stars through gravitational
cooling, Phys. Rev. Lett. 72 (1994) 2516 [gr-qc/9309015].

[76] F. S. Guzman and L. A. Urena-Lopez, Gravitational cooling of self-gravitating
Bose-Condensates, Astrophys. J. 645 (2006) 814 [astro-ph/0603613].

https://doi.org/10.1088/1475-7516/2021/12/047
https://arxiv.org/abs/2107.09493
https://doi.org/10.1146/annurev-astro-120920-010024
https://arxiv.org/abs/2101.11735
https://doi.org/10.1103/PhysRev.97.511
https://doi.org/10.1088/0264-9381/20/20/201
https://doi.org/10.1088/0264-9381/20/20/201
https://arxiv.org/abs/0801.0307
https://doi.org/10.1007/s41114-023-00043-4
https://doi.org/10.1007/s41114-023-00043-4
https://arxiv.org/abs/1202.5809
https://doi.org/10.1142/S0218271821300068
https://doi.org/10.1142/S0218271821300068
https://arxiv.org/abs/2109.05481
https://doi.org/10.1016/0370-2693(89)90941-6
https://doi.org/10.1016/0370-2693(89)90941-6
https://doi.org/10.1103/PhysRevD.56.762
https://doi.org/10.1103/PhysRevD.56.762
https://doi.org/10.1016/0370-1573(92)90064-7
https://doi.org/10.1086/143324
https://doi.org/10.1086/143324
https://doi.org/10.1103/PhysRevLett.57.2485
https://doi.org/10.1016/j.physletb.2015.11.051
https://doi.org/10.1016/j.physletb.2015.11.051
https://arxiv.org/abs/1508.05395
https://doi.org/10.1103/PhysRevD.109.024019
https://arxiv.org/abs/2309.04345
https://doi.org/10.1103/PhysRevLett.123.221101
https://arxiv.org/abs/1907.12565
https://doi.org/10.1103/PhysRevLett.72.2516
https://arxiv.org/abs/gr-qc/9309015
https://doi.org/10.1086/504508
https://arxiv.org/abs/astro-ph/0603613


142 References

[77] F. Di Giovanni, N. Sanchis-Gual, C. A. R. Herdeiro and J. A. Font, Dynamical
formation of Proca stars and quasistationary solitonic objects, Phys. Rev. D 98
(2018) 064044 [1803.04802].

[78] F. Di Giovanni, S. Fakhry, N. Sanchis-Gual, J. C. Degollado and J. A. Font,
Dynamical formation and stability of fermion-boson stars, Phys. Rev. D 102
(2020) 084063 [2006.08583].

[79] V. Cardoso, P. Pani, M. Cadoni and M. Cavaglia, Ergoregion instability of
ultracompact astrophysical objects, Phys. Rev. D 77 (2008) 124044 [0709.0532].

[80] V. Cardoso, L. C. B. Crispino, C. F. B. Macedo, H. Okawa and P. Pani, Light
rings as observational evidence for event horizons: long-lived modes, ergoregions
and nonlinear instabilities of ultracompact objects, Phys. Rev. D 90 (2014)
044069 [1406.5510].

[81] P. V. P. Cunha, C. Herdeiro, E. Radu and N. Sanchis-Gual, Exotic Compact
Objects and the Fate of the Light-Ring Instability, Phys. Rev. Lett. 130 (2023)
061401 [2207.13713].

[82] F. H. Vincent, Z. Meliani, P. Grandclement, E. Gourgoulhon and O. Straub,
Imaging a boson star at the Galactic center, Class. Quant. Grav. 33 (2016)
105015 [1510.04170].

[83] H. Olivares, Z. Younsi, C. M. Fromm, M. De Laurentis, O. Porth, Y. Mizuno
et al., How to tell an accreting boson star from a black hole, Mon. Not. Roy.
Astron. Soc. 497 (2020) 521 [1809.08682].

[84] Event Horizon Telescope collaboration, First Sagittarius A* Event
Horizon Telescope Results. VI. Testing the Black Hole Metric, Astrophys. J. Lett.
930 (2022) L17 [2311.09484].

[85] C. A. R. Herdeiro, A. M. Pombo, E. Radu, P. V. P. Cunha and N. Sanchis-Gual,
The imitation game: Proca stars that can mimic the Schwarzschild shadow,
JCAP 04 (2021) 051 [2102.01703].

