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estética da abdicação

”Conformar-se é submeter-se e vencer é conformar-se, ser vencido. Por isso
toda a vitória é uma grosseria. Os vencedores perdem sempre todas as

qualidades de desalento com o presente que os levaram à luta que lhes deu a
vitória. Ficam satisfeitos, e satisfeito só pode estar aquele que se conforma,

que não tem a mentalidade do vencedor. Vence só quem nunca consegue. Só é
forte quem desanima sempre. O melhor e o mais púrpura é abdicar. O império

supremo é o do Imperador que abdica de toda a vida normal, dos outros
homens, em quem o cuidado da supremacia não pesa como um fardo de jóias.”

— Bernardo Soares em ”Livro do Desassossego”

aesthetics of abdication

”To conform is to submit, and to conquer is to conform, to be conquered. Thus
every victory is a debasement. The conqueror inevitably loses all the virtues
born of frustration with the status quo that led him to the fight that brought

victory. He becomes satisfied, and only those who conform – who lack the
conqueror’s mentality – are satisfied. Only the man who never achieves his
goal conquers. Only the man who is forever discouraged is strong. The best

and most regal course is to abdicate. The supreme empire belongs to the
emperor who abdicates from all normal life and from other men, for the
preservation of his supremacy won’t weigh on him like a load of jewels.”

— Bernardo Soares in ”The Book of Disquiet”

Dedicated to my parents.





R E S U M O

Campos escalares são um conceito transversal em física teórica. Eles
encontram aplicações em praticamente todas as áreas da física, desde
matéria condensada e física de partículas à astrofísica e cosmologia.
Campos escalares, em particular, podem dar origem a estruturas con-
finadas, como estrelas de bosões, “oscilatões” ou Q-balls. Estes objetos
podem ser hipotéticas “estrelas de matéria escura” ainda não obser-
vadas, ou podem descrever núcleos de matéria escura no centro de
halos galácticos, se os campos forem ultra-leves. Nesta tese é estudada
a resposta dinâmica destas estruturas bosónicas confinadas quando
excitadas por matéria externa (estrelas, planetas, ou buracos negros)
na sua vizinhança. Estes objetos podem estar simplesmente a atraves-
sar por entre a configuração bosónica, ou a mover-se periodicamente
no seu centro (e. g., binárias). O nosso sistema pode também descrever
de forma eficiente a interação entre um buraco negro massivo em
movimento e o seu ambiente envolvente. Também permite descrever
de que forma a matéria escura é varrida por uma binária espiralando
dentro de um núcleo de matéria escura. Os resultados obtidos neste
trabalho fornecem uma descrição completa da interação entre buracos
negros (ou estrelas) e um núcleo de matéria escura ultra-leve envol-
vente, no interior do qual elas podem evoluir. Esta tese foca-se também
em vários efeitos “ambientais” causados por campos clássicos que po-
dem afetar o movimento (e, ultimamente, a própria sobrevivência) de
objetos compactos, como buracos negros. Neste contexto, estudámos a
interação de buracos negros em movimento num meio homogéneo de
campo escalar. Obtivemos expressões analíticas através de primeiros
princípios para a fricção dinâmica que atua sobre buracos negros, e
mostrámos que apesar de buracos negros serem absorvedores naturais,
a gravidade extrema na sua vizinhança pode torná-los, globalmente,
em amplificadores (se se moverem suficientemente rápido). Estudá-
mos também o efeito de fronteiras no fenómeno de fricção dinâmica
em geometrias com uma dimensão compacta, e mostrámos que este
efeito tende a suprimir a força de fricção (principalmente, no regime
sub-sónico). Re-avaliámos o lema “a emissão de ondas gravitacionais
tende a circularizar uma binária” quando ambientes astrofísicos (como
discos de acreção) ou outras interações fundamentais estão presentes
no problema. A este respeito mostrámos que (i) radiação escalar, veto-
rial e gravitacional contribuem ambas para circularizar o movimento
orbital; (ii) pelo contrário, efeitos “ambientais” como acreção e fricção
dinâmica levam ao aumento da excentricidade de binárias. Por fim,
mostrámos que campos clássicos de “teste” não são capazes de de-
struir buracos negros extremos, desde que satisfaçam a condição de

ix



energia nula no horizonte de eventos . Este resultado é válido tam-
bém para buracos negros em dimensões mais altas, e com constante
cosmológica positiva ou negativa.

palavras-chave : relatividade geral; buracos negros; bosões ultra-
leves; fricção dinâmica; ondas gravitacionais.
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A B S T R A C T

Classical fields are ubiquitous in theoretical physics. They find app-
lications in almost all areas of physics, from condensed matter and
particle phyics to cosmology and astrophysics. Scalar fields, in particu-
lar, can give rise to confined structures, such as boson stars, oscillatons
or Q-balls. These objects are interesting hypothetical new “dark matter
stars”, but also good descriptions of dark matter cores when the fields
are ultralight. In this thesis, we study the dynamical response of such
confined bosonic structures when excited by external matter (stars,
planets or black holes) in their vicinities. Such perturbers can either
be piercing through the bosonic configuration or undergoing periodic
motion at its center (e. g., binaries). Our setup can also efficiently
describe the interaction between a moving massive black hole and the
surrounding environment. It also depicts dark matter depletion as a re-
action to an inspiralling binary within a dark matter core. Our results
provide a complete picture of the interaction between black holes or
stars and the ultralight dark matter core environment where they may
live in. This thesis also deals with several classical field environmental
effects on the motion (or, ultimately, the survival) of compact objects,
like black holes. We study the interaction of a moving black hole with
a homogeneous scalar field medium. We obtain analytical expressions
from first principles for the dynamical friction acting on a moving
black hole in this environment, and show that, although black holes
are natural absorbers, the strong pull of gravity can turn them into
overall amplifiers (for large enough velocities). We study the effect of
boundaries in dynamical friction for slab-like geometries, and show
that they tend to lead to a suppression of the drag (more so in the
subsonic case). The lemma ”gravitational-wave emission circularizes a
binary” is also re-evaluated when astrophysical environments (e. g.,
accretion disks) or other fundamental interactions are present. We
show that (i) back-reaction from radiative mechanisms, including sca-
lars, vectors, and gravitational waves circularizes the orbital motion;
(ii) by contrast, environmental effects such as accretion and dynamical
friction increase the eccentricity of binaries. Finally, we give a general
proof that a test classical field cannot destroy an extremal black hole,
provided it satisfies the null energy condition at the event horizon.
This result also holds for black holes in higher dimensions and with
positive or negative cosmological constant.

key-words : general relativity; black holes; ultralight bosons; dyna-
mical friction; gravitational waves.
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the force oscillates with a period ∼ 4L
cs

e
M2.23

2(1−M)0.31
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and ∂tᾱ(z, 0) =
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conditions ᾱ(z, 0) = e−
1
2 (

z+20
4 )

2
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1
I N T R O D U C T I O N

1.1 the dark matter problem

After a century of investigation, the nature and properties of dark
matter (DM) remain a mystery. We have strong evidence for its exis-
tence – all of them through gravity –, but its nature and properties are
hardly constrained. At the present moment, dark matter models range
from ultralight bosons with masses ∼ 10−22 eV to black holes (BHs)
with masses (of the order of) ten times the one of our sun [3, 4]. There
are several proposals for the constituents of DM: weakly interacting
massive particles (WIMPs), massive compact halo objects (MACHOs)
and axions are some of the most famous candidates. WIMPs could
be particles predicted in supersymmetric extensions of the Standard
Model of particle physics [5], while MACHOs would be dim (or dark)
compact objects like, e. g., (primordial) black holes or neutron stars.
Interestingly, axions arise in a completely independent context in par-
ticle physics: they are light particles theorized to solve the strong CP
problem in quantum chromodynamics [6, 7]. All of these are examples
of what is broadly called cold dark matter (CDM), which is part of the
"standard model" ΛCDM of Cosmology [8, 9].

The CDM paradigm provides an excellent description of large-scale
observations (on scales larger than ∼ 10kpc), though it is finding
several problems in describing smaller scales [10–12]. One of those is
known as the "cusp-core" problem: cosmological N-body simulations
show that CDM leads to cuspy dark matter halos with a central density
profile growing as ∼ r−1 [13, 14], while galaxy rotation curves suggest
the existence of a (constant density) core at the center of DM halos [11,
15]. Other small-scale problems include the "missing satellites" prob-
lem (which may be solved by baryonic physics [11]) and the "too big
to fail" problem (similarly to the "cusp-core", CDM simulations also
predict too much mass at the center of dark matter subhalos). It is
possible that some of (or all) these "problems" are solved by introduc-
ing more complicated baryonic physics (e. g., photoionization or/and
stellar feedback), but it seems implausible that these effects can explain
observations in DM-dominated low-surface-brightness galaxies [10].
Alternatively, there is the interesting possibility that these (apparent)

3
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tension between CDM and small-scale observations signals a problem
of CDM itself, and that a new DM model is necessary. 1

1.2 the ultralight (wave) dark matter solution

The (potential) problem with the CDM paradigm resembles a lot the
early years of quantum physics. Mechanics (with thermodynamics)
and electromagnetism were believed to describe perfectly most of
the macroscopic world, but they had problems in describing the mi-
croscopic world (i. e., small length-scales/high energies). The most
famous problem was the ultraviolet catastrophe of the Rayleigh-Jeans
law 2, which could not be explained by the (classical) physics of the
time, and physicists were in a situation where they needed to create
a new theory containing new micro-physics, without spoiling the
excellent macroscopic predictions of classical physics. The solution to
the ultraviolet catastrophe was found by Max Planck by introducing
quanta (i. e., discrete packets) of energy. This led, then, Albert Einstein
to think of these quanta as real particles (photons, in this particular
case), which inspired Louis de Broglie to go further and (reciprocally)
postulate that electrons and matter have a wave nature – this was
confirmed experimentally in 1927, through the diffraction of electrons.
This wave-particle duality started a revolution in physics and led Er-
win Schrödinger to formulate a theory of wave (quantum) mechanics.
Interestingly, in this framework there is a natural length-scale above
which the wave (quantum) effects are suppressed and waves describe
(classical) particles, this is the de Broglie wavelength [16]

λ =
h

mv
, (1.1)

where m and v are the mass and velocity of the particle, and h is
the Planck constant. This idea was transported to and play even a
more profound role in quantum field theory, where the fundamental
objects are fields (i. e., waves) and classical particles 3 are seen just as
a particular type of wave (the length-scale λ continues to mark the
transition from the quantum to the classical "worlds").

Inspired by the wave-particle duality, it is natural to think that a
sufficiently light particle (with sufficiently large λ) would be an ideal
solution to the program of changing the small-scale physics of CDM

(in this case, by introducing wave effects), while keeping its excellent
large-scale (particle) predictions. Some important questions are then:

1 It can also signal a problem with the theory of gravity (i. e., general relativity) and
the need for a modified theory of gravity [12].

2 Another (famous) micro-physics problem was the stability of the Hydrogen atom.
3 Often in quantum field theory one calls particle to an irreducible unitary repre-

sentation of the Poincaré group, which has nothing to do with what I am calling
classical particle, which is just the ordinary idea of a particle with a definite position,
momentum, etc (which you can usually recover in the geometrical optics limit).
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(i) what light particle(s) could play this role? (ii) what are these wave
effects? (iii) do they match better observations than CDM? Ultralight
(fuzzy) DM is a model which postulates that DM is constituted by
ultralight bosons or axion-like particles with masses m ∼ 10−22 −
10−20 eV [10, 17–20], providing the perfect framework for pursuing the
above program. These ultralight bosons are predicted generically by
string theory [21], or simple Standard Model extensions [22]. For an
explanation of the particle physics motivations (independent of the
DM problem) to consider these ultralight bosons, and how they can
have a relic abundance that matches today’s observed DM density, I
direct the reader to the wonderful review [23].

For typical velocities in galactic halos, these ultralight particles have
a de Broglie wavelength

λ ' 0.5 kpc
(

10−22 eV
m

)(
250 km/s

v

)
, (1.2)

so, the uncertainty principle (through the form of a wave pressure)
can be shown to suppress the formation of structures at small-scales,
solving some of the problems of CDM [19, 23]. From observations
we know that the DM density in the solar system’s neighborhood
is ∼ 0.5 GeV/cm3 [24–26], then the number of particles contained in a
de Broglie volume λ3 is

N ∼ 1096
(

10−22 eV
m

)4 (250 km/s
v

)3

, (1.3)

which means that this type of system is well described by classical
fields – in the sense that, since the number of particles is huge, the
quantum fluctuations can be safely neglected (as it happens for elec-
tromagnetic waves with a large number of photons) [23]. This serves
as the main motivation to the study of classical (scalar) fields in this
thesis.

1.3 scalar structures and dark stars

Observations (e. g., cusp-core problem) suggest that structures made
of dark matter, like DM cores – regions of nearly constant DM den-
sity – inside galactic halos, exist in our Universe. This is one of the
first tests that any alternative DM model to CDM must pass. Thus, the
existence and stability of DM solitonic objects in a given theory is a
very relevant issue. In fact, it was famously shown by Derrick that
(self-interacting) scalar fields cannot form stable, time-independent,
localized solutions [27]. However, there is a simple way to circumvent
such no-go result: considering (periodic) time-dependent fields. In
this way it is possible to construct, for instance, self-gravitating config-
urations of (possibly self-interacting) massive complex scalar fields;
the resulting objects are known as boson stars and can provide good
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descriptions of DM cores [28–32]. In the case of very dilute configu-
rations these are called Newtonian boson stars (NBSs). If the scalar is
ultralight (m ∼ 10−22 eV) these are good descriptions of most cores in
DM halos [10, 30, 33]. Another alternative are the so-called oscillatons.
These are objects made of self-gravitating real scalar fields, having an
oscillating gravitational potential – which is their main difference with
respect to boson stars [34, 35]. This provides them with a very rich
phenomenology [36, 37]. These structures are also interesting from
the point of view of non-baryonic MACHOs; if these dark stars are very
compact, they could be the building blocks of DM halos [3, 38–40]. In
this last case, they can also be strong gravitational-wave (GW) sources
and mimic black holes (BHs) [40, 41]. All of the above motivates us to
study NBSs and their response to binary black holes (BHBs) and stars
in Part i of this thesis (the same for Q-balls in Appendix D).

Although, not directly connected with the work in this thesis, I
would like to point out here some additional remarks about recent re-
search on ultralight bosons. Surprisingly, it can be shown that rotating
BHs may stimulate the growth of macroscopic bosonic clouds in their
vicinities [42, 43]. Although BHs tend to absorb the matter and fields
entering their event horizon – from where they cannot ever escape
(at least classically) –, they are also capable of enhancing bosonic
fields through a mechanism called superradiance [43–45]. These clouds,
which are supported by the rotation of BHs, are often thought of as the
gravitational parallel of the hydrogen atom, since they also satisfy a
Schrödinger equation [21, 46]. However, because the gravitational cou-
pling can be much weaker than the electromagnetic one (in particular,
in the case of ultralight fields), these gravitational atoms can be much
larger than the usual hydrogen atom and may span over astrophysical
scales. Using the observations of masses and angular momenta of
astrophysical BHs, superradiance has been used to put bounds on the
masses of ultralight particles, like the axion, the massive photon, or
the massive graviton [43, 47–49]. The gravitational atom paradigm is
being intensively used to explore ultralight DM. Very recently, it was
found that BHBs can also support global quasi-bound states of scalar
field in their surroundings, resembling in many ways the hydrogen
molecule [50, 51].

1.4 environmental effects due to classical fields

Drag forces of electromagnetic origin are ubiquitous in everyday life,
and shape – to some extent – our own civilization. On large scales,
such as those of stars and galaxies, gravitational drag forces dominate
the dynamics. When stars or planets move through a medium, a wake
of fluctuation in the medium density is left behind. Gravitational drag
– also known as dynamical friction (DF) – is caused by the backreaction
of the wake on the moving object. DF determines a number of features
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of astrophysical systems, for example planetary migration within
disks, the sinking of supermassive BHs to the center of galaxies or the
motion of stars within galaxies on long timescales [52–56]. Binaries
immersed in a nontrivial environment will be subjected to accretion
and DF, which will also affect their dynamics [57, 58]. Merging BHBs are
now “visible”, thanks to GW astronomy [3, 59]. A good modeling of the
dynamics of such compact binaries in such environments is important
to increase our ability to actually see them, to infer the properties
of the merging objects and to impose constraints on the underlying
gravitational theory, or other fundamental interactions [3]. Although
the environmental DM effects are expected to be usually weak, they
can result in an observable phase shift of the gravitational waveform if
the binary describes many orbits in a region with large overdensities of
dark matter [57, 60–64]. Thus, a particularly suitable system to consider
is an extreme mass ratio inspiral (EMRI) immersed in a DM core in
a galactic halo. This is a system whose gravitational waves we will
observe with Laser Interferometer Space Antenna (LISA). Surprisingly,
the response of fuzzy DM cores to the presence of compact objects and
the subsequent DF acting on these objects had not been computed until
very recently; there existed only estimates based on results derived
for baryonic fluid media [37, 57, 62], or neglecting the self-gravity
of the scalar wake [10, 23]. In this thesis we tackle this problem in a
self-consistent way using (linear) perturbation theory.

In this thesis, we will take the liberty of including a perfect fluid
in what we call a classical field (in the sense that it is described by
a set of continuous functions of space and time). 4 In particular, in
Chapters 7 and 8 we will consider environmental effects due to an
ordinary perfect fluid; these are interesting and important on its own
(having applications, e. g., to GW physics), but their conclusions can
(and should) also be extended to ultralight DM environments.

From a formal point of view it is also interesting to study if (or
under which conditions) BHs can be destroyed (i. e., turned into a
naked singularity) by accreting some classical field (or matter) with
sufficiently large angular momentum (or electric charge). This would
violate the weak cosmic censorship conjecture, which state that singu-
larities resulting from gravitational collapse are, generically, hidden
from observers at infinity by a BH event horizon. To test this conjecture,
Robert Wald devised a thought experiment to destroy extremal Kerr-
Newman BHs by dropping charged and/or spinning test particles into
the event horizon. Both he and subsequent authors found that if the
parameters of the infalling particle were suited to overspin/overcharge
the BH, then the particle would not be absorbed, in agreement with the
weak cosmic censorship conjecture. Similar conclusions were obtained

4 Reciprocally, a non-relativistic scalar field described by the Schrödinger equation
can alternatively be described by a set of "hydrodynamical" variables satisfying the
Euler equations (with a certain "quantum" pressure) obtained through the so-called
Madelung transformation [65].
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by analyzing scalar and electromagnetic test fields propagating in ex-
tremal Kerr-Newman BH backgrounds. But, until recently, no general
proof (or condition) was known that could guarantee the survival of
extremal BHs interacting with an arbitrary classical field. We tackle
this problem in Chapter 9.

1.5 organization of the thesis

Chapter 2 presents summarily the theory, equations of motion (EOMs)
and currents that will be used in great part of the thesis. It includes
also the Newtonian (non-relativistic) and weak field limits of the EOMs,
which will be largely used in Part i of this work (and are explained in
more detail in Appendix A).

Part i of the thesis deals with the response of ultralight DM cores
(modeled through NBSs) to the presence and motion of stars, BHs and
binaries. It is based on the publications [66] and [67], which were done
in collaboration with my colleague Lorenzo Annulli and Prof. Vitor
Cardoso. Chapter 3 describes the perturbative framework and how
quantities like the energy and momenta of the scalar field radiated
(i. e., depleted), or the energy loss of the moving compact objects
are computed. In Chapter 4 the background configurations modeling
ultralight DM cores are presented. We obtain the entire family of
NBSs (using an important scaling symmetry) and find the linearized
system of equations describing the perturbations on this background
configuration, which may be sourced by an external particle (modeling,
e. g., a star or a BH). Some of the normal modes of these configurations
are also obtained. In Chapter 5 the perturbative framework is used to
study several systems of astrophysical interest like massive compact
objects piercing through the DM core, or a massive BH oscillating at
the center of the core after forming with some "kick", or some binary
evolving deep inside the core. We study both the response of the core
(e. g., scalar depletion) to these systems as well as the evolution of
these system within the core.

