Standard Model I: Hand-in exercises sheet 2

December 8, 2021

6 points

1. Given a Dirac spinor ψ , and defining $\bar{\psi} = \psi^{\dagger} \gamma^{0}$, show that $\bar{\psi} \psi \equiv \bar{\psi}^{\alpha} \psi_{\alpha}$ is Lorentz invariant while $\psi^{\dagger} \psi$ is not. Show also that $\bar{\psi} \gamma^{\mu} \psi$ is Lorentz invariant.

6 points

2. Consider the Dirac spinor Ψ expressed in terms of 2-component left-handed (LH) Weyl spinors ψ and ξ as:

$$\Psi \equiv \begin{pmatrix} \psi \\ \bar{\xi} \end{pmatrix} = \begin{pmatrix} \psi_{\alpha} \\ \bar{\xi}^{\dot{\beta}} \end{pmatrix} . \tag{1}$$

Show that, up to a surface term, the Dirac Lagrangian

$$\mathcal{L} = \bar{\Psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \Psi$$

can be written in terms of LH Weyl spinors as:

$$\mathcal{L} = \psi^{\dagger} i \bar{\sigma}^{\mu} \partial_{\mu} \psi + \chi^{\dagger} i \bar{\sigma}^{\mu} \partial_{\mu} \chi - m \left(\chi \psi + c.c. \right)$$

where we define the product

$$\chi \psi \equiv \chi^T (i\sigma^2) \psi \equiv \chi_\alpha \epsilon^{\alpha\beta} \psi_\beta = \chi_2 \psi_1 - \chi_1 \psi_2$$
,

and where we have $\chi = i\sigma^2 \xi$.

Note: Use the Weyl representation of the gamma matrices.

8 points

3. Consider a theory invariant under a $U(1)_A \times U(1)_B$ symmetry where $U(1)_A$ is **local (or gauged)** while $U(1)_B$ is **global**. The matter content of this theory is composed by two fermions ψ and χ as well as a complex scalar Φ . The $U(1)_A \times U(1)_B$ charges are given in Tab. 1. The ψ and χ denote 4-component chiral fermions defined in terms of the Dirac spinor

$$\Psi_{\rm D} = \left(\begin{array}{c} \psi_{\rm L\,\alpha} \\ \bar{\chi}_{\rm L}^{\dot{\beta}} \end{array}\right)$$

as

$$\psi \equiv P_{\rm L}\Psi_{\rm D} = \begin{pmatrix} \psi_{\rm L\,\alpha} \\ 0 \end{pmatrix}$$
 and $\chi \equiv P_{\rm R}\Psi_{\rm D} = \begin{pmatrix} 0 \\ \bar{\chi}_{\rm L}^{\dot{\beta}} \end{pmatrix}$

Field	$U(1)_A$	$\mathrm{U}(1)_\mathrm{B}$
$\Phi \ \psi$	q_{A}	$q_{_{ m B}}$
χ	$\begin{pmatrix} q_{\mathrm{A}} \\ 0 \end{pmatrix}$	$-q_{_{ m B}}$

Table 1: Matter content local A-charges and global B-charges.

with $P_{\rm L,R}$ the chiral projectors expressed in the Weyl representation.

Note: ψ and χ in this exercise are 4-component chiral fermions and must not be confused with those in the previous exercise which were 2-component spinors.

- a) Taking into account the gauge and global charges as well as the allowed contractions of Lorentz indices α , $\dot{\beta}$, justify why ψ and χ are indeed purely chiral?
- **b)** Write down all allowed terms in the Lagrangian invariant under both the $U(1)_A \times U(1)_B$ and Lorentz symmetries.
- c) Determine the Noëther charge densities of the theory.