[86] J. a. L. Rosa and D. Rubiera-Garcia, Shadows of boson and Proca stars with thin
accretion disks, Phys. Rev. D 106 (2022) 084004 [2204.12949].

[87] I. Sengo, P. V. P. Cunha, C. A. R. Herdeiro and E. Radu, The imitation game
reloaded: effective shadows of dynamically robust spinning Proca stars,
2402.14919.

[88] Z. Cao, A. Cardenas-Avendano, M. Zhou, C. Bambi, C. A. R. Herdeiro and
E. Radu, Iron Kα line of boson stars, JCAP 10 (2016) 003 [1609.00901].

[89] T. Shen, M. Zhou, C. Bambi, C. A. R. Herdeiro and E. Radu, Iron Kα line of
Proca stars, JCAP 08 (2017) 014 [1701.00192].

[90] eXTP collaboration, The enhanced X-ray Timing and Polarimetry
mission—eXTP, Sci. China Phys. Mech. Astron. 62 (2019) 29502 [1812.04020].

https://doi.org/10.1103/PhysRevD.98.064044
https://doi.org/10.1103/PhysRevD.98.064044
https://arxiv.org/abs/1803.04802
https://doi.org/10.1103/PhysRevD.102.084063
https://doi.org/10.1103/PhysRevD.102.084063
https://arxiv.org/abs/2006.08583
https://doi.org/10.1103/PhysRevD.77.124044
https://arxiv.org/abs/0709.0532
https://doi.org/10.1103/PhysRevD.90.044069
https://doi.org/10.1103/PhysRevD.90.044069
https://arxiv.org/abs/1406.5510
https://doi.org/10.1103/PhysRevLett.130.061401
https://doi.org/10.1103/PhysRevLett.130.061401
https://arxiv.org/abs/2207.13713
https://doi.org/10.1088/0264-9381/33/10/105015
https://doi.org/10.1088/0264-9381/33/10/105015
https://arxiv.org/abs/1510.04170
https://doi.org/10.1093/mnras/staa1878
https://doi.org/10.1093/mnras/staa1878
https://arxiv.org/abs/1809.08682
https://doi.org/10.3847/2041-8213/ac6756
https://doi.org/10.3847/2041-8213/ac6756
https://arxiv.org/abs/2311.09484
https://doi.org/10.1088/1475-7516/2021/04/051
https://arxiv.org/abs/2102.01703
https://doi.org/10.1103/PhysRevD.106.084004
https://arxiv.org/abs/2204.12949
https://arxiv.org/abs/2402.14919
https://doi.org/10.1088/1475-7516/2016/10/003
https://arxiv.org/abs/1609.00901
https://doi.org/10.1088/1475-7516/2017/08/014
https://arxiv.org/abs/1701.00192
https://doi.org/10.1007/s11433-018-9309-2
https://arxiv.org/abs/1812.04020


References 143

[91] N. Franchini, P. Pani, A. Maselli, L. Gualtieri, C. A. R. Herdeiro, E. Radu et al.,
Constraining black holes with light boson hair and boson stars using epicyclic
frequencies and quasiperiodic oscillations, Phys. Rev. D 95 (2017) 124025
[1612.00038].

[92] M. Bezares and C. Palenzuela, Gravitational Waves from Dark Boson Star
binary mergers, Class. Quant. Grav. 35 (2018) 234002 [1808.10732].

[93] C. Palenzuela, I. Olabarrieta, L. Lehner and S. L. Liebling, Head-on collisions of
boson stars, Phys. Rev. D 75 (2007) 064005 [gr-qc/0612067].

[94] V. Cardoso and P. Pani, Tests for the existence of black holes through
gravitational wave echoes, Nature Astron. 1 (2017) 586 [1709.01525].

[95] V. Cardoso, S. Hopper, C. F. B. Macedo, C. Palenzuela and P. Pani,
Gravitational-wave signatures of exotic compact objects and of quantum
corrections at the horizon scale, Phys. Rev. D 94 (2016) 084031 [1608.08637].

[96] V. Cardoso, E. Franzin and P. Pani, Is the gravitational-wave ringdown a probe
of the event horizon?, Phys. Rev. Lett. 116 (2016) 171101 [1602.07309].

[97] LIGO Scientific, Virgo collaboration, GW190521: A Binary Black Hole
Merger with a Total Mass of 150M⊙, Phys. Rev. Lett. 125 (2020) 101102
[2009.01075].