Part ii deals with several classical field environmental effects on
the motion (or, ultimately, on the existence) of compact objects, like
BHs. These environments are not necessarily ultralight DM, and some
chapters deal exclusively with DF due to perfect fluids. However, all
the conclusions drawn in these chapters may, in principle, be extended
(at least qualitatively) to ultralight DM environments.

Chapter 6 is in part based in the publication [58], done in collab-
oration with Prof. Vitor Cardoso, but it contains a great amount of
original work to be published soon. In this chapter we study the inter-
action between a plane wave and a (counter-moving) BH. We show that,
overall, energy is transferred from the moving BH to the wave, giving
rise to a negative absorption cross-section. BHs are natural absorbers,
but the universal, strong pull of gravity can turn them into overall
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amplifiers. Due to this effect, a BH of mass M moving at relativistic
speeds in a cold medium will appear to be surrounded by a bright ring
of diameter 3

√
3GM/c2 and thickness ∼ GM/c2. We also compute

for the first time, from first principles, the DF acting on BHs moving at
possibly relativistic speeds in light scalar field environments. We find
several simple analytical expressions valid for different regimes of BH

velocity.
Chapter 7 is based on the publication [68] with Prof. Vitor Cardoso

and Dr. Miguel Zilhão, and deals with the effect of boundaries in DF.
In particular, we compute the wake and corresponding DF in a three-
dimensional gaseous medium with a slab-like geometry, finding a
generic suppression (larger in the subsonic regime) of DF. This chapter
also provides a natural bridge between two different results present
in the literature: time-dependent (finite), and steady-state (vanishing)
subsonic DF forces.

Chapter 8 is based on the publication [69], done in collaboration
with Prof. Vitor Cardoso and Prof. Caio Macedo. Here we study if
the lemma "GW emission circularizes a binary" still holds when astro-
physical environments (e. g., accretion disks) or other fundamental
interactions are taken into account. We show that (i) back-reaction
from radiative mechanisms, including scalars, vectors, and GWs circu-
larizes the orbital motion; (ii) by contrast, environmental effects such
as accretion and DF increase the eccentricity of binaries. We also show
that this effect can be important for LISA sources.

Chapter 9 is based partly on the publication [70], done in collabo-
ration with Prof. José Natário and my colleague Leonel Queimada,
and partly on [71], done with Prof. José Natário. Here, we give a
general proof that, at linear level, a test classical field cannot destroy
an extremal BH, provided it satisfies the null energy condition at the
event horizon. Our result is very general and applies also to BHs in
higher dimensions, to the case of a negative cosmological constant,
and it is valid for any type of test matter. Then, we proceed to find
the correct definition of energy for test classical fields propagating
in BH spacetimes with positive cosmological constant, and use that
definition to extend the previous result to those spacetimes.





2
T H E O RY, E Q UAT I O N S O F M O T I O N A N D C U R R E N T S

In this chapter we present the action that generates the theories studied
in this thesis. Here we also show the equations of motion (EOMs),
energy-momentum tensors and the most important currents used
in this work. Finally, this chapter ends with the Newtonian limit of
the EOMs.

action In this thesis we consider a theory containing one (possi-
bly complex) scalar Φ and one (electromagnetic) covector Aα – both
minimally coupled to gravity – generated by the action

S =
∫

d4x
√
−g

[
R− 2Λ

8π
−Φ∗;αΦ ;α −US[|Φ|2]−

FαβFαβ

2

]
−
∫

d4x
√
−g [JS (Φ + Φ∗) + 2J α

V Aα] +
∫

d4x
√
−g LM , (2.1)

where F ≡ dA is the Faraday 2-form, R is the Ricci scalar and Λ is the
cosmological constant. The function US is the self-interaction potential
of the scalar fields and LM is the Lagrangian density of other matter
fields (which will be assumed to be independent of gαβ, Φ and Aα).
The currents JS and J α

V are arbitrary sources of scalar and vector fields,
respectively, which in this work are assumed to depend only on the
matter fields. 1

equations of motion Taking the first variation of the action
in Φ∗, Aβ and gαβ, respectively, one finds the EOMs 2

�Φ = JS +
δUS

δΦ∗
, (2.2)

∇αFαβ = J β
V , (2.3)

Gαβ + Λgαβ = 8π Tαβ , (2.4)

1 With the exception of Chapter 9, in this thesis we will not consider direct couplings be-
tween scalar and vector fields (e. g., scalar QED), but these can still interact (indirectly)
through gravity.

2 We used the results δ(
√−g) = − 1

2
√−g gαβ δgαβ and gαβδRαβ = ∇αvα (the explicit

form of the co-vector vα is unimportant here) [2], and performed several integrations
by parts.

11
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where Gαβ ≡ Rαβ − 1
2 Rgαβ is the Einstein tensor and Tαβ is the total

energy-momentum tensor (obtained through the first variation in gαβ),
which is divergenceless

∇αTαβ = 0 (2.5)

due to the contracted Bianchi identities, and can be expressed as

Tαβ = T αβ
S + T αβ

V + T αβ
M + 2

gαδgβγ

√−g
δ

δgδγ

{√
−g (JS<[Φ] + J α

V Aα)
}

,

(2.6)

with <[Φ] the real part of Φ. The individual energy-momentum ten-
sors appearing in the sum are

T αβ
S ≡ ∇(αΦ∗∇β)Φ− 1

2
gαβ
(

Φ∗;δΦ ;δ + US[|Φ|2]
)

, (2.7)

T αβ
V ≡ Fα

δ Fβδ − 1
4

gαβFδγFδγ , (2.8)

T αβ
M ≡ − gαδgβγ

√−g
δ (
√−g LM)

δgδγ
. (2.9)

Since the focus of this thesis is on the effects of bosonic fields
in astrophysics (and not so much in cosmology), hereafter we will
consider Λ = 0. In most of this work we will be interested in a simple
mass potential

US = µ2
S|Φ|2 , (2.10)

where mS = h̄µS is the mass of the scalar particles. In some sections of
this text we will restrict to massless scalars.

In some chapters we will consider that the "matter" Lagrangian
density describes a system of N point particles minimally coupled
with gravity, in which case it has the form 3

LM = −2
N

∑
n=1

mn

∫
dτn

δ(4) (xα − x α
n (τn))√−g

, (2.11)

where x α
n and τn are, respectively, the world-line and proper time of

the nth particle. This Lagrangian density results in the EOMs [72]

x α
n ∇αx β

n = 0 , (2.12)

which assert that the point particles move along spacetime geodesics,
and implies the energy-momentum tensor

T αβ
M =

N

∑
n=1

mn

∫
dτn

δ(4) (xα − x α
n (τn))√−g

ẋ α
n ẋ β

n , (2.13)

where ẋ α
n ≡ dx α

n /dτn is the 4-velocity of the nth particle (in the
coordinate basis). To obtain this energy-momentum tensor one needs

to take the first variation in gαβ of dτn =
√
−gαβ dx α

n dx β
n .

3 In addition, when matter couples only with gravity the currents JS and J α
V vanish.
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currents In most of this thesis it will be assumed that both the
scalar and the vector interact only with gravity (i. e., JS = J α

V = 0)
through the minimal coupling in (2.1). In these cases the resulting
theory is not U(1) gauge invariant, but it is still invariant under global
U(1) transformations of Φ. This continuous symmetry is associated
with a Noether current

J α
Q =

i
2h̄

(Φ ∂αΦ∗ −Φ∗∂αΦ) , (2.14)

which satisfies

∇α J α
Q = 0 , (2.15)

and gives rise to a conserved Noether charge

Q = −
∫
S

dV3 J α
Q Nα , (2.16)

where S is a spacelike hypersurface (extending through all space-
time), Nα is the covector associated with the future-pointing unit
normal to S , and dV3 is the 3-volume form induced on the hypersur-
face.

If the spacetime admits a Killing vector field ξα, it is well-known that
one can combine it with the total stress-energy tensor Tαβ to construct
the current

J α
ξ = Tαβξβ , (2.17)

which is divergenceless

∇α J α
ξ = 0 (2.18)

and results in the conserved quantity 4

Qξ = −
∫
S

dV3 J α
ξ Nα . (2.19)

In this thesis, we will always consider stationary axisymmetric space-
times. These admit a Killing vector Xα that is asymptotically timelike,
and a Killing vector Yα which is asymptotically spacelike and whose
integral curves are closed [2]. These two Killing vector field com-
mute

[
Xα, Yβ

]
= 0, so their flows can be used as local coordinates.

The vectors −Xα = −(∂t)α and Yα = (∂ϕ)α will be used to define,
respectively, the energy and angular momentum of the fields.

4 In fact, this quantity only need to be conserved if J α
ξ decays sufficiently fast at

spacelike infinity (which is not the case of monochromatic waves) and if the spacetime
is geodesically complete (which is not the case for black hole spacetimes). The same
remark applies to the Noether charge (2.16).
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newtonian limit Let us consider the simplest case of the mass
potential (2.10), with the scalar and matter coupling only with gravity
(JS = 0) and no electromagnetic field (Aα = Jα

V = 0). Furthermore, let
us restrict to a matter part consisting of N point particles minimally
coupled to gravity (2.11). In the Minkowskian (weak gravitational
field GM

Rc2 � 1) limit and for Newtonian (small velocity v/c� 1) fields
the spacetime metric (at leading order) in Cartesian-like coordinates is
simply (e. g., [72])

ds2 = − (1 + 2U) dt2 + (1− 2U) δij dxidxj , (2.20)

and the EOMs (at leading order) reduce to

i∂tφ = − 1
2µS

∂i∂iφ + µSUφ , (2.21)

d2

dt2 zi
n = −∂iU(zj

n) , z0
n = t , (2.22)

∂k∂kU = 4π

[
µS|φ|2 +

N

∑
n=1

mnδ(3)
(

xi − z i
n (t)

)]
, (2.23)

with the following field redefinition

Φ(xβ) =
e−iµSt
√

µS
φ(xβ) . (2.24)

To obtain the above EOMs one needs to use the fact that for Newto-
nian fields∣∣∣∣ 1

Φ
∂tΦ

∣∣∣∣ ∼ µS
(
1 +O(ε2)

)
⇔
∣∣∣∣ 1
φ

∂tφ

∣∣∣∣ ∼ µSO(ε2) , (2.25)

where ε� 1 is a small expansion parameter (of the same order as the
velocity of the scalar particles). The scalar and vector field EOMs imply
that for the Newtonian (small velocity) fields to be able to feel gravity at
leading order, the gravitational potential must be of order U ∼ O(ε2).
In that case, the Poisson equation (2.23) gives the following order of
magnitude estimates

U
R2 ∼

M
R3 ⇒

M
R
∼ U ∼ O(ε) , (2.26)

µSR2|φ|2 ∼
(

mn

Rn

)(
R
Rn

)2

∼ O (ε) , (2.27)

where M is the total mass in the system, R is the size of the sys-
tem and Rn is an effective (cut-off) radius of the nth particle. We
need to introduce these cut-off radii, because the gravitational poten-
tial U diverges with |r− rn|−1 close to the particles and therefore the
Minkowskian approximation cannot be trusted in those regions. 5 Of-
ten in this thesis we will simply remove those regions from our study

5 Indeed, there are no (infinitely compact) particles in the theory of general relativity;
the most compact objects are black holes (which have M/R ∼ 1).
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(as we will see in Chapter 6, it turns out that this approximation is
very well justified in most of the cases studied here); a more rigorous
analysis would require more information about the nature (stars, black
holes, etc) and micro-physics of these objects (e. g., equation of state).

A more thorough treatment of the Newtonian limit can be found
in Appendix A, where we consider the first post-Newtonian order
expansion of the Einstein-Klein-Gordon system.





Part I

R E S P O N S E O F U LT R A L I G H T F I E L D S T O
C O M PA C T O B J E C T S





3
F R A M E W O R K

introduction

The existence, stability and dynamical behavior of solitons in a given
theory is relevant for a wide range of topics, from planetary science
to a description of fundamental particles. Taking as starting point a
theory of a scalar field in flat space, it can be shown that localized time-
independent solutions cannot exist [27]. This powerful result limits the
ability of fundamental scalars to describe possible novel objects where
the scalar is confined. A promising way to circumvent such no-go
result is to consider time-dependent fields. Within this more general
framework, it can be shown that black holes (BHs) can stimulate the
growth of structures in their vicinities [42, 43], and also that new self-
gravitating solutions are possible. Such objects can describe dark stars
which have so far gone undetected [3, 38–40]. Surprisingly, the simplest
such solutions also seem to be a good description of structures we
know to exist: dark matter (DM) cores in halos. These are often referred
to as fuzzy DM models, and require ultralight bosonic fields (see, e. g.,
Refs. [10, 23, 73–77], but the literature on the subject is very large and
growing).

In Part i (and Appendix D), we consider two different theories of
scalar fields, yielding localized objects with a static energy-density
profile, but with a time-periodic scalar. The first theory describes a
self-gravitating massive scalar, and the resulting objects are known
as boson stars [28, 30, 33]. Newtonian boson stars (NBSs) made of
very light fields (in particular, bosons with a mass ∼ 10−22 eV) are
good descriptions of most cores of DM halos; thus, this is an especially
exciting simple theory to consider. The second theory (in Appendix D)
describes a nonlinearly-interacting scalar in flat space, yielding solu-
tions known as Q-balls: non-topological solitons which arise in a large
family of field theories admitting a conserved charge Q, associated
with some continuous internal symmetry [78]. Q-balls seem to arise
generically in supersymmetric field theories and may contribute signif-
icantly to the DM content of our Universe [79, 80]. In this thesis, they
will serve just as an additional example of a scalar configuration to
which the formalism presented in this chapter can be directly applied.

19
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stirring-up dm . The study of the dynamics of such objects is
interesting for a number of reasons. As DM candidates, it is impor-
tant to understand the stability of such configurations, and the way
they interact with surrounding bodies (stars, BHs, etc) [57, 81]. For
example, the mere presence of a star or planet will change the local
DM density. In which way? The motion of a compact binary can, in
principle, stir the surrounding DM to such an extent that a substantial
emission of scalars takes place. How much, and how is it dependent
on the binary parameters? When a star crosses one of these extended
bosonic configurations, it may change its properties to the extent that
the configuration simply collapses or disperses; in the eventuality that
it settles down to a new configuration, it is important to understand
the timescales involved. Such processes are specially interesting in
the context of the growth of DM halos and supermassive BHs. Bary-
onic matter, in fact, tends to slowly accumulate near the center of
a DM structure, where it may eventually collapse to a massive BH.
Gravitational collapse can impart a recoil velocity vrecoil to the BH of
the order of 300 km/s [82], leaving the BH in an damped oscillatory
motion through the DM halo, with respect to its center, with a crossing
timescale

τcross =

√
3π

Gρ
∼ 1.4× 106 yr

√
103M� pc−3

ρ
, (3.1)

and an amplitude

A ∼ 69 pc

√
103M�pc−3

ρ

vrecoil

300 km/s
. (3.2)

The damping is due to dynamical friction (DF) caused by stars and
DM; our results suggest that the DM effects may be comparable to the
one of stars in galactic cores. Finally, massive objects traveling through
scalar media can deposit energy and momentum in the surrounding
scalar field due to gravitational interaction [10, 23, 50, 58]. Thus, it
is important to quantify the DF that bodies are subjected to when
immersed in scalar structures, and to confirm existing estimates [10,
23].

All of this applies also in the context where scalar structures are
viewed as compact, and potentially strong, gravitational-wave (GW)
sources, when they could mimic BHs, or simply be new sources on
their own right [40, 41]. Additionally, we expect some of these findings
to be also valid in theories with a massive vector or tensor.

gravitational-wave astronomy and dm . Understanding
the behavior of DM when moving perturbers drift by, or when a binary
inspirals within a DM medium is crucial for attempts at detecting
DM via GWs. In the presence of a nontrivial environment accretion,
DF and the self-gravity of the medium all contribute to a small, but
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Figure 3.1: An equatorial slice of our setup, where a binary of two BHs or
stars is orbiting inside a NBS, and a single BH is plunging through
it. Our formalism is able to accommodate both scenarios, and
others. The NBS scalar field is pictured in gray dots, and forms a
large spherical configuration. The motion of the binary or of the
plunging BH or star stirs the scalar profile, excites the NBS modes
and may eject some scalar field. All these quantities are computed
in the main body of Part i.

potentially observable, change of the GW phase [57, 60, 62, 83–86].
Understanding the backreaction on the environment seems to be one
crucial ingredient in this endeavor, at least for equal-mass mergers
and when the Compton wavelength of DM is very small [86].

screening mechanisms . Our results and methods can be of
direct interest also for theories with screening mechanisms, where new
degrees of freedom – usually scalars – are screened, via nonlinearities,
on some scales [87]. Such mechanisms do give rise to nontrivial profiles
for the new degrees of freedom, for which many of the tools we use
here should apply (see also Ref. [88]).

In Part i, we wish to provide the answers to the above questions.
This work studies the response of localized scalar configurations to
bodies moving in their vicinities. The setup is depicted in Fig. 3.1. The
moving external bodies are modeled as point-like. Such approximation
is a standard and successful tool in BH perturbation theory [89–91],
in seismology [92] or in calculations of DF by fluids [55, 68]. In this
approximation one loses small-scale information. For light fields –
those we focus on – the Compton wavelength of the field is much
larger than the size of stars, planets or BHs. In other words, we do not
expect to lose important details of the physics at play (as it is confirmed
by the results in Chapter 6). The extrapolation of our results to moving
BHs or BH binaries (BHBs) should yield sensible answers.

In this chapter we explain the framework that will be used to study
the issues described above.
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theory

In Part i we consider a general global U(1)-invariant, self-interacting,
complex scalar field Φ(xα), minimally coupled to gravity, described
by the action (2.1) (with J α

V = Aα = 0 and JS = 0). Due to the
invariance under global U(1) transformations this theory admits the
Noether current given in Eq. (2.14) and the conserved Noether charge
given in Eq. (2.16). We shall interpret this charge as the number of
scalar particles in the system. The energy-momentum tensor of the
scalar field is given in Eq. (2.7) and the energy contained in a given
spacelike hypersurface S is obtained using the timelike Killing vector
field −Xα = −(∂t)α through Eq. (2.19), resulting in

E =
∫
S

dV3TS
tαNα , (3.3)

where Nα is a future-pointing unit normal to S . Analogously, the scalar
field angular momentum (along z) is obtained using the spacelike
Killing vector field Yα = (∂ϕ)α and it is given by

Lz = −
∫
S

dV3TS
ϕαNα . (3.4)

objects

We are interested in spherically symmetric, time-periodic, localized
solutions of the field equations. These will be describing, for example,
new DM stars or the core of DM halos. We take the following ansatz
for the scalar in such a configuration,

Φ0 = Ψ0(r)e−iΩt , (3.5)

where Ψ0 is a real-function satisfying ∂rΨ0(0) = 0 and limr→∞ Ψ0 = 0.
Our primary target are self-gravitating solutions; when gravity is

included, a simple minimally coupled massive field is able to self-
gravitate. Thus, we consider minimal boson stars – self-gravitating
configurations of scalar field in curved spacetime with a simple mass
potential (2.10). In this thesis, for simplicity, we restrict to the Newto-
nian limit of these objects, where gravity is not very strong. So, we
study NBSs.