[98] J. Calderón Bustillo, N. Sanchis-Gual, A. Torres-Forné, J. A. Font, A. Vajpeyi,
R. Smith et al., GW190521 as a Merger of Proca Stars: A Potential New Vector
Boson of 8.7 × 10−13 eV, Phys. Rev. Lett. 126 (2021) 081101 [2009.05376].

[99] J. Calderon Bustillo, N. Sanchis-Gual, S. H. W. Leong, K. Chandra,
A. Torres-Forne, J. A. Font et al., Searching for vector boson-star mergers within
LIGO-Virgo intermediate-mass black-hole merger candidates, Phys. Rev. D 108
(2023) 123020 [2206.02551].

[100] C. Herdeiro and E. Radu, Ergosurfaces for Kerr black holes with scalar hair,
Phys. Rev. D 89 (2014) 124018 [1406.1225].

[101] J. F. M. Delgado, C. A. R. Herdeiro and E. Radu, Violations of the Kerr and
Reissner-Nordström bounds: Horizon versus asymptotic quantities, Phys. Rev. D
94 (2016) 024006 [1606.07900].

[102] C. Herdeiro and E. Radu, Construction and physical properties of Kerr black
holes with scalar hair, Class. Quant. Grav. 32 (2015) 144001 [1501.04319].

[103] B. Carter, Hamilton-Jacobi and Schrodinger separable solutions of Einstein’s
equations, Commun. Math. Phys. 10 (1968) 280.

[104] B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev.
174 (1968) 1559.

[105] D. R. Brill, P. L. Chrzanowski, C. Martin Pereira, E. D. Fackerell and J. R.
Ipser, Solution of the scalar wave equation in a kerr background by separation of
variables, Phys. Rev. D 5 (1972) 1913.

https://doi.org/10.1103/PhysRevD.95.124025
https://arxiv.org/abs/1612.00038
https://doi.org/10.1088/1361-6382/aae87c
https://arxiv.org/abs/1808.10732
https://doi.org/10.1103/PhysRevD.75.064005
https://arxiv.org/abs/gr-qc/0612067
https://doi.org/10.1038/s41550-017-0225-y
https://arxiv.org/abs/1709.01525
https://doi.org/10.1103/PhysRevD.94.084031
https://arxiv.org/abs/1608.08637
https://doi.org/10.1103/PhysRevLett.116.171101
https://arxiv.org/abs/1602.07309
https://doi.org/10.1103/PhysRevLett.125.101102
https://arxiv.org/abs/2009.01075
https://doi.org/10.1103/PhysRevLett.126.081101
https://arxiv.org/abs/2009.05376
https://doi.org/10.1103/PhysRevD.108.123020
https://doi.org/10.1103/PhysRevD.108.123020
https://arxiv.org/abs/2206.02551
https://doi.org/10.1103/PhysRevD.89.124018
https://arxiv.org/abs/1406.1225
https://doi.org/10.1103/PhysRevD.94.024006
https://doi.org/10.1103/PhysRevD.94.024006
https://arxiv.org/abs/1606.07900
https://doi.org/10.1088/0264-9381/32/14/144001
https://arxiv.org/abs/1501.04319
https://doi.org/10.1007/BF03399503
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1103/PhysRevD.5.1913


144 References

[106] E. Berti, V. Cardoso and M. Casals, Eigenvalues and eigenfunctions of
spin-weighted spheroidal harmonics in four and higher dimensions, Phys. Rev. D
73 (2006) 024013 [gr-qc/0511111].

[107] S. A. Teukolsky, Rotating black holes - separable wave equations for gravitational
and electromagnetic perturbations, Phys. Rev. Lett. 29 (1972) 1114.

[108] S. Hod, Stationary Scalar Clouds Around Rotating Black Holes, Phys. Rev. D 86
(2012) 104026 [1211.3202].

[109] S. Hod, Stationary resonances of rapidly-rotating Kerr black holes, Eur. Phys. J.
C 73 (2013) 2378 [1311.5298].

[110] S. Hod, Quasi-Bound States of Massive Scalar Fields in the Kerr Black-Hole
Spacetime: Beyond the Hydrogenic Approximation, Phys. Lett. B 749 (2015) 167
[1510.05649].

[111] S. Hod, The large-mass limit of cloudy black holes, Class. Quant. Grav. 32
(2015) 134002 [1607.00003].

[112] S. Hod, Spinning Kerr black holes with stationary massive scalar clouds: The
large-coupling regime, JHEP 01 (2017) 030 [1612.00014].

[113] M. Richartz, C. A. R. Herdeiro and E. Berti, Synchronous frequencies of
extremal Kerr black holes: resonances, scattering and stability, Phys. Rev. D 96
(2017) 044034 [1706.01112].

[114] G. García and M. Salgado, Regular scalar clouds around a Kerr-Newman black
hole: Subextremal and extremal scenarios, Phys. Rev. D 108 (2023) 104012
[2307.15888].

[115] S. Hod, Kerr-Newman black holes with stationary charged scalar clouds, Phys.
Rev. D 90 (2014) 024051 [1406.1179].

[116] C. L. Benone, L. C. B. Crispino, C. Herdeiro and E. Radu, Kerr-Newman scalar
clouds, Phys. Rev. D 90 (2014) 104024 [1409.1593].

[117] Y. Huang and D.-J. Liu, Scalar clouds and the superradiant instability regime of
Kerr-Newman black hole, Phys. Rev. D 94 (2016) 064030 [1606.08913].

[118] C. Bernard, Stationary charged scalar clouds around black holes in string theory,
Phys. Rev. D 94 (2016) 085007 [1608.05974].

[119] Y. Huang, D.-J. Liu, X.-H. Zhai and X.-Z. Li, Scalar clouds around Kerr–Sen
black holes, Class. Quant. Grav. 34 (2017) 155002 [1706.04441].

[120] H. R. C. Ferreira and C. A. R. Herdeiro, Stationary scalar clouds around a BTZ
black hole, Phys. Lett. B 773 (2017) 129 [1707.08133].

[121] M. A. A. de Paula, L. C. S. Leite, S. R. Dolan and L. C. B. Crispino, Absorption
and unbounded superradiance in a static regular black hole spacetime, Phys. Rev.
D 109 (2024) 064053 [2401.01767].

https://doi.org/10.1103/PhysRevD.73.109902
https://doi.org/10.1103/PhysRevD.73.109902
https://arxiv.org/abs/gr-qc/0511111
https://doi.org/10.1103/PhysRevLett.29.1114
https://doi.org/10.1103/PhysRevD.86.129902
https://doi.org/10.1103/PhysRevD.86.129902
https://arxiv.org/abs/1211.3202
https://doi.org/10.1140/epjc/s10052-013-2378-x
https://doi.org/10.1140/epjc/s10052-013-2378-x
https://arxiv.org/abs/1311.5298
https://doi.org/10.1016/j.physletb.2015.07.071
https://arxiv.org/abs/1510.05649
https://doi.org/10.1088/0264-9381/32/13/134002
https://doi.org/10.1088/0264-9381/32/13/134002
https://arxiv.org/abs/1607.00003
https://doi.org/10.1007/JHEP01(2017)030
https://arxiv.org/abs/1612.00014
https://doi.org/10.1103/PhysRevD.96.044034
https://doi.org/10.1103/PhysRevD.96.044034
https://arxiv.org/abs/1706.01112
https://doi.org/10.1103/PhysRevD.108.104012
https://arxiv.org/abs/2307.15888
https://doi.org/10.1103/PhysRevD.90.024051
https://doi.org/10.1103/PhysRevD.90.024051
https://arxiv.org/abs/1406.1179
https://doi.org/10.1103/PhysRevD.90.104024
https://arxiv.org/abs/1409.1593
https://doi.org/10.1103/PhysRevD.94.064030
https://arxiv.org/abs/1606.08913
https://doi.org/10.1103/PhysRevD.94.085007
https://arxiv.org/abs/1608.05974
https://doi.org/10.1088/1361-6382/aa7964
https://arxiv.org/abs/1706.04441
https://doi.org/10.1016/j.physletb.2017.08.017
https://arxiv.org/abs/1707.08133
https://doi.org/10.1103/PhysRevD.109.064053
https://doi.org/10.1103/PhysRevD.109.064053
https://arxiv.org/abs/2401.01767


References 145

[122] O. J. C. Dias, J. E. Santos and B. Way, Numerical Methods for Finding
Stationary Gravitational Solutions, Class. Quant. Grav. 33 (2016) 133001
[1510.02804].