However, many of the technical issues in dealing with NBSs are also
present in theories where gravity is neglected. So, we will also consider
Q-balls [78] – objects made of a nonlinearly-interacting scalar field
in flat spacetime. For these objects, we use the Minkowski spacetime
metric ηαβ and restrict to the class of nonlinear potentials

UQ =
µ2

S
2
|Φ|2

(
1− |Φ|

2

Φ2
c

)2

, (3.6)

where Φc is a real free parameter of the theory.
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We are ultimately interested not in the objects per se, but rather on
their dynamical response to external agents. The response to external
perturbers is taken into account by linearizing over the spherically
symmetric, stationary background,

Φ = [Ψ0(r) + δΨ(t, r, θ, ϕ)] e−iΩt , (3.7)

with the assumption |δΨ| � 1, where Ψ0 is the radial profile of the
unperturbed object. Then, the perturbation δΨ allows us to obtain all
the physical quantities of interest, like the modes of vibration of the
object, or the energy, linear and angular momenta radiated in a given
process. This approach has a range of validity (|δΨ| � 1) which can
be controlled by selecting appropriately the perturber. As we show in
the next section, δΨ ∝ mpµS, where mp is the rest mass of the external
perturber. Since our results scale simply with mp, it is always possible
to find an external source whose induced dynamics always fall in our
perturbative scheme.

The energy-momentum tensor of a generic point particle perturber
is given by (2.13), which in Schwarzschild (spherical) coordinates can
be written as

T αβ
p = mp

uαuβ

ut

δ
(
r− rp(t)

)
r2

δ
(
θ − θp(t)

)
sin θ

δ
(

ϕ− ϕp(t)
)

, (3.8)

where uα ≡ dxα
p/dτ is the perturber’s 4-velocity and

xµ
p(t) = (t, rp(t), θp(t), ϕp(t)) (3.9)

is a parametrization of its world-line.

fluxes

The energy, linear and angular momenta carried by the radiated scalar
field can be obtained by computing the flux of certain currents through
a 2-sphere at spatial infinity. These currents are obtained from the
scalar field energy-momentum tensor.

First, we decompose the fluctuations as

δΨ = ∑
l,m

∫ dω√
2π r

[
Zωlm

1 Ylme−iωt +
(
Zωlm

2
)∗Y∗lmeiωt

]
, (3.10)

where Ylm(θ, ϕ) is the spherical harmonic function of degree l and az-
imuthal number m, and Z1(r) and Z2(r) are radial complex-functions. 1

This decomposition can be rewritten in the equivalent form

δΨ = ∑
l,m

∫ dω√
2π r

Ylme−iωt [Z1(ω, l, m; r) + (−1)mZ2(−ω, l,−m; r)∗] .

(3.11)

1 It should be noted that Z1 and Z2 are not linearly independent. In particular, for the
setups considered in Part i, we can show that Z1(ω, l, m; r) = (−1)mZ2(−ω, l,−m; r)∗.
For generality, we do not consider any constraint on the relation between these
functions.
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Unless strictly needed, hereafter, we omit the labels ω, l and m in the
functions Zωlm

1 (r) and Zωlm
2 (r) to simplify the notation. For a source

vanishing at spatial infinity, we will see in the following chapters that
one has the asymptotic form for the fields

Z1(r → ∞) ∼ Z∞
1 eiε1

(√
(ω+Ω)2−µ2

)
r , (3.12)

Z2(r → ∞) ∼ Z∞
2 eiε2

(√
(ω−Ω)2−µ2

)∗
r , (3.13)

where ε1 ≡ sign(ω + Ω + µ) and ε2 ≡ sign(ω − Ω − µ), and Z∞
1

and Z∞
2 are complex amplitudes which depend on the source. We

choose the signs ε1 and ε2 to enforce the Sommerfeld radiation condi-
tion at large distances. 2

A scalar field fluctuation gives rise to a perturbation in its energy-
momentum tensor, which, at leading order and asymptotically, is
given by

δT αβ
S (r → ∞) ∼ ∂(αδΦ∗∂β)δΦ− 1

2
ηαβ

[
∂δδΦ∗∂δδΦ + µ2

S|δΦ|2
]

,

(3.14)

with δΦ ≡ e−iΩtδΨ. Then, the outgoing flux of energy (carried by the
scalar field) at an instant t through a 2-sphere at infinity is

Ėrad = lim
r→∞

r2
∫

dθdϕ sin θ δT rt
S . (3.15)

Plugging the asymptotic fields (3.12) and (3.13) in the last expres-
sion, it is straightforward to show that the total energy radiated with
frequency in the range between ω and ω + dω is

dErad

dω
= |ω + Ω| <

[√
(ω + Ω)2 − µ2

S

]
×∑

l,m

∣∣Z∞
1 (ω, l, m) + (−1)mZ∞

2 (−ω, l,−m)∗
∣∣2 , (3.16)

with <[z] the real part of a complex-number z. In deriving the last
expression we considered a process in which the small perturber
interacts with the background configuration during a finite amount of
time. In the case of a (eternal) periodic interaction (e. g., small particle
orbiting the scalar configuration) the total energy radiated is not finite.
However, we can compute the averaged rate of energy emission in
such processes, obtaining

Ėrad =
∫ dω

2π
|ω + Ω| <

[√
(ω + Ω)2 − µ2

S

]
×∑

l,m

∣∣Z∞
1 (ω, l, m) + (−1)mZ∞

2 (−ω, l,−m)∗
∣∣2 . (3.17)

2 By Sommerfeld condition we mean either: (i) outgoing group velocity for propagating
frequencies; or, (ii) regularity for bound frequencies.
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The last expression must be used formally; as we will see, the am-
plitudes Z∞

1 and Z∞
2 contain Dirac delta functions in frequency ω.

The correct way to proceed is to substitute the product of compatible
delta functions by just one of them, and the incompatible by zero. 3

The outgoing flux of linear momentum carried by the scalar field at
instant t is

Ṗrad
i = lim

r→∞
r2
∫

dθdϕ sin θ δT r
S µeµ

i , (3.18)

with i = {x, y, z} and where ex, ey, ez are (mutually orthogonal) unit
spacelike vectors in the x, y, z directions, respectively. These can be
written as

eα
x = sin θ cos ϕ(∂r)

α +
cos θ cos ϕ

r
(∂θ)

α − sin ϕ

r sin θ
(∂ϕ)

α , (3.19)

eα
y = sin θ sin ϕ(∂r)

α +
cos θ sin ϕ

r
(∂θ)

α +
cos ϕ

r sin θ
(∂ϕ)

α , (3.20)

eα
z = cos θ(∂r)

α − sin θ

r
(∂θ)

α , (3.21)

For an axially symmetric process (with respect to the z axis) there
are only modes with azimuthal number m = 0 composing the scalar
field fluctuation (3.10). In that case, using the asymptotic fields (3.12)
and (3.13), one can show that the total linear momentum radiated
along z with frequency in the range between ω and ω + dω is 4

dPrad
z

dω
= ∑

l

2(l + 1)Θ
[
(ω + Ω)2 − µ2

S

] ∣∣(ω + Ω)2 − µ2
S

∣∣√
(2l + 1)(2l + 3)

× [Λ11(ω, l) + 2Λ12(ω, l) + Λ22(ω, l)] , (3.22)

where Θ(x) is the Heaviside step function and we defined the func-
tions

Λ11(ω, l) ≡ <
[

Z∞
1 (ω, l, 0)Z∞

1 (ω, l + 1, 0)∗
]

, (3.23)

Λ12(ω, l) ≡ <
[

Z∞
1 (ω, l, 0)Z∞

2 (−ω, l + 1, 0)
]

, (3.24)

Λ22(ω, l) ≡ <
[

Z∞
2 (−ω, l + 1, 0)Z∞

2 (−ω, l, 0)∗
]

. (3.25)

Finally, the outgoing flux of angular momentum along z carried by
the scalar field at instant t is

L̇rad
z = lim

r→∞
r2
∫

dθdϕ sin θ δT rϕ
S . (3.26)

3 A rigorous derivation can be done by applying the formalism directly to a specific
process. For generality, we let (3.17) as it is.

4 Additionally, it is straightforward to show that no linear momentum is radiated
along x and y in an axially symmetric process.
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Plugging the asymptotic fields (3.12) and (3.13) in the last expression,
it can be shown that the total angular momentum along z radiated
with frequency in the range between ω and ω + dω is

dLrad
z

dω
= ε1<

[√
(ω + Ω)2 − µ2

S

]
×∑

l,m
m
∣∣Z∞

1 (ω, l, m) + (−1)mZ∞
2 (−ω, l,−m)∗

∣∣2 . (3.27)

In the case of a periodic process, the angular momentum along z is
radiated at a rate given by

L̇rad
z =

∫ dω

2π
ε1<

[√
(ω + Ω)2 − µ2

S

]
×∑

l,m
m
∣∣Z∞

1 (ω, l, m) + (−1)mZ∞
2 (−ω, l,−m)∗

∣∣2 . (3.28)

We can also compute how many scalar particles cross a 2-sphere at
spacial infinity per unit of time. This is obtained by

Q̇rad = lim
r→∞

r2
∫

dθdϕ sin θ δJ r
Q , (3.29)

with

δJ r
Q (r → ∞) ∼ 1

h̄
= (δΦ∗∂rδΦ) , (3.30)

(see Eq. (2.14)), with =[z] the imaginary part of the complex-number z.
Using the asymptotic fields (3.12) and (3.13), we can show that the
total number of particles radiated in the range between ω and ω + dω

is

dQrad

dω
=

ε1

h̄
<
[√

(ω + Ω)2 − µ2
S

]
×∑

l,m

∣∣Z∞
1 (ω, l, m) + (−1)mZ∞

2 (−ω, l,−m)∗
∣∣2 . (3.31)

This gives us a simple interpretation for expressions (3.16) and (3.27).
The spectral flux of scalar field energy is just the product between
the spectral flux of scalar particles and their individual energy h̄(Ω +

ω); similarly, the spectral flux of scalar field angular momentum
is the product between the number of scalar particles radiated with
azimuthal number m and their individual angular momentum – which
is h̄m. For a periodic interaction, scalar particles are radiated at an
average rate

Q̇rad =
∫ dω

2πh̄
ε1<

[√
(ω + Ω)2 − µ2

S

]
×∑

l,m

∣∣Z∞
1 (ω, l, m) + (−1)mZ∞

2 (−ω, l,−m)∗
∣∣2 . (3.32)
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Now, what is the relation between the radiated fluxes and the energy
and momenta lost by the massive perturber (Elost, Plost

z , Llost
z ). Noting

that both the energy and momenta of the scalar configuration may
change due to the interaction, by conservation of the total energy and
momenta we know that

Elost = ∆E + Erad , (3.33)

Plost
z = ∆Pz + Prad

z , (3.34)

Llost
z = ∆Lz + Lrad

z , (3.35)

where ∆E, ∆Pz and ∆Lz are the changes in the energy and momenta
of the configuration. So, having the radiated fluxes, the task of de-
termining the energy and momenta lost by the perturber reduces
to computing the change in the respective quantities of the scalar
configuration.

In a perturbation scheme it is hard to aim at a direct calculation
of these changes, because in general, at leading order, they include
second order fluctuations of the scalar – terms mixing Φ0 with δ2Φ;
this issue is not present in the radiated fluxes, since Φ0 is suppressed
at infinity (so, the only terms present are of the form (δΦ)2 and
all we need to know is δΦ). Nevertheless, for certain setups we can
compute indirectly the change in the configuration’s energy ∆E. Let us
see an example. A massive perturber interacting with the scalar only
through gravitation is described by a globally U(1)-invariant action;
so, Noether’s theorem implies that

∇µ J µ
Q = 0 . (3.36)

Using the divergence theorem, we obtain that the number of scalar
particles is conserved,

∆Q = −Qrad , (3.37)

i. e., the number of particles lost by the configuration matches the
number of radiated particles – no scalar particles are created. If, addi-
tionally, we can express the change in the configuration’s energy ∆E
only in terms of the change in the number of particles ∆Q – as it
happens to be the case of NBSs (at leading order) – we are able to com-
pute ∆M from the number of radiated particles Qrad; so, we obtain
the energy lost by the perturber Elost using only radiated fluxes. The
lost momenta Plost

z and Llost
z can, then, be obtained through the energy-

momenta relations; for example, a non-relativistic massive perturber
moving along z satisfies

Elost =

(
mpvi

)2 −
(
mpvi − Plost

z
)2

2mp

= Plost
z vi −

(Plost
z )2

2mp
, (3.38)
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where vi is the initial velocity along z. Finally, we can compute
the change in the scalar configuration momenta ∆Pz and ∆Lz using
Eqs. (3.34) and (3.35).

The conservation of the number of scalar particles (i. e., Noether’s
theorem) plays a key role in our scheme; it allows us to compute
the change in the number of particles in the scalar configuration – a
quantity that involves the second order fluctuation δ2Φ – using only
the first order fluctuation δΦ. When the perturber couples directly with
the scalar via a scalar interaction that breaks explicitly the global U(1)
symmetry – like the coupling JS = Tp (with Tp = ηαβTαβ

p ) in (2.1) – the
number of scalar particles is not conserved; the perturber can create
and absorb scalar particles. In that case, our scheme fails and it is
not obvious how to circumvent this issue to calculate ∆E (without
calculating the second order fluctuations). In the following chapters of
Part i (except in Chapter 6) we apply explicitly the scheme described
above to compute the energy and momentum lost by massive compact
objects (e. g., a BH binary) moving through a NBS.



4
N E W T O N I A N B O S O N S TA R S

In this chapter we consider the simplest theory of a scalar giving rise
to self-gravitating objects. The theory is that of a minimally coupled
massive field, or even with higher order interactions, but taken at
Newtonian level. The objects themselves – Newtonian boson stars
(NBSs) – have been studied for decades, either as BH mimickers, as toy
models for more complicated exotica that could exist, or as realistic
configurations that can describe DM [28, 30, 33]. Despite the intense
study and the recent activity at the numerical relativity level [41, 93–
98], their interaction with smaller objects (describing, for example,
stars piercing through or orbiting such NBSs) has hardly been studied.
The variety and disparity of scales in the problem makes it ill-suited
for full-blown numerical techniques, but ideal for perturbation theory.

4.1 background configurations

The EOM describing the scalar field is Eq. (2.2) (with JS = 0, since in
Part i we are interested in a scalar interacting only through gravity),

�Φ = µ2
SΦ . (4.1)

We are using US ' µ2
S |Φ|2 /2 because we want to consider a diluted

(i. e., weak) scalar field. The EOM describing the spacetime metric is the
Einstein equation (2.4) (neglecting the cosmological constant Λ = 0
and with energy-momentum tensor Tαβ = T αβ

S given in Eq. (2.7)),

Gαβ = 8π T αβ
S . (4.2)

We are interested in localized solutions of this model with a scalar
field of the form (3.5), with frequency

Ω = µS − γ . (4.3)

in the limit 0 < γ � µ. These are the so-called NBSs. Note that
the energy eigenstate h̄Ω (which is of the order of – but not equal
to – the individual scalar particles energy forming the NBS [10, 31])
is approximately given by the rest mass energy h̄µS. As discussed
in the end of Chapter 2, in the Minkowskian (weak gravitational

29
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field U ∼ O(ε2)) limit and for a Newtonian (small velocity) scalar
field, the spacetime metric (at leading order) is (e. g., [72])

ds2 = − (1 + 2U) dt2 + (1− 2U)dr2 + r2 (dθ2 + sin2 θdϕ2) , (4.4)

and the EOMs become

i∂tφ = − 1
2µS
∇2φ + µSUφ , (4.5)

∇2U = 4πµS|φ|2 , (4.6)

where the Schrödinger field φ is related with the Klein-Gordon field Φ
through

Φ =
e−iµSt
√

µS
φ . (4.7)

This is known as Schrödinger-Poisson system (e. g., [31]). Using ansatz Φ0

in (3.5) for the scalar field Φ, one finds

∂2
r Ψ0 +

2
r

∂rΨ0 − 2µS (µSU + γ)Ψ0 = 0 , (4.8)

∂2
r U0 +

2
r

∂rU0 − 4πµ2
SΨ2

0 = 0 , (4.9)

with the constraints 0 < γ� µS, |U0| � 1 and |Ψ0| � 1. Remarkably,
this system is left invariant under the transformation

(Ψ0, U0, γ)→ λ2(Ψ0, U0, γ) , r → r/λ . (4.10)

These relations imply that the NBS mass scales as MNBS → λMNBS

(as can be seen from (4.11)). This scale invariance is extremely useful,
because it allows us to effectively ignore the constraints on γ, U0

and Ψ0 when solving numerically Eqs. (4.8) and (4.9); one can always
rescale the obtained solution with a sufficiently small λ, such that the
constraints (i. e., the regime of validity of the Newtonian approxima-
tion) hold for the rescaled solution. Even more importantly is the fact
that once a fundamental (ground state) NBS solution is found, all other
fundamental Newtonian stars can be obtained through a rescaling of
that solution; the same applies to any other particular excited state.

A numerical solution of Eqs. (4.8) and (4.9), with appropriate bound-
ary conditions describing all fundamental NBSs is shown in Fig. 4.1. 1

It is easy to see that, at large distances, the scalar decays exponen-

tially as Ψ0 ∼ e−
√

2µSγr/r, whereas the Newtonian potential falls off
as −MNBS/r.

Noting that (at leading order) the mass of a NBS is given by

MNBS = 4πµ2
S

∫ ∞

0
dr r2 |Ψ|2 , (4.11)

1 In addition to the conditions on Φ0 described bellow Eq. (3.5), ∂rΦ0(0) = 0
and limr→∞ Φ0 = 0, we impose ∂rU0(0) = 0 and limr→∞ U0 = 0.
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Figure 4.1: Universal radial profiles Ψ0(r) and U0(r) of the numerical solu-
tion of Eqs. (4.8) and (4.9) with appropriate boundary conditions.
Due to the scaling (4.10), this profile describes all the fundamental
NBSs. They are characterized by the re-scaling invariant quantity
γ/(M2

NBSµ3
S) ' 0.162712 and the mass-radius relation (4.13).

it is possible to show numerically that, for a fundamental NBS,

MNBS

M�
' 3× 1012 λ

(
10−22 eV

h̄µS

)
, (4.12)

with a scaling parameter λ, such that {Ψ0, U0, γ/µS} ∼ O(λ2). If one
is interested in describing a DM core of mass M ∼ 1010M�, this can be
achieved then via a fundamental NBS made of self-gravitating scalar
particles of mass h̄µS ∼ 10−22 eV, with a scaling parameter λ ∼ 10−2,
which satisfies the Newtonian constraints.

All the fundamental NBSs satisfy the scaling-invariant mass-radius
relation

MNBSµS =
9.1
RµS

, (4.13)

where the NBS radius is defined as the radius of the sphere enclos-
ing 98% of its mass. This result agrees well with previous results in
the literature [29–32, 37, 75]. Comparing with some relevant scales, it
can be written as

MNBS

M�
= 9× 109 100 pc

R

(
10−22 eV

h̄µS

)2

. (4.14)

Accurate fits for the profile of the scalar field are provided in
Ref. [99]. Unfortunately, these fits are defined by branches, and similar
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results for the gravitational potential are not discussed at length. We
find that a good description of the gravitational potential of NBSs,
accurate to within 1% everywhere is the following:

U0 = µ2
S M2

NBS f , (4.15)

f =
a0 + 11 a0

r1
x + ∑9

i=2 aixi − x10

(x + r1)11 ,

x = µ2
S MNBSr , r1 = 1.288 ,

a0 = −5.132 , a2 = −143.279 , a3 = −645.326 ,

a4 = 277.921 , a5 = −2024.838 , a6 = 476.702 ,

a7 = −549.051, a8 = −90.244 , a9 = −13.734 .