[123] J. F. M. Delgado, C. A. R. Herdeiro, E. Radu and H. Runarsson, Kerr–Newman
black holes with scalar hair, Phys. Lett. B 761 (2016) 234 [1608.00631].

[124] Y.-Q. Wang, Y.-X. Liu and S.-W. Wei, Excited Kerr black holes with scalar hair,
Phys. Rev. D 99 (2019) 064036 [1811.08795].

[125] J. F. M. Delgado, C. A. R. Herdeiro and E. Radu, Kerr black holes with
synchronised scalar hair and higher azimuthal harmonic index, Phys. Lett. B
792 (2019) 436 [1903.01488].

[126] C. A. R. Herdeiro, E. Radu and H. Rúnarsson, Kerr black holes with
self-interacting scalar hair: hairier but not heavier, Phys. Rev. D 92 (2015)
084059 [1509.02923].

[127] J. F. M. Delgado, C. A. R. Herdeiro and E. Radu, Kerr black holes with
synchronized axionic hair, Phys. Rev. D 103 (2021) 104029 [2012.03952].

[128] Y. Brihaye, C. Herdeiro and E. Radu, Myers–Perry black holes with scalar hair
and a mass gap, Phys. Lett. B 739 (2014) 1 [1408.5581].

[129] C. Herdeiro, J. Kunz, E. Radu and B. Subagyo, Myers–Perry black holes with
scalar hair and a mass gap: Unequal spins, Phys. Lett. B 748 (2015) 30
[1505.02407].

[130] O. J. C. Dias, G. T. Horowitz and J. E. Santos, Black holes with only one
Killing field, JHEP 07 (2011) 115 [1105.4167].

[131] W. H. Press and S. A. Teukolsky, Floating Orbits, Superradiant Scattering and
the Black-hole Bomb, Nature 238 (1972) 211.

[132] T. J. M. Zouros and D. M. Eardley, INSTABILITIES OF MASSIVE SCALAR
PERTURBATIONS OF A ROTATING BLACK HOLE, Annals Phys. 118
(1979) 139.

[133] S. L. Detweiler, KLEIN-GORDON EQUATION AND ROTATING BLACK
HOLES, Phys. Rev. D 22 (1980) 2323.

[134] S. R. Dolan, Instability of the massive Klein-Gordon field on the Kerr spacetime,
Phys. Rev. D 76 (2007) 084001 [0705.2880].

[135] H. Yoshino and H. Kodama, Bosenova collapse of axion cloud around a rotating
black hole, Prog. Theor. Phys. 128 (2012) 153 [1203.5070].

[136] A. Arvanitaki and S. Dubovsky, Exploring the String Axiverse with Precision
Black Hole Physics, Phys. Rev. D 83 (2011) 044026 [1004.3558].

[137] W. E. East and F. Pretorius, Superradiant Instability and Backreaction of
Massive Vector Fields around Kerr Black Holes, Phys. Rev. Lett. 119 (2017)
041101 [1704.04791].

https://doi.org/10.1088/0264-9381/33/13/133001
https://arxiv.org/abs/1510.02804
https://doi.org/10.1016/j.physletb.2016.08.032
https://arxiv.org/abs/1608.00631
https://doi.org/10.1103/PhysRevD.99.064036
https://arxiv.org/abs/1811.08795
https://doi.org/10.1016/j.physletb.2019.04.009
https://doi.org/10.1016/j.physletb.2019.04.009
https://arxiv.org/abs/1903.01488
https://doi.org/10.1103/PhysRevD.92.084059
https://doi.org/10.1103/PhysRevD.92.084059
https://arxiv.org/abs/1509.02923
https://doi.org/10.1103/PhysRevD.103.104029
https://arxiv.org/abs/2012.03952
https://doi.org/10.1016/j.physletb.2014.10.019
https://arxiv.org/abs/1408.5581
https://doi.org/10.1016/j.physletb.2015.06.059
https://arxiv.org/abs/1505.02407
https://doi.org/10.1007/JHEP07(2011)115
https://arxiv.org/abs/1105.4167
https://doi.org/10.1038/238211a0
https://doi.org/10.1016/0003-4916(79)90237-9
https://doi.org/10.1016/0003-4916(79)90237-9
https://doi.org/10.1103/PhysRevD.22.2323
https://doi.org/10.1103/PhysRevD.76.084001
https://arxiv.org/abs/0705.2880
https://doi.org/10.1143/PTP.128.153
https://arxiv.org/abs/1203.5070
https://doi.org/10.1103/PhysRevD.83.044026
https://arxiv.org/abs/1004.3558
https://doi.org/10.1103/PhysRevLett.119.041101
https://doi.org/10.1103/PhysRevLett.119.041101
https://arxiv.org/abs/1704.04791


146 References

[138] C. A. R. Herdeiro and E. Radu, Dynamical Formation of Kerr Black Holes with
Synchronized Hair: An Analytic Model, Phys. Rev. Lett. 119 (2017) 261101
[1706.06597].

[139] B. Ganchev and J. E. Santos, Scalar Hairy Black Holes in Four Dimensions are
Unstable, Phys. Rev. Lett. 120 (2018) 171101 [1711.08464].

[140] J. C. Degollado, C. A. R. Herdeiro and E. Radu, Effective stability against
superradiance of Kerr black holes with synchronised hair, Phys. Lett. B 781
(2018) 651 [1802.07266].

[141] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu and H. F. Runarsson, Shadows of
Kerr black holes with scalar hair, Phys. Rev. Lett. 115 (2015) 211102
[1509.00021].

[142] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu and H. F. Runarsson, Shadows of
Kerr black holes with and without scalar hair, Int. J. Mod. Phys. D 25 (2016)
1641021 [1605.08293].

[143] P. V. P. Cunha, J. Grover, C. Herdeiro, E. Radu, H. Runarsson and A. Wittig,
Chaotic lensing around boson stars and Kerr black holes with scalar hair, Phys.
Rev. D 94 (2016) 104023 [1609.01340].

[144] P. V. P. Cunha, C. A. R. Herdeiro and E. Radu, EHT constraint on the
ultralight scalar hair of the M87 supermassive black hole, Universe 5 (2019) 220
[1909.08039].

[145] P. V. P. Cunha and C. A. R. Herdeiro, Shadows and strong gravitational lensing:
a brief review, Gen. Rel. Grav. 50 (2018) 42 [1801.00860].

[146] I. Sengo, P. V. P. Cunha, C. A. R. Herdeiro and E. Radu, Kerr black holes with
synchronised Proca hair: lensing, shadows and EHT constraints, JCAP 01
(2023) 047 [2209.06237].

[147] F. H. Vincent, E. Gourgoulhon, C. Herdeiro and E. Radu, Astrophysical imaging
of Kerr black holes with scalar hair, Phys. Rev. D 94 (2016) 084045
[1606.04246].

[148] S. Gimeno-Soler, J. A. Font, C. Herdeiro and E. Radu, Magnetized accretion
disks around Kerr black holes with scalar hair: Constant angular momentum
disks, Phys. Rev. D 99 (2019) 043002 [1811.11492].

[149] S. Gimeno-Soler, J. A. Font, C. Herdeiro and E. Radu, Magnetized accretion
disks around Kerr black holes with scalar hair: Nonconstant angular momentum
disks, Phys. Rev. D 104 (2021) 103008 [2106.15425].

[150] A. Cruz-Osorio, L. Rezzolla, F. D. Lora-Clavijo, J. A. Font, C. Herdeiro and
E. Radu, Bondi-Hoyle-Lyttleton accretion onto a rotating black hole with
ultralight scalar hair, JCAP 08 (2023) 057 [2301.06564].

https://doi.org/10.1103/PhysRevLett.119.261101
https://arxiv.org/abs/1706.06597
https://doi.org/10.1103/PhysRevLett.120.171101
https://arxiv.org/abs/1711.08464
https://doi.org/10.1016/j.physletb.2018.04.052
https://doi.org/10.1016/j.physletb.2018.04.052
https://arxiv.org/abs/1802.07266
https://doi.org/10.1103/PhysRevLett.115.211102
https://arxiv.org/abs/1509.00021
https://doi.org/10.1142/S0218271816410212
https://doi.org/10.1142/S0218271816410212
https://arxiv.org/abs/1605.08293
https://doi.org/10.1103/PhysRevD.94.104023
https://doi.org/10.1103/PhysRevD.94.104023
https://arxiv.org/abs/1609.01340
https://doi.org/10.3390/universe5120220
https://arxiv.org/abs/1909.08039
https://doi.org/10.1007/s10714-018-2361-9
https://arxiv.org/abs/1801.00860
https://doi.org/10.1088/1475-7516/2023/01/047
https://doi.org/10.1088/1475-7516/2023/01/047
https://arxiv.org/abs/2209.06237
https://doi.org/10.1103/PhysRevD.94.084045
https://arxiv.org/abs/1606.04246
https://doi.org/10.1103/PhysRevD.99.043002
https://arxiv.org/abs/1811.11492
https://doi.org/10.1103/PhysRevD.104.103008
https://arxiv.org/abs/2106.15425
https://doi.org/10.1088/1475-7516/2023/08/057
https://arxiv.org/abs/2301.06564