The (cumbersome) functional form was chosen such that it yields
the correct large-r behavior and the correct regular behavior at the
NBS center. For the scalar field we find the following 1%-accurate
expression inside the star,

Ψ0 = µ2
S M2

NBSg , (4.16)

g = e−0.570459x ∑8
i=0 bixi + b f x9.6

(x + r2)9 ,

x = µ2
S MNBSr , r2 = 1.182 ,

b0 = 0.298 , b1 = 2.368 , b2 = 10.095 ,

b3 = 12.552 , b4 = 51.469 , b5 = −8.416 ,

b6 = 54.141, b7 = −6.167 , b8 = 8.089 ,

b f = 0.310 .

Finally, for future reference, the number of particles contained in a
NBS is (at leading order)

QNBS =
4π

h̄
µS

∫ ∞

0
dr r2 |Ψ0|2 , (4.17)

and, then, at leading order, we can write the mass as MNBS = h̄µSQNBS.

4.2 small perturbations

Small perturbations of the form (3.7) to the scalar field, together with
the NBS perturbed gravitational potential

U = U0(r) + δU(t, r, θ, ϕ) , (4.18)

satisfy the linearized system of equations

i∂tδΨ = − 1
2µS
∇2δΨ + (µSU0 + γ) δΨ + µSΨ0δU , (4.19)

∇2δU = 4π
[
2µ2

SΨ0< (δΨ) + P
]

, (4.20)



4.2 small perturbations 33

where U0 is the gravitational potential of the unperturbed star, and
we have included an external point-like perturber 2

P ≡ mp
δ
(
r− rp(t)

)
r2

δ
(
θ − θp(t)

)
sin θ

δ
(

ϕ− ϕp(t)
)

. (4.21)

This system of equations is valid for non-relativistic fluctuations
(which satisfy |∂tδΨ| � µS|δΨ|) that are sourced by a non-relativistic
Newtonian perturber. If, additionally, |∂tδΨ| � γ|δΨ| the above sys-
tem of equation simplifies to

i∂tδΨ = − 1
2µS
∇2δΨ + µSΨ0δU , (4.22)

∇2δU = 4πP , (4.23)

i. e., the self-gravity of the perturbations can be neglected.
This perturbation scheme assumes that δU � U0 and either: i)|δΨ| �

Ψ0 in the homogeneous case (without external perturber); or ii) mpµS �
1 in the case of a perturbation induced by a point particle. In the latter
case, the linear fluctuation δΨ is the leading order contribution to a
power expansion in mpµS of the total perturbation to Ψ0. To study the
homogeneous case, one can simply set mp = 0. As shown in the end of
Chapter 2, in the Newtonian limit, the perturber couples to the scalar
through the Poisson equation (2.23). We neglect the backreaction on
the perturber’s motion and treat its world-line as given.

Now, let us decompose the fluctuations of the scalar field as in (3.10),
and the gravitational potential and the source, respectively, as 3

δU = ∑
l,m

∫ dω√
2π r

[
uωlmYlme−iωt +

(
uωlm

)∗
Y∗lmeiωt

]
, (4.24)

P = ∑
l,m

∫ dω√
2π r

[
pωlmYlme−iωt +

(
pωlm

)∗
Y∗lmeiωt

]
, (4.25)

where pωlm are radial complex-functions defined by

pωlm ≡ r
2
√

2π

∫
dtdθdϕ sin θP Y∗lmeiωt . (4.26)

From equations (4.19) and (4.20) one can build the matrix equation

∂rX −VB(r)X = P , (4.27)

2 We are assuming a non-relativistic external perturber. Note that P is just the non-
relativistic limit of T tt

p given in Eq. (3.8).
3 Note that the perturbation δU must be real-valued. Again, we will omit the labels ω,

l and m in the functions uωlm(r) and pωlm(r) to simplify the notation.
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with the column vector X ≡ (Z1, Z2, u, ∂rZ1, ∂rZ2, ∂ru)T, the matrix VB

given by

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

V − 2µS(ω− γ) 0 2µ2
SΨ0 0 0 0

0 V + 2µS(ω + γ) 2µ2
SΨ0 0 0 0

4πµ2
SΨ0 4πµ2

SΨ0 V − 2µ2
SU0 0 0 0


. (4.28)

The radial potential V(r) is

V ≡ l(l + 1)
r2 + 2µ2

SU0 , (4.29)

and the (column vector) source term

P(r) ≡ (0, 0, 0, 0, 0, 4πp)T . (4.30)

Note that the condition of non-relativistic fluctuations translates, here,
into the simple inequality |ω| � µS.

As suitable boundary conditions to solve for the perturbation we
require both regularity at the origin,

X(r → 0) ∼
(

arl+1, brl+1, crl+1, a(l + 1)rl , b(l + 1)rl , c(l + 1)rl
)T

,

(4.31)

with complex constants a, b and c, and the Sommerfeld radiation
condition at infinity,

X(r → ∞) ∼
(

Z∞
1 eik1r, Z∞

2 eik2r, u∞, ik1Z∞
1 eik1r, ik2Z∞

2 eik2r, 0
)T

,

(4.32)

with

k1 ≡
√

2µS (ω− γ) , (4.33)

k2 ≡ −
(√
−2µS (ω + γ)

)∗
, (4.34)

where we are using the principal square root.
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To calculate the perturbation we will make use of the set of in-
dependent homogeneous solutions {Z(1), Z(2), Z(3), Z(4), Z(5), Z(6)},
uniquely determined by

Z(1)(r → 0) ∼
(

rl+1, 0, 0, (l + 1)rl , 0, 0
)T

, (4.35)

Z(2)(r → 0) ∼
(

0, rl+1, 0, 0, (l + 1)rl , 0
)T

, (4.36)

Z(3)(r → 0) ∼
(

0, 0, rl+1, 0, 0, (l + 1)rl
)T

, (4.37)

Z(4)(r → ∞) ∼
(

eik1r, 0, 0, ik1eik1r, 0, 0
)T

, (4.38)

Z(5)(r → ∞) ∼
(

0, eik2r, 0, 0, ik2eik2r, 0
)T

, (4.39)

Z(6)(r → ∞) ∼
(

0, 0, u∞, 0, 0, 0
)T

. (4.40)

Then, the square matrix

F(r) ≡
(
Z(1), Z(2), Z(3), Z(4), Z(5), Z(6)

)
(4.41)

is known as the fundamental matrix of system (4.27). As shown in
Appendix B, the determinant of F is independent of r.

Finally, note that the homogeneous part of system (4.27) is invariant
under the re-scaling

(U0, Ψ0, γ, ω)→ λ2(U0, Ψ0, γ, ω) , r → r/λ , (4.42)

and, so, it can always be pushed into obeying the non-relativistic
constraint. Additionally, for convenience, we can impose that δΨ
and δU are left invariant by the re-scaling, by performing the extra
transformation

(Z1,2, u)→ λ−3(Z1,2, u) , mp → λ−1mp . (4.43)

It is easy to show that, for a process happening during a finite
amount of time, the change in the NBS energy, at leading order, is
given by

∆ENBS = h̄µS∆QNBS . (4.44)

4.2.1 Validity of perturbation scheme

The perturbative scheme requires that |δΨ| � 1, which can always be
enforced by making mpµS as small as necessary. On the other hand,
the background construction neglects higher-order post-Newtonian
contributions. A self-consistent perturbative expansion requires that
such neglected terms (of order ∼ U2

0) do not affect the dynamics of
small fluctuations (of order ∼ δU). This imposes

mp & 104M�

(
MNBS

1010M�

)3 ( h̄µS

10−22 eV

)2

, (4.45)
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which holds true for many systems of astrophysical interest. As shown
in Appendix A, the scalar evolution equation (A.28) is sourced by
higher order Post-Newtonian terms. However, these are nearly static,
or very low frequency terms, hence will make a negligible contribution
for high-energy binaries or plunges. In other words, the previous con-
straint can be substantially relaxed in dynamical situations, such as the
ones we focus on. Finally, the non-relativistic approximation requires
the source to have a small frequency . 2× 10−8Hz

(
h̄µS/10−22eV

)
, in

the case of a periodic motion. In Appendix A, we show how to extend
the formalism to include Newtonian but high frequency sources; in
Section 5.6, we use that to calculate scalar emission by a high frequency
binary. For plunges of nearly constant velocity v piercing through a
NBS, the non-relativistic approximation requires v� RµS. Fortunately,
any NBS has RµS � 1 and the latter condition is easy to satisfy.

4.2.2 Sourceless perturbations

Free oscillations of NBSs are fluctuations of the form

δΨ =
1√
2π r

[
Z1Ylme−iωt + Z∗2Y∗lmeiω∗t

]
, (4.46)

δU =
1√
2π r

[
uYlme−iωt + u∗Y∗lmeiω∗t

]
, (4.47)

where Z1, Z2 and u are regular solutions of system (4.27) with P =

0, satisfying the Sommerfeld condition at infinity. These are also
known as quasi-normal mode (QNM) solutions, and the corresponding
frequency ω is the QNM frequency. Noting that the condition

det(F) = 0 (4.48)

holds if and only if ω is a QNM frequency, we are able to find the
NBS proper oscillation modes by solving the sourceless system (4.27),
requiring at the same time that (4.48) is verified. These frequencies are
shown in Table 4.1.

Additionally, notice that the sourceless system (4.27) admits also the
trivial solution

δΨε = ε Ψ0(1 + iγt) ,

δUε = ε U0 , (4.49)

with a constant ε� 1. This solution is valid only for a certain amount
of time (while the perturbation scheme holds) and it corresponds just
to an infinitesimal change of the background NBS (i. e., an infinitesimal
re-scaling of the original star) by a λ = 1 + ε/2. This perturbation
causes a static change in the number of particles in the star

δQε =
ε

2
QNBS , (4.50)

and in its mass

δMε = h̄µS δQε =
ε

2
MNBS . (4.51)
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4.2.3 External perturbers

In the presence of an external perturber, one can prescribe its motion
through the source term (4.21). The solution of system (4.27) which is
regular at the origin and satisfies the Sommerfeld condition at infinity
can be obtained through the method of variation of parameters, and it
reads

Z1(r) = 4π

[
3

∑
n=1

F1,n(r)
∫ r

∞
dr′F−1

n,6 p +
6

∑
n=4

F1,n(r)
∫ r

0
dr′F−1

n,6 p

]
,

(4.52)

Z2(r) = 4π

[
3

∑
n=1

F2,n(r)
∫ r

∞
dr′F−1

n,6 p +
6

∑
n=4

F2,n(r)
∫ r

0
dr′F−1

n,6 p

]
,

(4.53)

u(r) = 4π

[
3

∑
n=1

F3,n(r)
∫ r

∞
dr′F−1

n,6 p +
6

∑
n=4

F3,n(r)
∫ r

0
dr′F−1

n,6 p

]
,

(4.54)

where Fi,j is the (i, j)-component of the fundamental matrix defined
in Eq. (4.41). To obtain the total scalar field energy, linear and angu-
lar momenta radiated during a given process, all we need are the
amplitudes Z∞

1 and Z∞
2 . These are given simply by

Z∞
1 = 4π

∫ ∞

0
dr′F−1

4,6 (r
′)p(r′) , (4.55)

Z∞
2 = 4π

∫ ∞

0
dr′F−1

5,6 (r
′)p(r′) . (4.56)

Let us now apply our framework to some physically interesting exter-
nal perturbers.

plunging particle . Consider a point particle plunging into a
NBS. Without loss of generality, one can assume its motion to take place
in the z-axis, being described by the world-line x α

p (t) = (t, 0, 0, zp(t))
in Cartesian-like coordinates. Neglecting the backreaction of the fluc-
tuations on the perturber’s motion,

z̈p(t) = −∂zU0(zp) . (4.57)

We consider that the perturber crosses the NBS center at t = 0,
i. e. zp(0) = 0, with velocity

żp(0) = −
√

2 (U0(R)−U0(0)) + v2
R , (4.58)

where vR is the velocity with which the massive object enters the NBS;
in other words, it is the velocity at r = R. In spherical coordinates, the
source reads

P = mp
δ(ϕ)

r2 sin θ

[
δ
(
r− zp(t)

)
δ (θ) + δ

(
r + zp(t)

)
δ (θ − π)

]
.

(4.59)



38 newtonian boson stars

We do not want to be restricted to massive objects describing un-
bounded motions and, so, we consider also perturbers with small vR.
These may not have sufficient energy to escape the NBS gravity, being
doomed to remain in a bounded oscillatory motion (see Section 5.4).
In these cases, we want to find the energy and linear momentum that
is lost in one full crossing of the NBS and, so, we shall take the above
source as active just during that time interval, vanishing whenever else.
Using Eq. (4.26) the function p is

p = − mp√
2π

Yl,0(0)δ0
m
|t′p(r)|

r

(
e−iωtp(r) + (−1)leiωtp(r)

)
, (4.60)

with tp(r) ≥ 0 defined by zp
[
tp(r)

]
= −r. This can be rewritten in the

form

p =
mp√
2π

Yl,0(0) δ0
m
|t′p(r)|

r

(
cos

[
ωtp(r)

]
δeven

l − i sin
[
ωtp(r)

]
δodd

l

)
.

(4.61)

The property

p(ω, l, 0; r) = p(−ω, l, 0; r)∗ , (4.62)

together with the form of system (4.27), implies that

Z2(ω, l, 0; r) = Z1(−ω, l, 0; r)∗ , (4.63)

Z∞
2 (ω, l, 0) = Z∞

1 (−ω, l, 0)∗ . (4.64)

So, the spectral fluxes (3.31), (3.16), (3.22) and (3.27) become, respec-
tively,

dQrad

dω
=

4
h̄
<
[√

2µS(ω− γ)

]
∑

l
|Z∞

1 (ω, l, 0)|2 , (4.65)

dErad

dω
= h̄ (µS − γ + ω)

dQrad

dω
' h̄µS

dQrad

dω
, (4.66)

dPrad
z

dω
= ∑

l

16µS(l+1)Θ(ω−γ)√
(2l+1)(2l+3)

(ω− γ)< [Z∞
1 (ω, l, 0)Z∞

1 (ω, l + 1, 0)∗] ,

(4.67)

and

dLrad
z

dω
= 0 . (4.68)

These expressions were derived assuming a perturber in an unbounded
motion. However, these are also good estimates to the energy and
momenta radiated during one full crossing of the NBS by a bounded
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perturber, as long as its half-period is much larger than the NBS cross-
ing time.

To compute how much energy is lost by the perturber, we need to
know the change in the NBS energy ∆ENBS. At leading order, this is
given by

∆ENBS = h̄µS ∆QNBS = −h̄µS Qrad , (4.69)

using (3.37) in the second equality. Conservation of total energy-
momenta, expressed through Eq. (3.33), implies that the perturber
loses the energy

Elost = ∆ENBS + Erad = h̄
∫

dω(ω− γ)
dQrad

dω

= 4
√

2µS

∫
dω<

[
(ω− γ)

3
2

]
∑

l
|Z∞

1 (ω, l, 0)|2 . (4.70)

The last expression should be understood only as an order of magni-
tude estimate. If we had considered only the leading order contribution
to Erad as we did for ∆ENBS, we would have obtained Elost = 0. In
the second equality we used higher order corrections to Erad – the
factor (ω− γ)� µS; but not to ∆ENBS. There are corrections to ∆ENBS

of the same order of those to Erad that should be included in a rigorous
calculation of Elost. We do not attempt that in this work. Interestingly,
in our approximation the energy lost by the perturber matches the
kinetic energy of the radiated scalar particles at infinity, as can be read-
ily verified. The terms neglected should contain information about, for
instance, the gravitational and kinetic energy of the radiated particles
when they were in the unperturbed NBS. Still, we believe that Eq. (4.70)
is good estimate of the order of magnitude of Elost and that it scales
correctly with the boson star and perturber’s mass, MNBS and mp,
respectively.

For a small perturber mpµS � vR, the momentum and energy that
are lost in this type of process are related through (see Eq. (3.38)) 4

Plost
z ' −Elost

vR
. (4.71)

Conservation of total momentum, as expressed in (3.34), implies that
the NBS acquires a momentum 5

PNBS = Plost
z − Prad

z = −Elost

vR
− Prad

z . (4.72)

4 Using the full expression (3.38), it is easy to see that if Elost ∝ m2
p, then Plost ∝ m2

p in
the limit mpµS � vR. The Elost ∝ m2

p follows from Z∞
1 ∝ mp (e. g., Eq. (4.55)).

5 The watchful reader may wonder why the kinetic energy associated with the momen-
tum acquired by the boson star ∆Pz is not included in ∆ENBS. Actually, this is one
of the higher order corrections neglected in (4.70), but it is easy to check that it is
subleading comparing with the correction of Erad considered.
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orbiting particles . Consider an equal-mass binary, with each
component having mass mp, and describing a circular orbit of radius
rorb and angular frequency ωorb in the equatorial plane of a NBS. The
source is modeled as

P =
mp

r2
orb

δ(r− rorb)δ
(

θ − π

2

)
[δ(ϕ−ωorbt) + δ(ϕ + π −ωorbt)] .

(4.73)

We are assuming that the center of mass of the binary is at the center
of the NBS, but in principle our results extend to all binaries sufficiently
deep inside the NBS. Also, our methods can be applied to any binary
as long as a suitable source P is given.

Using Eq. (4.26) the above source yields

p = mp

√
π

2
Ylm (π/2, 0)

rorb
(1 + (−1)m)δ (r− rorb) δ (ω−mωorb) .

(4.74)

The perturber’s motion is fully specified by a prescription relating
rorb and ωorb; we consider Keplerian orbits r3

orb = M/ω2
orb, where

M = 2mp is the total binary mass. This setup describes either stellar-
mass or supermassive BH binaries orbiting inside a NBS. Alternatively,
applying the transformation mp(1+ (−1)m)→ mp, we obtain a source
that describes an extreme mass-ratio inspiral (EMRI). This could be, for
instance, a star of mass mp on a circular orbit around a central massive
BH of mass MBH. In such case we consider the Keplerian prescription
r3

orb = MBH/ω2
orb.

The symmetry

p(ω, l, m; r) = (−1)m p(−ω, l, m; r)∗ , (4.75)

together with the form of system (4.27), implies

Z2(ω, l, m; r) = (−1)mZ1(−ω, l,−m; r)∗ , (4.76)

Z∞
2 (ω, l, m) = (−1)mZ∞

1 (−ω, l,−m)∗ . (4.77)

These simplify the emission rate expressions (3.32), (3.17) and (3.28),
yielding

Q̇rad =
2

πh̄

∫
dω<

[√
2µS (ω− γ)

]
∑
l,m
|Z∞

1 (ω, l, m)|2 , (4.78)

Ėrad =
2
π

∫
dω(µS − γ + ω)<

[√
2µS (ω− γ)

]
∑
l,m
|Z∞

1 (ω, l, m)|2 ,

(4.79)

L̇rad
z =

2
π

∫
dω<

[√
2µS (ω− γ)

]
∑
l,m

m |Z∞
1 (ω, l, m)|2 . (4.80)
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These can be written explicitly as

Q̇rad =
32π

h̄
p̃2 ∑

l,m
<
[√

2µS (mωorb − γ)

] ∣∣∣F−1
4,6 (mωorb; rorb)

∣∣∣2 ,

(4.81)

Ėrad = 32π p̃2 ∑
l,m
<
[√

2µS (mωorb − γ)

]
× (µ− γ + mωorb)

∣∣∣F−1
4,6 (mωorb; rorb)

∣∣∣2 , (4.82)

L̇rad
z = 32π p̃2 ∑

l,m
m<

[√
2µS (mωorb − γ)

] ∣∣∣F−1
4,6 (mωorb; rorb)

∣∣∣2 ,

(4.83)

where we defined

p̃ ≡ mp

√
π

2
Ylm(π/2, 0)

rorb
(1 + (−1)m) .

Equation (4.82) can be further simplified using

µS − γ + mωorb ' µS ,

since we are treating the scalar fluctuations as non-relativistic; that is
only valid if γ� µS and ωorb � µS. 6

Now we follow the same procedure that we applied above to a
plunging particle, to estimate the rate at which the binary loses energy.
Again, we start by computing, at leading order, the change in the NBS

energy per unit of time,

ĖNBS = h̄µSQ̇NBS = −h̄µSQ̇rad , (4.84)

where we used Eq. (4.44) in the first equality and (3.37) in the second. 7

Conservation of the total energy implies that the energy that is lost
per unit of time by the binary is

Ėlost = Ėrad + ĖNBS

= 32π p̃2 ∑
l,m

(mωorb − γ)<
[√

2µS (mωorb − γ)

] ∣∣∣F−1
4,6 (mωorb; rorb)

∣∣∣2 .

(4.85)

Again, the last expression should be understood only as an order of
magnitude estimate (as it was discussed above when considering a
plunging particle).

6 Large azimuthal numbers m do not spoil the approximation, because the emission is
strongly suppressed by F−1

4,6 in that limit.
7 Equations (3.37) and (4.44) are easy to adapt to changes happening during a fi-

nite amount of time ∆t. To get the rates of change one just needs to divide these
expressions by ∆t and take the limit ∆t→ 0.
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For a small perturber mp � ωorbr2
orb, the angular momentum and

energy that are lost in this type of process are related through

L̇lost
z ' Ėlost

ωorb
. (4.86)

Conservation of total angular momentum, expressed through Eq. (3.35),
implies that per unit of time the NBS acquires the angular momentum

L̇NBS = L̇lost
z − L̇rad

z =
Ėlost

ωorb
− L̇rad

z . (4.87)

4.3 free oscillations

The characteristic, non-relativistic oscillations of NBS are regular solu-
tions of system (4.19)-(4.20) satisfying Sommerfeld conditions (4.32) at
large distances. For each multipole l, there seems to be an infinite, dis-
crete set of solutions which we label with an overtone index n, ωn

QNM.
The first few characteristic frequencies, normalized to the NBS mass,
are shown in Table 4.1. They turn out to be all normal mode solutions,
confined within the NBS. The characteristic frequencies are all purely
real and cluster around γ. We highlight the fact that the numbers in
Table 4.1 are universal, they hold for any NBS. The fundamental l = 0
mode (the first entry in the table) had been computed previously [100],
and agrees with our calculation to excellent precision (after proper
normalization). Our results are also in very good agreement with the
frequencies of the first two modes obtained in a recent time-domain
analysis [101]. Modes of relativistic stars have been considered in the

l ω
(n)
QNM/(M2

NBSµ3
S)

0 0.0682 0.121 0.138 0.146 0.151 0.154 0.159

1 0.111 0.134 0.144 0.149 0.153 0.157 0.162

2 0.106 0.131 0.143 0.149 0.153 0.156 0.161

Table 4.1: Normal frequencies of a NBS of mass MNBS for the three lowest
multipoles. For each multipole l we show the fundamental mode
(n = 0) and the first five overtones. At large overtone number the
modes cluster around γ ' 0.162712M2

NBSµ3
S. The first mode for l =

0 agrees with that of Ref. [100] when properly normalized and
with an ongoing fully relativistic analysis [102]. The two lowest l =
{0, 1, 2} modes are in good agreement with a recent time-domain
analysis [101].

literature [103–106] and should smoothly go over to the numbers in
Table 4.1. Note that modes of relativistic boson stars are damped, due
to couplings between the scalar and the metric and the possibility to
lose energy via gravitational waves. Such damping – which is small
for the relevant polar fluctuations [105–107] – should get smaller as
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one approaches the Newtonian regime, but a full characterization of
the modes of boson stars is missing. Our results show that NBSs are
linearly mode stable; it would be interesting to have a formal proof,
perhaps following the methods of Ref. [108, 109]. We point out that the
stabilization of a perturbed boson star through the emission of scalar
field – known as gravitational cooling – has been studied previously [34,
110, 111].





5
S T I R R I N G U P A N U LT R A L I G H T D A R K M AT T E R
C O R E

5.1 a perturber sitting at the center

Static perturbations of NBSs, or, more generally, of solitonic DM cores of
light fields are interesting in their own right. For perturbers localized
far away, the induced tidal effects can dissipate energy and lead to
distinct signatures, both in GW signals and in the dynamics of objects
close to such configurations [112–114]. Here we will not perform
a general analysis of static tidal effects and will instead focus on
perturbations due to a massive object at the center of an NBS. Such
object can be taken to be a supermassive BH or a neutron star, and the
induced changes are important to understand how DM distribution is
affected by baryonic impurities.

Consider then a BH or star, described by the source (4.21), and
inducing static, spherically symmetric, real perturbations on the scalar
field and gravitational potential, respectively, δΨp(r) and δUp(r). Then,
Eqs. (4.19) and (4.20) become

∇2δΨp = 2µS (µSU0 + γ) δΨp + 2µ2
SΨ0δUp , (5.1)

∇2δUp = 4π
(
2µ2

SΨ0 δΨp + P
)

. (5.2)

For a static source at the origin, it is easy to show that the matter
moments are given by

p = lim
rp→0

1
2
√

2

mp

rp
δ0

l δ0
mδ(ω)δ(r− rp) , (5.3)

which, through the variation of parameters, implies that

δΨp = mp

6

∑
n=4

F1,n(r)
r

lim
rp→0

(
F−1

n,6 (rp)

rp

)
,

δUp = mp

6

∑
n=4

F3,n(r)
r

lim
rp→0

(
F−1

n,6 (rp)

rp

)
, (5.4)

where the components of the fundamental matrix and its inverse are
evaluated at l = m = ω = 0. Note that the change in the number
of particles and mass of the NBS, respectively, δQp and δMp, is con-
stant, but non-zero in general. This is a consequence of the source

45
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being treated as if it was eternal. However, we expect that, if the per-
turber is brought in an adiabatic way to the center of the NBS, there
is no scalar radiation emitted, and, so, no change in the number of
particles and mass of the scalar configuration, δQNBS = δMNBS = 0.
Fortunately, we are free to sum a trivial homogeneous solution (4.49)
to enforce δQNBS = δMNBS = 0, while keeping δΨ = δΨp + δΨε

and δU = δUp + δUε a solution of the inhomogeneous system. Then,
the total perturbation induced in the density of particles is given by

δρQ = δJ t
Q =

2
h̄

µSΨ0< (δΨ) =
2
h̄

µSΨ0

(
δΨp +

ε

2
Ψ0

)
,

and the one induced in the mass density by

δρM = δTS
tt = h̄µSδρQ = 2µ2

SΨ0

(
δΨp +

ε

2
Ψ0

)
, (5.5)

where J t
Q is the t-component of the Noether’s current. The parameter

ε associated with the trivial homogeneous solution must be chosen
appropriately, so that

4π
∫ ∞

0
dr r2δρQ = 4π

∫ ∞

0
dr r2δρM = 0 . (5.6)

The perturbations in the mass density and gravitational potential
of a NBS induced by a massive object sitting at its center are shown in
Fig. 5.1. Our results indicate that the massive perturber attracts scalar
field towards the center, where the gravitational potential corresponds
solely to that of the point-like mass. These results are consistent with
those in Ref. [75]. We find an insignificant change in the local DM mass
density, when placing a point-like perturber at the center of a NBS;
notice that δρM(0)/ρM(0) ∼ 10 mp/MNBS. Thus, a massive perturber
will not enhance greatly the local DM density, which is smooth and
flat for light scalars. On the other hand, studies with particle-like
DM models find that its density close to supermassive BHs increases
significantly [115, 116]. This is in clear contrast to our results for light
fields, a perturber does not significantly alter the local ambient density,
since its size is much smaller than the scalar’s Compton wavelength.
Parenthetically, large overdensities seem to be in some tension with
observations [73]. Possible ways to ease the tension rely on scattering
of DM by stars or BHs, accretion by the central BH, or induced heating
by its vicinities [117–119]. These outcomes cannot possibly generalize
to light scalars, at least not when the configuration is spherically
symmetric, since there are no stationary BH configurations with scalar
“hair” [120–123]. But these results do prompt the questions: what
happens to an NBS when a BH is placed at its center? What happens
to the local scalar amplitude of an NBS when a binary is orbiting? We
now turn to these issues.
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Figure 5.1: Universal perturbations induced by a massive object of mass mp,
sitting at the center of the scalar configuration. We assume that the
perturber was brought adiabatically so that δQNBS = δMNBS = 0.
Upper panel: perturbation in the mass density of the NBS obtained
using Eq. (5.5). Lower panel: perturbation in the gravitational
potential r δU = r

(
δUp + δUε

)
. As expected, for large r, one

recovers the Coulombian potential U = −mp/r.
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5.2 a black hole eating its host

As we noted, there are no stationary, spherically symmetric, scalar
configurations when a non-spinning BH is placed at its center. On
long timescales, the entire NBS will be accreted by the BH, a fraction
dissipating to infinity. This means, in particular, that our results cannot
be extrapolated to the case in which the point particle is a BH, and
describe the system only at intermediate times. What is the lifetime
of such a system, composed of a small BH sitting at the center of a
NBS? Unfortunately, most of the studies on BH growth and accretion
assume a fluid-like environment [124], an assumption that breaks
down completely here, since the Compton wavelength of the scalar is
much larger than the size of the BH. Exceptions to this rule exist [122,
125], but focus on different aspects, and do not consider setups with
the necessary difference in lengthscales.

The precise answer to this question requires full nonlinear simula-
tions in a challenging regime, with proper initial conditions. However,
in the limit we are interested in, where the BH, of mass MBH � MNBS,
is orders of magnitude smaller and lighter than the NBS, a perturbative
calculation is appropriate. Consider a sphere of radius r+ centered at
the origin of the NBS. The NBS is stationary and so there is a flux of
energy crossing such a sphere inwards (details in Appendix C.1)

Ėin ≈ 10−3µ7
Sr2

+M5
NBS , (5.7)

and the same amount crossing it outwards. If such a sphere defines
the BH boundary r+ = 2MBH

1, a fraction will be absorbed by the BH.
Low-frequency waves (the scalar field frequency is ∼ µS and we are
in the low frequency regime with µS MBH � 1) are poorly absorbed,
and one finds that the flux into the BH is [126] 2

Ėabs = 32π (MBHµS)
3 Ėin =

16π

125
M5

BH

M5
NBS

(MNBSµS)
10 . (5.8)

We have tested the above physics with a series of toy models, including
the study of accretion of a massive, non self-gravitating scalar confined
in a spherical cavity with a small BH at the center (Appendix C.2.2).
This toy model conforms to the physics just outlined. One simple
toy model, summarized in Appendix C.2.1, suggests that all modes
of the NBS are excited during such an accretion process, but made
quasinormal (i. e., damped) by the presence of absorption. These are
all low-frequency modes, and our argument should be valid even in
such circumstance.

1 Actually, such a sphere should be placed outside the effective potential for wave
propagation around BHs, but the difference is not relevant here.

2 We are taking the limit ω → µS in the expression for the transmission amplitude.
Strictly speaking, we are in the ω < µS regime, but continuity of results should be
valid.
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With Ėabs = ṀBH and fixed NBS mass, one finds the timescale

τ ∼ 1
M4

BHM5
NBSµ10

S
= 1024 yr

MNBS

1010M�

( χ

104

)4
(

0.1
MNBSµS

)10

,

(5.9)

where χ ≡ MNBS/MBH. In other words, the timescale for the BH to
increase substantially its mass – which we take as a conservative
indicative of the lifetime of the entire NBS – is larger than a Hubble
timescale for realistic parameters. This timescale is the result of forcing
the BH with a nearly monochromatic field from the NBS. When the
material of the star is nearly exhausted, a new timescale is relevant,
that of the quasinormal modes of the BH surrounded by a massive
scalar. This timescale is τQNM ∼ MBH(MBHµS)

−6 < τ [43, 127], but
still typically larger than a Hubble time.

When rotation is included, the entire setup may become even more
stable: rotation is able to provide energy, via superradiance, to the
surrounding field, and sustain nearly stationary, but non spherically-
symmetric, configurations [42, 43]. We will not discuss these effects
here.

5.3 massive objects plunging into the core

Consider now a massive perturber plunging, head-on, into a NBS.
The perturber is assumed to have traveled from far away, but for our
purposes the only relevant quantity is the perturber velocity when
it reaches the NBS surface, v = −vRez, with vR ≥ 0. This setup is
described in detail in Section 4.2.3. As we argued before, this situation
could describe a massive BH kicked at formation, via GW emission, in a
DM core of light fields, or, simply, stars crossing a NBS. Our framework
allow us to do the first self-consistent computation (including self-
gravity of the scalar perturbation and finite-size effects of the core)
of the DF acting on perturbers in such systems. The effect of the NBS

gravitational potential on the perturber motion sets a natural critical
velocity in the problem, the escape velocity vesc. For the fundamental
NBS described in Fig. 4.1, the velocity needed to escape from its surface
is vesc ∼ 0.47MNBSµS. When the velocity is smaller than that, the
crossing object will be bound to the NBS describing an oscillatory
motion. For now, we study a simple one-way motion and assume
that after crossing the NBS once, the particle simply “disappears”.
This will allow us to estimate the DF acting on the perturber. This
assumption is formally correct and accurate for unbound motion. For
bound oscillatory motion it is not, and we work out the full case below,
in Section 5.4.

Some quantities of interest are the energy and linear momentum car-
ried by the scalar field radiated in these processes, as well as the energy
that is lost by the perturber. These are given, respectively, by Eqs. (4.66)-
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Figure 5.2: Spectrum of radiation released when an object of mass mp plunges
through an NBS with initial velocity vR ≈ 0. Emission takes place
for frequencies ω > γ (Eqs. (4.66)-(4.67)). Upper panel: lowest
multipole contribution l = {0, 1, 2, 3} to the spectrum of total ra-
diated energy. Inset: multipole contributions to the kinetic energy
of the radiated scalar field. Lower panel: spectral fluxes of linear
momentum along z associated with the lowest multipoles. The
results obtained for other plunging velocities are summarized in
Eqs. (5.10)–(5.13).
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(4.67) and (4.70). The upper panel of Fig. 5.2 shows the contribution of
the lowest multipoles to the total radiated energy spectrum dErad/dω

(dElost/dω in inset). This result was obtained through the numerical
evaluation of expressions (4.66)-(4.70) for a perturber plunging into a
NBS, starting the fall from rest at R. The fluxes converge exponentially
with multipole number l, after a sufficiently large l. Our results are
compatible with Erad

l ∝ e−l , where Erad
l is the l-mode contribution to

the energy radiated. Once the behavior of Erad
l for large l is obtained,

one can find the total energy radiated. For a particle plunging with
zero initial velocity into an NBS we obtain Erad ∼ 1.28 m2

p/MNBS and
Elost ∼ 0.18 m2

p MNBSµ2
S. Applying this procedure to other velocities,

we find that the following expressions provide a good description of
our results,

Erad = 29
m2

p

MNBS

e−3.25/X

X17/4 , (5.10)

Elost = 7m2
p MNBSµ2

S
e−3.54 (X−0.05)−1

(X− 0.05)17/4 , (5.11)

accurate to within 5% of error for 0 . vR . 2.5MNBSµS. This interval
spans over astrophysical relevant velocities (e. g., 0 . vR[km/s] .
6000, for a DM core with mass ∼ 1010M� and a scalar mass h̄µS ∼
10−22eV). In the above expression we defined

X ≡ vR

MNBSµS
+ 0.68 . (5.12)

The lower panel of Fig. 5.2 shows the multipolar contribution to the
spectrum of radiated linear momentum along z. These also converge
exponentially in l, after a sufficiently large l. For a perturber starting at
rest, the total linear momentum radiated along z in the whole process
is Prad ∼ −0.43m2

pµS. The fitting expression

Prad = −2.4m2
pµS

e−2.26 (X−0.27)−1

(X− 0.27)17/4 , (5.13)

is a good approximation to our results (within 5% of error for 0 .
vR . 2.5MNBSµS). Figure 5.3 shows how the total radiated energy
Erad, the total energy lost by the moving perturber Elost, and the linear
momentum radiated Prad vary with the change of entering velocity.

The momentum that is lost by a small plunging object (mpµS � vR)
is given by Plost = −Elost/vR, as shown in Eq. (3.38). We have thus
computed the DF acting upon a body moving within a NBS. The
quantity Elost is the actual energy that is lost by the perturber in
crossing the NBS. Note that our result for Elost – in particular, its sign –
indicate that there exists indeed a friction; the body will slow down.
Additionally, note that the same result Elost together with the radiated
momentum Prad show that the NBS will acquire a small momentum in
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Figure 5.3: Total energy, kinetic energy, and linear momentum emitted when
an object of mass mp plunges through a NBS, as a function of the
entering velocity. The dots correspond to the numerical data used
to obtain the fits (5.10)–(5.13).

the direction of the moving object, as described by Eq. (4.72); the two
lines cross each other close to vR = MNBSµS as shown in Fig. 5.3.

Our results should be compared and contrasted with those of
Refs. [10, 128], where DF in these structures was estimated, neglecting
the self-gravity of scalar fluctuations and considering a homogeneous
density medium and a constant velocity perturber (the finite size of the
scalar configuration was forced through a cut-off radius). These results
were recently extended to the relativistic regime – i. e., BHs moving at
high velocities (the same setup will be considered in the next chapter,
were we derive analytical expressions for the DF in several regimes).
In the limit β ≡ mpµs/v0 � 1, with v0 the constant velocity of the
perturber – which is the limit consistent with our perturbation scheme
– the DF force obtained in Ref. [10] is

F = −
4πm2

pρM

v2

(
Cin(2vRµS) +

sin(2vRµS)

2vRµS
− 1
)

, (5.14)

where Cin(x) =
∫ x

0 (1− cos x′)dx′/x′ is the cosine integral. For small
velocities v� 1/(RµS), this becomes

F ' −4π

3
m2

pρMR2µ2
S . (5.15)

This amounts to a loss of momentum of the order

Plost ∼ F
(

2R
v0

)
∼ − 2

v0
m2

pµ2
S M , (5.16)
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where M = (4π/3)ρMR3. Our perturbative framework, at small veloc-
ities, gives (looking at Figure 5.3)

Plost ' −0.2
vR

m2
pµ2

S MNBS . (5.17)

If we consider v0 ∼ vR and M ∼ MNBS, our result has the same form
than the one in Ref. [10], but it is one order of magnitude smaller
(which is not very surprising, given the different assumptions in the
two treatments).

5.4 a perturber oscillating at the center

As a BH forms through gravitational collapse in a DM core it can be
kicked, via GW emission, and left in an oscillatory motion around the
center of the core. The reason for the kick is that collapse is, in general,
an asymmetric process, and leads to emission of GWs which carry
some momentum. This process is known to lead to velocities of at
most a few hundred kilometers per second [82], generally, smaller
than the galactic escape velocity. Thus, the remnant BH is bound to the
galaxy and, in absence of dissipation, performs an oscillatory motion.

It is crucial to understand how the DM core reacts to this motion
and to quantify the energy and momentum radiated and deposited
in the scalar field. Similar issues were addressed in Ref. [129], in the
context of the interaction between a kicked supermassive BH and stars
in galaxy cores.