References 147

[151] O. Donmez, O. Zanotti and L. Rezzolla, On the development of QPOs in
Bondi-Hoyle accretion flows, Mon. Not. Roy. Astron. Soc. 412 (2011) 1659
[1010.1739].

[152] Y. Ni, M. Zhou, A. Cardenas-Avendano, C. Bambi, C. A. R. Herdeiro and
E. Radu, Iron Kα line of Kerr black holes with scalar hair, JCAP 07 (2016) 049
[1606.04654].

[153] L. G. Collodel, D. D. Doneva and S. S. Yazadjiev, Equatorial extreme-mass-ratio
inspirals in Kerr black holes with scalar hair spacetimes, Phys. Rev. D 105
(2022) 044036 [2108.11658].

[154] J. F. M. Delgado, C. A. R. Herdeiro and E. Radu, EMRIs around j = 1 black
holes with synchronised hair, JCAP 10 (2023) 029 [2305.02333].

[155] LIGO Scientific, Virgo, KAGRA collaboration, All-sky search for
gravitational wave emission from scalar boson clouds around spinning black holes
in LIGO O3 data, Phys. Rev. D 105 (2022) 102001 [2111.15507].

[156] V. P. Frolov, P. Krtouš, D. Kubizňák and J. E. Santos, Massive Vector Fields in
Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes, Phys.
Rev. Lett. 120 (2018) 231103 [1804.00030].

[157] V. P. Frolov, P. Krtous and D. Kubiznak, Black holes, hidden symmetries, and
complete integrability, Living Rev. Rel. 20 (2017) 6 [1705.05482].

[158] M. A. Melvin, Pure magnetic and electric geons, Phys. Lett. 8 (1964) 65.

[159] S. W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev.
Lett. 26 (1971) 1344.

[160] P. C. W. Davies, The Thermodynamic Theory of Black Holes, Proceedings of the
Royal Society of London Series A 353 (1977) 499.

[161] M. Gleiser and R. Watkins, Gravitational Stability of Scalar Matter, Nucl. Phys.
B 319 (1989) 733.

[162] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics.
Cambridge University Press, 12, 2009, 10.1017/CBO9780511606601.

[163] C. A. R. Herdeiro, Black Holes: On the Universality of the Kerr Hypothesis,
Lect. Notes Phys. 1017 (2023) 315 [2204.05640].

[164] R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys.
Rev. Lett. 70 (1993) 2837 [hep-th/9301052].

[165] R. Gregory and R. Laflamme, The Instability of charged black strings and
p-branes, Nucl. Phys. B 428 (1994) 399 [hep-th/9404071].

[166] S. S. Gubser, On nonuniform black branes, Class. Quant. Grav. 19 (2002) 4825
[hep-th/0110193].

https://doi.org/10.1111/j.1365-2966.2010.18003.x
https://arxiv.org/abs/1010.1739
https://doi.org/10.1088/1475-7516/2016/07/049
https://arxiv.org/abs/1606.04654
https://doi.org/10.1103/PhysRevD.105.044036
https://doi.org/10.1103/PhysRevD.105.044036
https://arxiv.org/abs/2108.11658
https://doi.org/10.1088/1475-7516/2023/10/029
https://arxiv.org/abs/2305.02333
https://doi.org/10.1103/PhysRevD.105.102001
https://arxiv.org/abs/2111.15507
https://doi.org/10.1103/PhysRevLett.120.231103
https://doi.org/10.1103/PhysRevLett.120.231103
https://arxiv.org/abs/1804.00030
https://doi.org/10.1007/s41114-017-0009-9
https://arxiv.org/abs/1705.05482
https://doi.org/10.1016/0031-9163(64)90801-7
https://doi.org/10.1103/PhysRevLett.26.1344
https://doi.org/10.1103/PhysRevLett.26.1344
https://doi.org/10.1098/rspa.1977.0047
https://doi.org/10.1098/rspa.1977.0047
https://doi.org/10.1016/0550-3213(89)90627-5
https://doi.org/10.1016/0550-3213(89)90627-5
https://doi.org/10.1017/CBO9780511606601
https://doi.org/10.1007/978-3-031-31520-6_8
https://arxiv.org/abs/2204.05640
https://doi.org/10.1103/PhysRevLett.70.2837
https://doi.org/10.1103/PhysRevLett.70.2837
https://arxiv.org/abs/hep-th/9301052
https://doi.org/10.1016/0550-3213(94)90206-2
https://arxiv.org/abs/hep-th/9404071
https://doi.org/10.1088/0264-9381/19/19/303
https://arxiv.org/abs/hep-th/0110193