At the center of a NBS, the mass density is approximately con-
stant ρM ' 4× 10−3M4

NBSµ6
S. So, the motion of the perturber is

zp(t) = −A sin (ωosct) , (5.18)

A ≡
√

3
4π

v2
0

ρM
, ωosc ≡

√
4πρM

3
, (5.19)

where v0 is the velocity of the perturber at the center of the core. The
source is then described by

P = mp
δ(ϕ)

r2 sin θ

[
δ
(
r− zp(t)

)
δ (θ) + δ

(
r + zp(t)

)
δ (θ − π)

]
.

(5.20)

Using Eq. (4.26) the function p reads

p =
mp

2
√

2π

|τ′1,n(r)|
r

Yl,0(0)δ0
m

× ∑
n∈Z

[
e−iωτ1,n + e−iωτ2,n + (−1)n

(
eiωτ1,n + eiωτ2,n

) ]
, (5.21)
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where we defined 3

τ1,n ≡
1

ωosc

[
arcsin

( r
A
)
+ 2nπ

]
,

τ2,n ≡
1

ωosc

[
(2n + 1)π − arcsin

( r
A
)]

. (5.22)

In the last expressions we are using the principal branch of the inverse
sine function. It is easy to see that the function p can be put in the
form

p =
mp√
2π

Yl,0(0)√
A2 − r2

δ0
m

ωosc
Θ (A− r)

× ∑
n∈Z

[
δeven

l (cos [ωτ1,n(r)] + cos [ωτ2,n(r)])

− i δodd
l (sin [ωτ1,n(r)] + sin [ωτ2,n(r)])

]
. (5.23)

Using the mathematical identities

∑
n∈Z

sin
(

2nπ
ω

ωosc

)
= 0 , (5.24)

∑
n∈Z

cos
(

2nπ
ω

ωosc

)
= ωosc ∑

n∈Z

δ(ω− nωosc) , (5.25)

together with some trigonometric identities, one can rewrite (5.23) as

p = mp

√
2
π

Yl,0(0)√
A2 − r2

δ0
m Θ (A− r) ∑

n∈Z

δ(ω− 2nωosc)

×
[

δeven
l cos

(
2n arcsin

r
A
)
− i δodd

l sin
(

2n arcsin
r
A
) ]

.

(5.26)

With the help of the trigonometric identities

cos(2nx) =
n

∑
k=0

(−1)k
(

2n
2k

)
sin2k x cos2(n−k) x , (5.27)

sin(2nx) =
n−1

∑
k=0

(−1)k
(

2n
2k + 1

)
sin2k+1 x cos2(n−k)−1 x , (5.28)

the last expression can be written in the alternative form

p = mp

√
2
π

Yl,0(0)δ0
m Θ (A− r) ∑

n∈Z

1
A2n δ(ω− 2nωosc)

×
[
− i δodd

l

n−1

∑
k=0

(−1)k
(

2n
2k + 1

)
r2k+1 (A2 − r2)n−k−1

+ δeven
l

n

∑
k=0

(−1)k
(

2n
2k

)
r2k (A2 − r2)n−k− 1

2

]
. (5.29)

3 The functions τ1,n(r) and τ2,n(r) are the roots of r + zp(τ) = 0; the symmetric
functions −τ1,n(r) and −τ2,n(r) are the roots of r− zp(τ) = 0.
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We want to calculate the energy carried by the radiated scalar field
due to the oscillatory motion of the massive object. First, note that
the oscillation frequency is ωosc ∼ 0.135M2

NBSµ3
S . γ. Only the modes

with n ≥ 1 arrive at infinity; so, only these contribute to the energy
radiated. Applying the formalism described in Section 4.2, we obtain

Z∞
1 = 4π

∫ A
0

dr′F−1
4,6 (r

′)p(r′) , (5.30)

Z∞
2 (ω, l, 0) = Z∞

1 (−ω, l, 0)∗ . (5.31)

The energy radiated per unit of time is (Eq. (3.17))

Ėrad =
2
π ∑

l,n
(µS − γ + 2nωosc)<

[√
2µS(2nωosc − γ)

]
|Z̃∞

1 |2

(5.32)

' 2
π

µS ∑
l,n
<
[√

2µS(2nωosc − γ)

]
|Z̃∞

1 (2nωosc, l, 0)|2 ,

(5.33)

where we used that both the NBS and its perturbations are non-
relativistic, γ� µS and ωosc � µS, and defined the quantity

Z̃∞
1 ≡ 4π

∫ A
0

dr′F−1
4,6 (r

′) p̃(r′) , (5.34)

p̃ ≡ mp

√
2
π

Y0
l (0)√
A2 − r2

× ∑
n∈Z

[
δeven

l cos
(

2n arcsin
r
A
)
− i δodd

l sin
(

2n arcsin
r
A
) ]

.

(5.35)

One can anticipate that the dominant contribution to the radiation
is given by the n = 1 mode, which has a frequency ω = 2ωosc. This is
the lowest frequency radiated by the perturber and, thus, we expect
it to be the one carrying more energy, because the coupling between
the perturber and the scalar is stronger for lower frequencies – as will
become evident in the following sections. Indeed, this is in accordance
with our numerics. So, we focus on the single n = 1 mode. For
oscillations deep inside the NBS with an amplitude A � R – which
is where our constant density approximation holds – we find that
the following semi-analytic expression is a good description of our
numerical results,

Ėrad =
2
√

2
π

(mpµS)
2

√
2ωosc − γ

µS
∑

l
cl

(A
R

)2(l+1)

, (5.36)

with the numerical constants cl . For the first multipoles we find

c0 ' 0.852 , c1 ' 67.7 , c2 ' 30.4 ,

c3 ' 438 , c4 ' 13.6 , c5 ' 3.85 .
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The above expression describes our numerics with less than 1% of
error for A/R . 0.09. These amplitudes correspond to kicks of v0 .
0.1MNBSµS, which contains astrophysical relevant velocities; for a DM

core with mass ∼ 1010M� and a scalar with mass h̄µS ∼ 10−22eV,
our expression covers v0 . 300 km/s, which contains typical recoil
velocities imparted by GW emission in gravitational collapse. Larger
kicks, like the ones delivered in a merger of two supermassive BHs,
have larger amplitudes and are out of our approximation. However, the
framework of Section 4.2 (without the constant density approximation)
can still be applied to those cases.

Using the same reasoning that we applied to the orbiting particles in
Section 4.2 to obtain (4.85), we can estimate the energy that is lost by
the compact object per unit of time to be

Ėlost =
2
π ∑

l,n
(2nωosc − γ)<

[√
2µS(2nωosc − γ)

]
|Z̃∞

1 (2nωosc, l, 0)|2 .

(5.37)

Considering the single (dominant) n = 1 mode, the numerical eval-
uation of the last expression is well described by the semi-analytic
formula

Ėlost =
2
√

2
π

(mpµS)
2
(

2ωosc − γ

µS

) 3
2

∑
l

cl

(A
R

)2(l+1)

. (5.38)

Again, this describes our numerics with less than 1% of error for small
amplitude oscillations A/R ≤ 0.09.

One may wonder how long it takes for a kicked BH (or star) to
settle down at the center of a DM core purely due to the DF caused by
ultralight DM. When the condition

Ėlost
(

2π
ωosc

)
1
2 mpω2

oscA2
� 1 (5.39)

is verified, the system is suited to an adiabatic approximation, and we
can compute how the amplitude changes with time by solving

mpω2
oscA Ȧ = −Ėlost . (5.40)

Several astrophysical systems fall within this approximation. For exam-
ple, for a DM core with mass ∼ 1010M� and a scalar with mass h̄µS ∼
10−22eV, we have MNBSµS ∼ 10−2; so, for an object forming through
gravitational collapse and receiving a kick of 300 km/s, via GW emis-
sion, the adiabatic approximation is suitable if mp/MNBS � 0.1 –
which is verified by all known compact objects. Using only the domi-
nant multipole l = 0 (which accounts for more than 61% of the total
energy loss for A/R ≤ 0.09, and more than 89% for A/R ≤ 0.04) we
obtain

A = A0 e−t/τS , (5.41)
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with the timescale

τS '
56

mp MNBSµ3
S
∼ 1010yr

(
10−22 eV

h̄µS

)2 (105M�
mp

)(
0.01

MNBSµS

)
.

(5.42)

So, an object kicked at the center of a NBS, interacting solely with the
scalar, settles down in a timescale smaller than an Hubble time if it
has a mass mp & 105M�; in other words, if it is a supermassive BH.

The above timescale is in general much larger than the period of
oscillation,

τS ∼
MNBS

mp
τosc . (5.43)

This suggest that treating the source as eternal is indeed a good
approximation to study this process. It is interesting to compare this
result with the timescale of damping due to DF caused by stars in the
galactic core. In Ref. [129] the authors estimate that timescale to be

τ∗ ∼ 0.1
Mc

mp
τosc , (5.44)

where Mc is the galactic core mass. For the same mass, Mc = MNBS,
we see that τ∗ ∼ 0.1 τS, which is smaller but still comparable to τS.
Both ours and Ref. [129] calculations are only order of magnitude
estimates, but our result suggests that DM may exert a DF comparable
to the one due to stars in processes happening in galactic cores.

5.5 low-frequency binaries

We now focus on orbiting objects within a NBS. These will describe
binaries, either at an early or late stage in their life, stirring the field
and producing disturbances in the local DM profile. The matter mo-
ments in Eq. (4.74) can describe, for instance, stars orbiting around
the SgrA∗ BH at the center of the Milky Way. This supermassive BH

has a mass ∼ 4× 106M� with known orbiting companions. The clos-
est known star, S2, has a pericenter distance of ∼ 2800MBH and a
mass mp ∼ 20M�, with large uncertainty [130, 131]. Its orbit is, how-
ever, highly eccentric. Given the mass and sizes of the NBSs (modeling
the cores of DM halos) discussed here, all these systems can be handled
via perturbation techniques. In addition, binaries close to supermas-
sive BHs, and therefore to galactic centers, may have been observed
recently via electromagnetic counterparts to GWs [132].

5.5.1 Scalar emission and energy loss

Let us consider first an EMRI, i. e., a perturber of mass mp orbiting
a supermassive BH of mass MBH � mp placed at the center of a
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NBS. Solving the perturbation equations (4.27) with the source (4.74)
(applying the transformation rule mp(1 + (−1)m)→ mp) we find that,
up to 3% accuracy, the rate of energy radiated and lost by the perturber
(Eqs. (4.84) and (4.85)) are described by 4

Ėrad
EMRI = 10−2 m2

p M2/3
BH M4

NBSµ17/2ω−11/6
orb Θ(ωorb − γ)

×
[
2.66− 0.49 M4/3

NBSµ2
Sω−2/3

orb + 0.054 M8/3
NBSµ4

Sω−4/3
orb

]
,

(5.45)

Ėlost
EMRI = 10−2 m2

p M2/3
BH M4

NBSµ15/2
S ω−5/6

orb Θ(ωorb − γ)

×
[
2.70− 0.96 M4/3

NBSµ2
Sω−2/3

orb + 0.043 M8/3
NBSµ4

Sω−4/3
orb

]
.

(5.46)

The results described by (5.45) and (5.46) were obtained for a non-
relativistic scalar field perturbation, and therefore are valid for orbital
periods Torb = 2π/ωorb � 2π/µS ∼ 10−22eV/(h̄µS) yr. We show in
Fig. 5.4 the flux of radiated energy (Erad) as a function of the orbital
period and of the BH-NBS mass ratio. Once the orbital frequency is
fixed, our results are consistent with exponential convergence in l for
the flux.

The above calculation is easy to adapt to other systems. Consider an
equal mass binary system (M = 2mp). Looking at the matter moments
in Eq. (4.74), it is clear that the first multipole moment contributing to
the scalar emission is the quadrupole l = |m| = 2. Solving numerically
the perturbation equations, we find that the following expressions
provide a very good description of the rate of energy emitted in scalar
waves and lost by the orbiting particle (up to 3% of accuracy)

Ėrad = 10−2 M4/3m2
p M4

NBSµ19/2
S ω−13/6

orb Θ (2ωorb − γ)

×
[
1.45− 0.16 M4/3

NBSµ2
Sω−2/3

orb + 0.015 M8/3
NBSµ4

Sω−4/3
orb

]
,

(5.47)

Ėlost = 10−2 M4/3m2
p M4

NBSµ17/2
S ω−7/6

orb Θ (2ωorb − γ)

×
[
2.97− 0.58 M4/3

NBSµ2
Sω−2/3

orb + 0.0051 M8/3
NBSµ4

Sω−4/3
orb

]
.

(5.48)

These expressions are valid, e. g., for solar mass BHs, or BH masses of
the order ∼ 104M�.

In the limit ωorb � γ, but still for non-relativistic ωorb � µS excita-
tions, the relevant equations (4.22) and (4.23) can be solved analytically
in closed form. Equation (4.23) has the simple solution

δU =
2√
2π

∑
l,m

u(r)
r

Ylm(θ, 0)e−im(ωorbt−ϕ) , (5.49)

4 Note that, for each multipole l, there is emission for orbital frequencies larger than γ/l.
However, since the emission in multipoles higher than dipole is suppressed by roughly
a factor 103, we consider only l = 1 in (5.45).
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Figure 5.4: Rate of scalar field energy radiated by an EMRI inside a NBS,

log10

[
Ėrad

EMRI

(
m2

p MNBSµ3
S

)−1
]

. The EMRI is described by a super-

massive BH of mass MBH sitting at the center of the NBS, and a star
or stellar-mass BH in a circular orbit around it. Note that the max-
imum energy emitted is associated with the smallest frequency
(largest distance). For a DM core with MNBS ∼ 1010M� and mass
ratio mp/MBH ∼ 10−4, the orbital distances corresponding to
nonzero fluxes are in the range rorb . 106 MBH. For larger radii,
the fluctuation has too low an energy and is confined to the struc-
ture. This explains the zero-flux (black) region on the left of the
panel, corresponding to the suppression of perturbations with
frequency ω ≤ γ.
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with

u = − (2π)3/2 mp [1 + (−1)m]
Ylm

(
π
2 , 0
)

2l + 1

×
[(

r
rorb

)−l

Θ(r− rorb) +

(
r

rorb

)l+1

Θ(rorb − r)

]
.

(5.50)

Then, using the decomposition

δΨ =
2√
2π

∑
l,m

Z(r)
r

Ylm(θ, 0)e−im(ωorbt−ϕ) , (5.51)

equation (4.19) becomes

∂2
r Z +

(
2µSmωorb −

l(l + 1)
r2

)
Z = 2µ2

SΨ0u . (5.52)

Using the method of variation of parameters, one can solve the last
equation imposing the Sommerfeld radiation condition at large dis-
tances and regularity at the origin. The obtained solution is, at large
distances,

Z(r → ∞) = iπµ2
SZ∞(r → ∞)

∫ ∞

0
dr′Z0Ψ0u , (5.53)

where Z0 and Z∞ are homogeneous solutions satisfying, respectively,
regularity at the origin and the Sommerfeld radiation condition at
large distances, and are given by

Z0 =
√

r Jl+1/2

(√
2µSmωorbr

)
, (5.54)

Z∞ =
√

rH(1)
l+1/2

(√
2µSmωorbr

)
, (5.55)

with Jν(x), H(1)
ν (x) Bessel and Hankel functions [133]. Using the

asymptotic form

Z∞(r → ∞) ' (−i)l+1

√
2
π

ei
√

2µSmωorb r

(2µSmωorb)
1/4 , (5.56)

and assuming that rorb � R, and ωorb/µS � (rorbµS)
−2, the inte-

gration in (5.53) converges a few wavelengths from the binary and
gives

Z(r → ∞) ' −(−i)l (2π)2 µ2
SmpΨ0(0)rl

orb

× [1 + (−1)m]
2−

l
2− 3

2 ei
√

2µSmωorb r

(µSmωorb)
1− l

2

Ylm
(

π
2 , 0
)

Γ
(
l + 3

2

) .

(5.57)
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So, the dominant |m| = l modes result in the scalar perturbation

δΨ(r → ∞) ' −8π
3
2 µ2

SmpΨ0(0)
+∞

∑
m=1

(−i)m [1 + (−1)m]

× Ylm
(

π
2 , 0
)

Γ
(
m + 3

2

) (µSm)
m
2 −1(Mωorb)

m
3

22+m
2 ω

(1+m
2 )

orb

ei
√

2µSmωorb r ,

(5.58)

where we have used Kepler’s law r3
orb = M/ω2

orb. Then, the flux of
radiated energy is given by

Ėrad = r2 lim
r→∞

∫
dθdϕ sin θ δT rt

S

= 0.28 π3 (µSmp
)2

(µS MNBS)
4
+∞

∑
m=1

[1 + (−1)m]2

×
(

1 +
mωorb

µS

)(
Ymm

(
π
2 , 0
)

Γ
(
m + 3

2

) m(m
2 − 3

4 )(Mωorb)
m
3

2(
7
4+

m
2 )(ωorb/µS)

( 3
4+

m
2 )

)2

.

(5.59)

The last expression can be further simplified using (1 + mωorb/µS) '
1, since we are considering non-relativistic excitations of the scalar
field. The same reasoning that we used to derive (4.85) can be applied
here to find that the binary loses energy at a rate

Ėlost ' 0.28 π3 (µSmp
)2

(µS MNBS)
4
+∞

∑
m=1

[1 + (−1)m]2

×
(

Ymm
(

π
2 , 0
)

Γ
(
m + 3

2

) m(m
2 − 1

4 )(Mωorb)
m
3

2(
7
4+

m
2 )(ωorb/µS)

( 1
4+

m
2 )

)2

. (5.60)

Remarkably, these analytic results are in excellent agreement with
our numerics for both EMRIs (Eq. (5.45)) and equal mass binaries
(Eqs. (5.47)); the leading order terms agree with the numerical results
within 4%. Such agreement is a cross-check both on our numerical
routine and our simple analytical description.

5.5.2 Comparison with gravitational wave emission

In vacuum, the orbit of a binary system shrinks in time, due to the
emission of GWs. At leading order, loss via GWs is described by the
quadrupole formula [134–136],

ĖGW =
32
5

η2 (Mωorb)
10/3 , (5.61)

where η = m1m2/(m1 + m2)2 is the symmetric mass ratio of a binary
of component masses m1, m2 and total mass M = m1 +m2. To estimate
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the flux of energy radiated in the scalar channel, we consider the orbit
to be circular, with the radius equal to the semi-major axis (∼ 970 au)
of the S2 star. The scalar field in a NBS provides an extra channel for
energy loss. For EMRIs (mp = ηM and MBH = M), combining together
Eqs. (5.46) and (5.61). we get 5

Ėlost

ĖGW
' 10−3

[
MNBS

1010M�

]4 [106M�
M

]2/3 [ T
16 yr

]31/6 [ h̄µS

10−22 eV

]17/2

,

(5.62)

where we normalized the ratio to typical values for an EMRI composed
by Sagittarius A∗ and S2 star surrounded by a DM core.

The energy balance equation imposes that the loss in the orbital
energy of the binary is due to the energy carried away by scalar field
and gravitational waves [137, 138]

dEorb

dt
= −

(
Ėlost + ĖGW

)
. (5.63)

Thus, energy loss leads to a secular change in orbital period

Ṫ ' −192π (2π)5/3 ηM5/3

5T5/3 − 5ηMM4
NBST5/2

103µ−15/2
S

. (5.64)

It is amusing to estimate such secular change for astrophysical
parameters similar to those of S2 star orbiting around SgrA∗,

Ṫ ' −2.42
1015

[
M

106M�

]2/3 [ T
16 yr

]−5/3 [ mp

20M�

]
− 4

1017

[
MNBSµS

0.01

]4 [ h̄µS

10−22eV

]7/2 [ T
16 yr

]5/2 [ mp

20M�

]
,

(5.65)

which seems hopelessly small.
The period change for equal-mass binary systems follows through,

and it is

Ṫ = −192π (2π)5/3 M5/3

20T5/3 − 3.1M4
NBSmp M2/3T17/6

103µ−17/2
S

. (5.66)

5.5.3 Backreaction and scalar depletion

One cause for concern is that our calculation assumes a fixed scalar
field background Ψ0, but as the binary evolves, scalar radiation is

5 Since the total scalar field mass contained in a sphere of radius rorb � R is negligible
with respect to the mass of the central BH MNBS(rorb)/M ∼ 10−10, we can consider
that the entire GW flux emitted is due to the quadrupole moment of the binary alone,
neglecting the gravitational field of the DM halo.
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depleting the NBS of scalar field around the binary. Assume, conser-
vatively, that the flux above is only removing scalar field within a
sphere of radius ∼ 10 ` centered at the binary, with the radiation
wavelength ` = 2π/ωorb. Then the timescale for total depletion of the
scalar in the sphere is

τ ∼ ρMR3

Ėrad
∼ 1024 yr

[
10−2

µS MNBS

]2/3 [104

χ

]2/3 [20 M�
mp

]2

×
[

10−22 eV
h̄µS

]11/6 [ T
16 yr

]7/6

, (5.67)

that is much larger than a Hubble timescale for an EMRI. A similar
value can be found for equal mass binary systems. Thus, our results
seem to indicate that the background configuration remains unaffected
by the emission of scalars by low-frequency binaries.

5.6 high-frequency binaries

5.6.1 Scalar emission and energy loss

We now wish to focus on high-frequency binaries, such as those suit-
able for LIGO or LISA detections. In such system, the assumption of
non-relativistic scalar perturbations is not appropriate. Instead, one
can show that the description of these systems, with orbital frequen-
cies ωorb � µS, may be accounted for by a slight modification of the
previous equations (more details are given in Appendix A),

∇2δU = 4πP , (5.68)

∇2δΦ− ∂2
t δΦ = 2µ2

SΦ0 δU . (5.69)

We consider two equal-mass point particles, each of mass mp, on a
circular motion of orbital frequency ωorb and radius rorb (described by
the source (4.73)). We can solve the Poisson equation first, finding

δU = ∑
lm

ulm

r
Ylm(θ, 0)eim(ϕ−ϕp) , (5.70)

ulm = −4πmp (1 + (−1)m) Ylm(π/2, 0)
2l + 1

r−l−1
orb

×
[
r2l+1

orb r−lΘ(r− rorb) + rl+1Θ(rorb − r)
]

. (5.71)

Here, ϕp = ωorbt is the azimuthal location of one particle; the other is
at ϕp + π. To solve Eq. (5.69), we decompose the scalar field as

δΦ =
1√
2π

∑
l,m

∫
dω

δψ(ω, r)
r

e−i(ω+µS−γ)tYlm(θ, ϕ) , (5.72)

finding the following radial ODE for δψ,

δψ′′ +
(
(µS − γ + ω)2 − l(l + 1)

r2

)
δψ =

√
8πµ2

SΨ0 ũlm , (5.73)
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where ũlm = ulmδ (ω−mωorb). Here, primes stand for radial deriva-
tives. We can now solve the last equation using the method of variation
of constants, requiring outgoing waves at large distances and regular-
ity at the origin. The solution is

δψ = δψ∞

∫ r

0

2
√

2πµ2
SΨ0 δψH ũlm

iω
+ δψH

∫ ∞

r

2
√

2πµ2
SΨ0 δψ∞ ũlm

iω
,

(5.74)

where ω = mωorb � (µS − γ) and δψH,∞ are the homogeneous solu-
tions,

δψH =

√
πωr

2
Jl+1/2(ωr) , (5.75)

δψ∞ =

√
πωr

2
(Jl+1/2(ωr) + iYl+1/2(ωr)) , (5.76)

with Jν(x) and Yν(x) the usual Bessel functions [133]. The time domain
response of the NBS to the perturbations induced by a binary BH

system can be found by evaluating numerically (5.74) and (5.72). Four
snapshots of one period, for two equal mass BHs are shown in Fig. 5.5.

A binary deep inside the NBS (rorb � R) and with high orbital
frequency (ωorb � 1/rorb) generates a field at large distances that
is independent on the size of the NBS – the first integration in (5.74)
converges a few wavelengths (∼ 1/ωorb) away from the binary. We
find the following simple result for the dominant |m| = l modes,

δψ(r → ∞) = i
√

2πmp (1 + (−1)m)Ψ0π3/2 22−mmm−2

× Ymm(π/2, 0)
Γ[m + 3/2]

µ2
S

ω2
orb

(Mωorb)
m/3 eiωr . (5.77)

Here, the total mass of the equal-mass binary is M = 2mp. If we
substitute mp (1 + (−1)m)→ mp, these results describe an EMRI, where
a single particle of mass mp is revolving around a massive BH of
mass M (note the crucial difference that |m| = l = 1 modes are
radiated for EMRIs, whereas only even modes are emitted for equal-
mass binaries). The radiated energy flux is given by

Ėrad = r2 lim
r→∞

∫
dθdϕ sin θ δT rt

S

= 128π3(µ2
SmpΨ0(0))2 (1 + (−1)m)2

×
+∞

∑
m=1

(
Ymm(π/2, 0)
Γ(m + 3/2)

mm−1(Mωorb)
m/3

2m+1 ωorb

)2

. (5.78)

Since in this section we are considering ultra-relativistic excitations
of the scalar (ωorb � µS) it is easy to see that (at leading order) the
rate of change of the NBS energy ĖNBS is much smaller than Ėrad. 6 So,
conservation of energy (as expressed in Eq. (3.33)) implies that Ėlost '
Ėrad.

6 Note that, at leading order, ĖNBS = h̄µS Q̇NBS
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Figure 5.5: Scalar field perturbation due to an high frequency, equal-mass
binary describing a circular orbit of radius rorb, and evolving
inside an NBS. The normalized horizontal and vertical axis are
x/rorb and y/rorb, respectively. Each frame shows an equatorial
slice of the scalar field perturbation 1017< (δΦ), induced by a
binary orbiting in the equatorial plane. In the upper-left panel,
particles are at (x1, y1) = (rorb, 0), (x2, y2) = (−rorb, 0). Moving
clockwise in the panels, the system evolves for an eighth of a
period between each frame (the binary is orbiting anti-clockwise).
The binary components have the same mass (mp ∼ 106M�) and
they are orbiting inside a NBS of mass MNBSµS ∼ 0.01 with a
period of ∼ 1 day.
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5.6.2 The phase dependence in vacuum and beyond

In vacuum-general relativity, the dynamics of a binary is governed
by the energy balance equation (5.63), together with the quadrupole
formula (5.61). This implies that the orbital energy of the system Eorb =

−M2η/(2rorb) must decrease at a rate fixed by such loss. This defines
immediately the time-dependence of the GW frequency to be f−8/3

GW =

(8π)8/3M5/3(t0− t)/5, whereM is the chirp mass and fGW = ωorb/π.
Once the frequency evolution is known, the GW phase simply reads

ϕ(t) = 2
∫ t

ωorb(t′)dt′ . (5.79)

To take into account dissipative losses via the scalar channel, we add
to the quadrupole formula the energy flux (5.78). In Fourier domain
one can write the gauge-invariant metric fluctuations as

h+(t) = A+(tret) cos ϕ(tret) , (5.80)

h×(t) = A×(tret) sin ϕ(tret) , (5.81)

where tret is the retarded time. The Fourier-transformed quantities are

h̃+ = A+eiΥ+ , h̃× = A×eiΥ× . (5.82)

Dissipative effects are included within the stationary phase approx-
imation, where the secular time evolution is governed by the GW

emission [139]. In Fourier space, we decompose the phase of the GW

signal h̃ = A( fGW)eiΥ( fGW) as

Υ( fGW) = Υ(0)
GR[1 + (PN corrections) + δΥ] , (5.83)

where Υ(0)
GR = 3/128(Mπ fGW)−5/3 represents the leading term of the

phase’s post-Newtonian expansion. We find the following dominant
correction due to DF of the background scalar field,

δΥ =
16µ4

SΨ2
0(0)

51π3 f 4
GW
∼ 10−24

[
h̄µS

10−22 eV

]4 [10−4Hz
fGW

]4 [MNBSµS

0.01

]4

.

(5.84)

for equal-mass binaries. Such a correction corresponds to a −6 PN or-
der correction [140]. The smallness of the coefficient makes it hopeless
to detect the effect of a scalar with mass ∼ 10−22 eV using a space-
based detector like LISA [141]. Note, however, that our result is very
sensitive to the scalar’s and DM core masses; e. g., for h̄µS ∼ 10−19 eV
and a DM core of mass ∼ 1012M� we find

δΥ ∼ 10−8
[

h̄µS

10−19 eV

]4 [10−4Hz
fGW

]4 [MNBSµS

0.1

]4

. (5.85)
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Pulsar timing arrays operate at lower frequencies [3], for which the pre-
vious Newtonian non-relativistic analysis is necessary; moreover, our
results (e. g., Fig. 5.4) indicate that the binary couples more strongly
with the scalar for orbital frequencies ωorb ∼ 2γ, which motivates a
more thorough analysis (to be done in the future) of those systems.

5.6.3 Backreaction and scalar depletion

During the evolution, the binary radiates scalar field out of the NBS.
Assuming, again, that the above flux is only removing scalar field
within a sphere of radius ∼ 10 ` centered at the binary (with the
radiation wavelength ` = 2π/ωorb) the timescale for total depletion
of scalar field around the binary is

τ ∼ 2× 1011 yr
(

0.1
mpωorb

)7/3 ( 10−2

µS MNBS

)2 ( χ

104

)2 mp

106M�
,

(5.86)

which is larger than a Hubble timescale, even for binaries close to
coalescence. Thus, our results seem to describe well the emission of
scalars during the entire lifetime of a compact binary.

5.7 discussion

This chapter shows how self-gravitating NBSs (modeling ultralight DM

cores) respond to time-varying, localized matter fluctuations. These
are structures that behave classically: they are composed of N ∼
10100 (10−22 eV/h̄µS

)2 particles; a binary of two supermassive BHs in
the late stages of coalescence emits more than 1060 of those particles.
Our results show unique features of bosonic ultralight structures. For
example, they are not easily depleted by binaries. Even a supermassive
BH binary close to coalescence would need a Hubble time or more to
completely deplete the scalar in a sphere of ten-wavelength radius
around the binary. In other words, the perturbative framework is
consistent and robust. We have shown how a self-gravitating NBS

background leads to regular, finite DF acting on passing bodies. Our
analysis includes both the self-gravity of the scalar field perturbations
and the finite-size effects from the NBS background.

Clearly, our results can and should be extended to eccentric motion,
or to self-gravitating vectorial configurations, or even other nonlinearly
interacting scalars [78]. Our results should also be a useful benchmark
for numerical relativity simulations involving boson stars in the ex-
treme mass ratio regime, when and if the field is able to accommodate
such challenging setups. We have considered Newtonian boson stars.
Extension of our results to relativistic boson stars is nontrivial, but
would provide a full knowledge of the spectrum of boson stars and of
their response to external agents. Although we studied NBSs only, our
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methods can be extended to clouds arising from superradiant instabil-
ities of spinning BHs [43]. We do not expect qualitatively new aspects,
at least, when the spatial extent of those clouds is large. In this chapter
we neglected the energy (angular momentum) deposited in NBSs. This
is a very interesting possibility, in particular for EMRIs with ωorb < γ,
which can, in principle, deposit some of their energy in the normal
modes of the scalar configuration, and leave some signatures in the
orbit of these EMRIs. Another interesting question in this context is
what would be the normal mode power spectrum of a NBS excited
by hundreds (or millions) of BHBs or stars at the galactic center. To
solve these problems one needs, however, to obtain the second order
perturbation δ2Φ, which may turn out not to be an easy task. I intend
to study these issues further in the near future.
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B L A C K H O L E S M O V I N G I N A S C A L A R F I E L D
M E D I U M

”E pur si muove!”
The response of a black hole (BH) to an incoming wave has been stud-
ied for decades, in the frame where the BH is at rest [126, 142–155].
Such interaction is crucial to understand how BHs react to their en-
vironment, what types of signatures are imprinted by strong-field
regions and their possible observational effects. It was shown that
non-spinning BHs absorb low-frequency plane waves. For a static BH

of mass M, the low-frequency absorption cross-section of (massless)
scalars is equal to the horizon area, σabs = 4π(2GM/c2)2 [156]. High
frequency plane waves, on the other hand, are absorbed with a cross-
section σabs = π(3

√
3 GM/c2)2 [148, 150]. Although spinning BHs also

absorb plane waves, they can amplify certain low-frequency angu-
lar modes through superradiance [43, 157, 158] (which also acts on
charged BHs [159]). Superradiance extracts energy from such BH and
provides important signatures of possible fundamental ultralight fields
in nature [43, 160–162].

A significant fraction of BHs are found in binaries, such as those
seen by the LIGO/Virgo observatories [163]. In addition, most BHs are
moving at high speeds relative to our own frame. Thus, an understand-
ing of the interaction between waves and moving BHs is a necessary
ingredient to explore the enormous potential of such sources [50, 162,
164, 165].

It was recently pointed out that BH binaries could amplify incoming
radiation through a gravitational slingshot mechanism for light [50].
The argument requires only one BH moving with velocity v, and a
photon reflected at an angle of 180◦ by the strong-field region (such
orbits do exist [148]). Then, a trivial change of frames and consequent
blue-shift yields

Epeak
f =

1 + v/c
1− v/c

Ei , (6.1)

for the energy gain by the photon during the process. This is also the
blue-shift of photons reflecting off a mirror moving with velocity v. In
addition, effective field theory methods were recently used to suggest
that BH binaries could amplify radiation through superradiance [164,
165]. Again, the argument seems to imply that a single moving BH is
able to amplify incoming radiation.

71
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In this chapter we study the scattering of a scalar plane wave off a
moving BH. Clearly, such study involves only a Lorentz transformation
of the well-known results for BHs at rest. Here we generalize to BH

physics the classical problem of scattering off a moving mirror or a
sphere addressed by Sommerfeld and others [166, 167]. We obtain also
for the first time, from first principles, the DF acting on BHs moving
at possibly relativistic speeds in light scalar field environments. We
find several simple analytical expressions valid for different regimes
of BH velocity. We focused on stationary regimes and extended the
Newtonian treatment in Ref. [10]. Our results complement the recent
numerical work in Ref. [168].

6.1 plane wave scattering off a static black hole

Let us start by considering the classical problem of a (monochromatic)
plane wave scattering off a Schwarzschild BH in its proper frame.
For concreteness, we will assume that the plane wave is made of a
complex scalar field described by the theory (2.1), interacts only with
gravity (JS = 0) and has a mass potential (2.10). Therefore, the scalar
field satisfies the Klein-Gordon equation (2.2),

�Φ = µ2
SΦ . (6.2)

This problem was studied previously in, e. g., Refs. [126, 142, 143,
147–150, 152].

For most situations of interest, the scalar is but a small perturbation
and can be studied in a fixed spacetime geometry – the so-called test
field approximation. So, let us consider a fixed background metric
describing a static (Schwarzschild) BH with line element

ds2 = − f dt2 + f−1dr2 + r2dΩ2 , f (r) = 1− 2M
r

, (6.3)

where dΩ2 = dθ2 + sin2 θ dϕ2 is the usual metric on a 2-sphere.
Let us consider now the multipolar decomposition of a monochro-

matic scalar field

Φω′ =
e−iω′t

r ∑
l,m

Ylm(θ, ϕ)ulm(r) . (6.4)

With the above decomposition the Klein-Gordon equation reduces to
a radial equation for the functions ulm,

f
d
dr

[
f

d
dr

ulm

]
+

[
ω′2 − f

(
l(l + 1)

r2 +
2M
r3 + µ2

S

)]
ulm = 0 .

(6.5)

Performing the change of variable dr/dr∗ = f , we can write this equa-
tion in the form of a (time-independent) Schrödinger-like equation

d2

dr2∗
ulm +

[
ω′2 − f

(
l(l + 1)

r2 +
2M
r3 + µ2

S

)]
ulm = 0 . (6.6)
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The regular solutions to the above equations have the asymptotic
form [126]

ulm(r → +∞) ∼ Ilme−i[k′r−η′ log(2k′r)] + Rlmei[k′r−η′ log(2k′r)] (6.7)

at spatial infinity, and 1

ulm(r∗ → −∞) ∼ Tlme−iω′r∗ ∼ Tlme−2iMω′ log( r
2M−1) (6.8)

at the BH event horizon r = rh ≡ 2M, with

k′ =
√

ω′2 − µ2
s , (6.9)

η′ = −M
(

ω′2 + k′2

k′

)
. (6.10)

In this chapter we will consider only frequencies ω′ > µS, which
can arrive to spatial infinity and, so, allow us to define a well-posed
scattering problem. Note that the ratios Rlm/Ilm and Tlm/Ilm are fixed
by Eq. (6.6) (or alternatively by (6.5)). It is easy to show (e. g., through
the conservation of the Wronskian) that the amplitudes satisfy the
relation 2

|T/I|2 =
k′

ω′

(
1− |R/I|2

)
. (6.11)

A monochromatic plane wave of frequency ω′ and wave vector k′ =
−k′ez deformed by a long-range potential (energy) η′/r can be written
in the form [16, 142]

e−i[ω′t+(k′r−η′ log(2k′r)) cos θ] '

i
e−i(ω′t+k′r−η′ log(2k′r))

2k′r ∑
l

√
4π(2l + 1)Yl0(θ, ϕ) + (outgoing wave) ,

(6.12)

where z = r cos θ. So, imposing Ilm = iδ0
m
√

h̄ρ/µS
√

4π(2l + 1)/(2k′)
the asymptotic solution of the Klein-Gordon equation (6.2) is√

ω′

h̄ρ′
Φω′(r → +∞) ∼

e−i[ω′t+(k′r−η′ log(2k′r)) cos θ] +
e−i(ω′t−k′r+η′ log(2k′r))

r ∑
l
RlYl0(θ, ϕ) ,

(6.13)

where Rl are complex-valued functions of Rlm/Ilm. This asymptotic
behavior indicates that our choice of I indeed describes a monochro-
matic plane wave scattering off a Schwarzschild BH. The scattering

1 The Regge-Wheeler tortoise coordinate r∗ was defined up to a constant; in this chapter
we will use r∗ = r + 2M log

( r
2M − 1

)
.

2 Hereafter we omit the indices l and m in R/I, T/I and u(r) whenever possible to
simplify the notation.
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is completely determined by the knowledge of the coefficients R/I
(or, equivalently, of Rl). The constant

√
h̄ρ/µS was included in I

so that the energy density current of the incident plane wave has
the form limz→+∞(−Ttz) = ρ(h̄ω′)(k′/µS). So, ρ is the rest number
density of scalar particles contained in the plane wave (remember
that µS = mS/h̄ is the inverse of the scalar’s reduced Compton wave-
length and ρk′/µS is the number density current of scalar particles).

low frequency limit (ω ′M � 1) This limit was studied in
detail in the past by Unruh in Ref. [126], where he found the following
approximate expression

Tl

Il
' 2(l!)2

(2l)!
(2Mk′)l+1cl(η

′)e4iMω′ log
(

2Mω′
l+1

)
, (6.14)

where

cl(η
′) = 2le−

πη′
2
|Γ(l + 1 + iη′)|

(2l + 1)!
(6.15)

Additionally, using the results in that reference it is possible to obtain
the approximated expression

Rl

Il
' (−1)l

[
−1 +

2(l!)4

(2l)!2
ω′(2Mk′)2l+2

k′
[cl(η

′)]2
]

e2i arg[Γ(l+1+iη′)] .