148 References

[167] T. Wiseman, Static axisymmetric vacuum solutions and nonuniform black
strings, Class. Quant. Grav. 20 (2003) 1137 [hep-th/0209051].

[168] D. Pereñiguez, M. de Amicis, R. Brito and R. Panosso Macedo, Superradiant
Instability of Magnetic Black Holes, 2402.05178.

[169] J. Barranco, A. Bernal, J. C. Degollado, A. Diez-Tejedor, M. Megevand,
M. Alcubierre et al., Are black holes a serious threat to scalar field dark matter
models?, Phys. Rev. D 84 (2011) 083008 [1108.0931].

[170] J. Barranco, A. Bernal, J. C. Degollado, A. Diez-Tejedor, M. Megevand,
M. Alcubierre et al., Schwarzschild black holes can wear scalar wigs, Phys. Rev.
Lett. 109 (2012) 081102 [1207.2153].

[171] A. Aguilar-Nieto, V. Jaramillo, J. Barranco, A. Bernal, J. C. Degollado and
D. Núñez, Self-interacting scalar field distributions around Schwarzschild black
holes, Phys. Rev. D 107 (2023) 044070 [2211.10456].

[172] R. Friedberg, T. D. Lee and A. Sirlin, A Class of Scalar-Field Soliton Solutions
in Three Space Dimensions, Phys. Rev. D 13 (1976) 2739.

[173] J. Kunz, I. Perapechka and Y. Shnir, Kerr black holes with synchronised scalar
hair and boson stars in the Einstein-Friedberg-Lee-Sirlin model, JHEP 07 (2019)
109 [1904.13379].

[174] J. Kunz and Y. Shnir, Charged hairy black holes in the gauged
Einstein-Friedberg-Lee-Sirlin model, Phys. Rev. D 107 (2023) 104062
[2303.16562].

https://doi.org/10.1088/0264-9381/20/6/308
https://arxiv.org/abs/hep-th/0209051
https://arxiv.org/abs/2402.05178
https://doi.org/10.1103/PhysRevD.84.083008
https://arxiv.org/abs/1108.0931
https://doi.org/10.1103/PhysRevLett.109.081102
https://doi.org/10.1103/PhysRevLett.109.081102
https://arxiv.org/abs/1207.2153
https://doi.org/10.1103/PhysRevD.107.044070
https://arxiv.org/abs/2211.10456
https://doi.org/10.1103/PhysRevD.13.2739
https://doi.org/10.1007/JHEP07(2019)109
https://doi.org/10.1007/JHEP07(2019)109
https://arxiv.org/abs/1904.13379
https://doi.org/10.1103/PhysRevD.107.104062
https://arxiv.org/abs/2303.16562

	 Resumo
	 Abstract
	 Acknowledgements
	 Publications
	Contents
	1 Introduction
	1.1 A brief history of black hole physics
	1.1.1 Theoretical achievements
	1.1.2 Astronomical evidence

	1.2 Exotic compact objects
	1.2.1 Bosonic stars
	1.2.2 Black holes with synchronized hair

	1.3 Outline of the thesis

	I Black holes with synchronized hair
	2 Reprint of JHEP 07 (2020) 010 and Int. J. Mod. Phys. D 29 (2020)
	3 Reprint of Phys. Lett. B 815 (2021) 13614
	4 Reprint of Phys. Lett. B 824 (2022) 136835
	5 Reprint of Phys. Rev. D 106 (2022) 12

	II Bosonic stars
	6 Reprint of JCAP 06 (2024) 068

	7 Outlook and perspectives
	7.1 Outlook
	7.2 Perspectives

	References