(6.16)

At leading order in ω′M the amplitudes satisfy (6.11).
The low frequency condition implies that the scalar’s de Broglie

wavelength is much larger than the BH’s size, k′M � 1. Note also
that, due to the condition for wave propagation ω′ > µS, the results
of this section assume implicitly that µS M� 1 (which is satisfied, for
instance, by light scalars interacting with massive BHs).

high frequency limit (ω′M� 1) In the high frequency limit
we will focus only on the ultra-relativistic regime ω′ � µS (which, in
particular, is the only possibility for light scalars µS M� 1). This limit
was studied for instance in Refs. [146, 169]. For very large azimuthal
numbers l � ω′M using a WKB approximation one founds that [16]

Rl

Il
' i exp

{
−2iω′

[
a∗ +

∫ ∞

a
dr f−1

(
1−

√
1− Veff

ω′2

)]}
,

(6.17)

where

Veff =
f

r2

(
l + 1

2

)2
, (6.18)

and a is the (largest) classical turning point satisfying Veff(a) = ω′2,
with the Regge-Wheeler version a∗ = a + 2M log(a/2M − 1). For
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large azimuthal numbers l ∼ ω′M it is also possible to use a WKB
approximation to compute the absolute value [16, 146]

|Rl/Il |2 '
1

1 + exp
{

27π(Mω′)2

l

[
1−

(
l

3
√

3Mω′

)2
]} , (6.19)

which for high-frequency ω′M� 1 is a very steep function of l that
vanishes for l < 3

√
3Mω′ and is unity for l > 3

√
3Mω′. In fact it is

easy to verify that in the high-frequency limit ω′M� 1 the following
is a very good approximation

Rl

Il
'


0 , l < 3

√
3Mω′

i e
−2iω′

[
a∗+

∫ ∞
a dr f−1

(
1−
√

1− Veff
ω′2

)]
, l > 3

√
3Mω′

.

(6.20)

6.1.1 Energy absorption

The energy of the scalar field contained in a spacelike hypersur-
face S1 ≡ {t = t1} extending from the horizon to infinity is (see (2.19))

E(t1) =
∫
S1

dV3 TαtNα , (6.21)

where Nβ = −δt
β

√−gtt is the unit normal covector and dV3 is the
volume form induced in the hypersurface. Because we are interested
in a stationary regime with Φω′ ∝ e−iω′t (which results in a static
energy-momentum tensor Tαβ) and since the background metric is
static, one has

d
dt1

E(t1) =
∫
S1

L∂t

(
dV3 TαtNβ

)
= 0 , (6.22)

where L∂t(·) is the Lie derivative with respect to (∂t)α. Then, by
applying the divergence theorem it follows that the energy crossing
the event horizon per unit time t (which is the proper time of a
stationary observer at infinity) is FE, where

FE =
∫

r→∞
d2Ω r2Trt (6.23)

with the 2-sphere element of area d2Ω = sin θ dθdϕ.
Plugging the decomposition (6.4) with the asymptotic solution (6.7)

in the scalar field’s energy-momentum tensor (2.7) and using the
orthonormality relations of spherical harmonics it is straightforward
to show that

FE = ω′k′∑
l

(
|Il |2 − |Rl |2

)
. (6.24)
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For the case of an incident plane wave the last expression becomes

FE =
ρh̄ω′

µSk′ ∑
l

π(2l + 1)
(
1− |Rl/Il |2

)
. (6.25)

As a consistency check: note that in a flat spacetime (i. e., M = 0)
the plane wave propagates freely and it is easy to show that Rl/Il =

(−1)l+1, which implies FE = 0 as it must (since there is no BH at all).
To obtain the BH’s absorption cross section one just needs to take the

ratio between the energy absorbed by the BH per unit of time FE and
the energy density current of the (incident) plane wave limz→+∞(−Ttz) =

ρ(h̄ω′)(k′/µS),

σabs =
FE

ρh̄ω′k′/µS
=

1
k′2 ∑

l
π(2l + 1)

(
1− |Rl/Il |2

)
. (6.26)

low frequency limit (ω′M � 1) In this regime, at leading
order in ω′M, the energy absorbed by the BH is

FE ' 16π(Mω′)2
(

h̄ρ

µS

)
e−πη′πη′

sinh(πη′)
, (6.27)

and the BH’s absorption cross section is

σabs ' 16πM2
(

ω′

k′

)
e−πη′πη′

sinh(πη′)
, (6.28)

where it was used |Γ(1 + iη′)|2 = πη′/ sinh(πη′). At leading order
in ω′M only the l = 0 mode contributes to both FE and σabs.

In the Newtonian limit ω′ ' µS (which implies also k′ � µS) the
above expressions become

FE ' 16π(MµS)
2
(

h̄ρ

µS

) πMµ2
S

k′ sinh
(

πMµ2
S

k′

)
 e

πMµ2
S

k′ , (6.29)

σabs ' 16πM2
(µS

k′
) πMµ2

S

k′ sinh
(

πMµ2
S

k′

)
 e

πMµ2
S

k′ . (6.30)

In the sub-regime k′/µS � MµS these simplify to

FE ' 32π2(MµS)
3
(

h̄ρ

µS

)(µS

k′
)

, (6.31)

σabs ' 32π2M2(MµS)
(µS

k′
)2

, (6.32)

while in the sub-regime k′/µS � MµS one finds

FE ' 16π(MµS)
2
(

h̄ρ

µS

)
, (6.33)

σabs ' 16πM2
(µS

k′
)

. (6.34)
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In the ultra-relativistic limit ω′ � µS (which implies k′ ' ω′) the
expressions reduce to

FE ' 16π(Mω′)2
(

h̄ρ

µS

)
, (6.35)

σabs ' 16πM2 . (6.36)

Note that in the latter limit we recover the well-known expressions
that are valid for massless scalar fields with low frequency ω′M� 1.
All the expressions of this section were obtained decades ago and are
in agreement with Ref. [126].

high frequency limit (ω′M � 1) In this regime most of the
contribution to the summation in l comes from large azimuthal num-
bers l � 1 and, so, the sum is well approximated by an integral. Then,
at leading order, one recovers the well-know results [146]

FE ' 27π(Mω′)2
(

h̄ρ

µS

)
, (6.37)

σabs ' 27πM2 . (6.38)

The latter absorption cross section coincides with the one that is
obtained using null geodesics [1] (i. e., with the geometric optics
approximation). Note that 3

√
3M is the critical impact parameter

below which a null particle falls into the BH.

6.1.2 Momentum transfer

Due to the transfer of momentum from the scalar field to the BH,
the latter will feel a "force". Consider the spatial components of the
ADM momentum Pi computed using a 2-sphere with a sufficiently
large radius, such that it is in the asymptotically flat region. 3 These
components can be decomposed into the sum of curvature and scalar
field contributions, Pi = Pi

curv + Pi
S, where Pi

S is

Pi
S(t1) =

∫
S1

dV3TαiNα . (6.39)

The rate of change of Pi is

dPi

dt
= −

∫
r→∞

d2Ω r2Tri , (6.40)

and, because we considering a stationary regime, we have

d
dt1

Pi
S(t1) =

∫
S1

L∂t

(
dV3 TαiNβ

)
= 0 . (6.41)

3 The ADM charges are defined at infinity, but since we are dealing with monochromatic
waves these charges would diverge.
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Thus, the force acting on the BH is

Fi ≡ dPi
curv

dt1
=

dPi

dt1
= −

∫
r→∞

d2Ω r2Tri . (6.42)

Strictly, in the test field approximation one has dPi
curv/dt = 0 (at zero

order in the scalar field) and dPi/dt 6= 0 (at second order in the scalar
field). This is not inconsistent with the last equation, which holds
at each order in the scalar field amplitude. So, if we compute the
backreaction of the scalar field on the metric, we will obtain a second
order correction to dPi

curv/dt which must be equal to dPi/dt. For a
more thorough discussion, which in particular covers the case where
the steady state is attained dynamically see Ref. [170].

For asymptotic Cartesian coordinates we have

lim
r→∞

r2Trx ' r2 sin θ cos ϕTrr , (6.43)

lim
r→∞

r2Try ' r2 sin θ sin ϕTrr , (6.44)

lim
r→∞

r2Trz ' r2 cos θTrr . (6.45)

Plane waves propagating along −ez and scattering off a static black
hole are symmetric under rotations around the z axis. This implies
that Trr is independent of the azimuthal angle ϕ. Thus, as it might
have been anticipated, one has Fx = Fy = 0. The only non-vanishing
component of the force acting on the BH is

Fz = −
∫

r→∞
d2Ω r2 cos θTrr . (6.46)

Now, plugging the decomposition (6.4) with the asymptotic solu-
tion (6.7) in the scalar field’s energy-momentum tensor (2.7) and using
that

cos θ =

√
4π

3
Y1,0(θ) , (6.47)

and ∫
d2Ω Y1,0(θ)Yl0(θ)Yl′0(θ) =

=

√
3

4π(2l + 1)

[
δl+1

l′

(
l + 1√
2l + 3

)
+ δl−1

l′

(
l√

2l − 1

)]
, (6.48)

it is straightforward to show

Fz = −2π

(
h̄ρ

µS

)
∑

l
(l + 1)<

[
1 +

R∗l
I∗l

Rl+1

Il+1

]
. (6.49)

As a consistency check: note that in a flat spacetime the amplitude
ratio is Rl/Il = (−1)l+1 which implies Fz = 0 – as it should, since
in that case the plane wave propagates freely (i. e., its momentum is
conserved).
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low frequency limit (ω′M� 1) Using (6.16) it is straightfor-
ward to show that at leading order in ω′M the force acting on the BH

is 4

Fz = −4π

(
h̄ρ

µS

)
∑

l
(l + 1) sin2

(αl

2

)
, (6.51)

with

αl = 2 arg
(

Γ(l + 2 + iη′)
Γ(l + 1 + iη′)

)
= 2 arg(l + 1 + iη′) = 2 arctan

(
η′

l + 1

)
. (6.52)

The above expression can be rewritten as

Fz = −4π

(
h̄ρ

µS

)
∑

l

η′2(l + 1)
η′2 + (l + 1)2 . (6.53)

Note that this result is the same as the one it would be obtained
for a scalar plane wave scattering off a (weak) Newtonian potential
originated by a point particle, in which case it is easy to show that

Rl/Il = arg Γ(l + 1 + iη′) . (6.54)

So, remarkably, in the limit ω′M� 1 the force acting on the BH due
to the scattering process is indistinguishable of the one that would
act on a Newtonian point-like source of gravitational field. In other
words, at leading order in ω′M� 1 the strong gravitational field and
absorption (i. e., accretion) effects can be neglected, and the BH can be
modeled by a Newtonian particle.

It is worth noting that in the eikonal limit (l � 1) one has l ' k′b
and the angle αl in Eq. (6.52) is the deflection angle of a particle
scattering off a Newtonian gravitational field. 5 In particular, in the
Newtonian ω′ ' µS limit one has

αl ' −2 arctan

(
Mµ2

S
b k′2

)
, (6.55)

which is exactly the well-known Newtonian deflection angle, and in
the ultra-relativistic limit one finds

αl ' −2 arctan
(

2M
b

)
' −4M

b
, (6.56)

4 Although it is not obvious that in the limit |η′| � 1 accretion gives a negligible
contribution to the force, it can be seen that this is indeed the case by rewriting [126]

c2
l =

2l(2πη′)
(2l + 1)!2(1− e2πη′ )

Πl
s=1(s

2 + η′2) ∼ O(η′2l+1) , |η′| � 1 . (6.50)

5 The eikonal limit l � 1 can be seen as a manifestation of Bohr’s correspondence principle,
giving us a relation between the wave (quantum) number l and the particle (classical)
parameter b. For an interesting discussion about the correspondence between wave
and particle scattering see Ref. [171].



80 black holes moving in a scalar field medium

which is equal to the deflection angle of light obtained by Einstein
using his general theory of relativity [172]. If we compute then the
force that would act on a source of gravitational field due to a beam of
(classical) particles with impact parameter between b and b + δb being
deflected by an angle αl we find

δFz

k′δb
= −4π

(
h̄ρ

µS

)
(k′b) sin2 αl , (6.57)

which matches (6.51) in the eikonal limit.
It is easy to see that the force (6.53) diverges logarithmically in l,

which is to be expected due to the long-range (1/r) nature of the
gravitational potential. In the limit η′2 � 1 the summation in l is very
well approximated by an integral and the force acting on the BH is

Fz = −2π

(
h̄ρ

µS

)
η′2 log

(
η′2 + k′2b2

max
)

, (6.58)

where we have introduced a cutoff lmax � 1 and used the eikonal
limit relation lmax ' k′bmax. By truncating the summation in l we are
in fact considering the scattering of a circular beam of radius bmax,
instead of the original infinite plane wave. That the limit η′2 � 1 is
well approximated by a continuous l is a signal that this is in fact a
classical (or, more correctly, particle) limit. Indeed, in the Newtonian
regime ω′ ' µS the force is just

Fz ' −4π
M2(ρh̄µS)

(k′/µS)2 log

k′

√√√√(µ2
S M
k′2

)2

+ b2
max

 , (6.59)

which matches the famous expression obtained by Chandrasekhar [52]
for (classical) collisionless media, with the argument of the Coulomb log-

arithm being the ratio between the length-scale
√(

µ2
S M/k′2

)2
+ b2

max

and the de Broglie wavelength of the scalar particles; note that µ2
S M/k′2

is the characteristic radius below which classical particles scattering
off a weak gravitational field are significantly deflected.

The ultra-relativistic limit is not consistent with the limit η′2 � 1
in the low frequency regime ω′M � 1; on the contrary, it must
satisfy η′2 � 1. The limit η′2 � 1 corresponds to the regime in
which the quantum (or, more correctly, wave) effects are the more
pronounced. It is easy to check that in this limit the force (6.53) is very
well approximated by

Fz = −4π

(
h̄ρ

µS

)
η′2
[
log
(
k′bmax

)
+ γEM

]
, (6.60)

where γEM = 0.5772 ... is the Euler-Mascheroni constant. In the New-
tonian regime the last expression becomes

Fz ' −4π
M2(ρh̄µS)

(k′/µS)2

[
log
(
k′bmax

)
+ γEM

]
, (6.61)
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and in the ultra-relativistic regime it becomes

Fz ' −16π

(
h̄ρ

µS

)
(Mω′)2 [log

(
ω′bmax

)
+ γEM

]
. (6.62)

high frequency limit (ω ′M � 1) In this limit the accretion
of scalar field gives an important contribution to the force acting on
the BH. By looking at (6.20) we see immediately that this contribution is
contained in the terms of (6.49) with l < 3

√
3Mω′ (for which R/I ' 0).

In the high frequency limit only large azimuthal numbers l � 1 con-
tribute significantly and the summation can always be approximated
by an integral. So, the accretion of scalar is responsible for the part
−27π(Mω′)2 (h̄ρ/µS) in the force (which obviously matches FE in
absolute value, since we are using units with c = 1). The remaining
contribution from larger l’s can be obtained by using the eikonal
relation l ' ω′b and rewrite the summation as

∑
l>3
√

3Mω′
(l + 1)<

[
1 +

R∗l
I∗l

Rl+1

Il+1

]
' 2ω′2

∫ ∞

3
√

3M
db b sin2

(
α(b)

2

)
,

(6.63)

where

α = π − 2
d
db

[
a∗ +

∫ ∞

a
dr f−1

(
1−

√
1− f

r2 b2

)]

= π − 2
∫ ∞

a

dr√
r2

b2 − f
, (6.64)

with a given implicitly by b = a
√

a/(a− 2M) (being the larger real
number satisfying this relation). Remarkably, as it happened in the
low frequency limit, the angle α matches exactly the deflection angle
of a null particle in a Schwarzschild spacetime [1, 173, 174]. It is easy
to check that for large impact parameters b � M we recover again
Einstein’s deflection angle

α ' −4M
b

. (6.65)

For a beam of scalar particles with maximum (cutoff) impact parame-
ter bmax > 20M (remember that the integral in b diverges logarithmi-
cally) we find the following approximated expression∫ bmax

3
√

3M
db b sin2

(α

2

)
' M2

[
14.5074 + 4 log

(
bmax

20M

)]
, (6.66)

where we have performed a numerical integration between 3
√

3M
and 20M to find the numerical factor. Finally, putting all together
(including accretion) we find that the force is

Fz ' −16π

(
h̄ρ

µS

)
(Mω′)2

[
log
(

bmax

20M

)
+ 5.31435

]
. (6.67)
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6.2 moving black hole

Now that we know the rate at which energy and linear momentum is
transfered to a Schwarzschild BH from the point of view of an observer
at infinity which is stationary with respect to it, one may wonder what
changes if the BH is moving with respect to the observer. While at rest
(and neglecting quantum effects) the BH is a perfect absorver, but when
moving it may also transfer translational energy to the scalar field
with the interesting possibility of loosing energy globally – and having
a negative absorption cross-section. It is also crucial to understand the
relativistic corrections to the force acting on the BH when it is moving
at large speeds with respect to a distant observer.

Although the framework of this chapter allows for a completely
general treatment we will focus here in the case in which the BH is
moving with velocity v = vez with respect to the distant observer and:
1) the scalar is at rest with respect to the observer, or 2) the scalar is
massless and has momentum −h̄ωez with respect to the observer. The
quantities measured by the observer with respect to which the BH is
at rest (hereafter "BH frame") are primed and the ones measured by
the observer with respect to which the BH is moving (hereafter "lab
frame") are unprimed. Noting that the curvature part of the ADM
four-momentum Pα

curv is a Lorentz four-vector [175] (with its time-
component being the energy of the BH, including its mass), it is trivial
to find the rate of change of the BH’s energy and momentum in the lab
frame. One just needs to perform a Lorentz transformation of dPα

curv
and relate the proper times of the two observers dt̃ = dt/

√
1− v2,

finding in the lab frame (tilded quantities) 6

F̃E = FE + vFz , (6.68)

F̃z = Fz + vFE . (6.69)

6.2.1 Scalar field at rest

For a scalar field at rest we have ω = µS and k = 0 in the lab frame
and ω′ = µS/

√
1− v2 and k′ = −µSv/

√
1− v2 ez in the BH frame.

6 Very recently, the same type of reasoning was applied in Ref. [168]. However, there
the authors neglected the contribution of FE to F̃z and so used F̃z = Fz. As we will
show next this is not always a good approximation, in particular it fails in the case
of BHs moving at relativistic speeds.
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low frequency limit (ω′M � 1 ⇔ 1− v2 � (MµS)
2) Again

note that this limit is possible only if (MµS)
2 � 1. First let us consider

the non-relativistic regime v� 1. If v� MµS, we find

F̃E

v
' F̃z ' Fz ' −4π

M2ρmS

v2 log

µS

√(
M
v

)2

+ v2b2
max

 ,

(6.70)

where mS = h̄µS. On the other hand, for MµS � v� 1 we obtain

F̃E

v
' F̃z ' Fz ' −4π

M2ρmS

v2 [log (µSv bmax) + γEM] . (6.71)

The above expressions have a similar form (though with some differ-
ences) as the ones found by Hui et al. [10] for a Newtonian object
(and recently confirmed numerically for a BH by Traykova et al. [168]).
Some differences are indeed expected since in those works a cutoff
in r was employed, whereas here due to the nature of our framework
(which contains a sum in the azimuthal number l) a cutoff in b was
used. 7 Now, for relativistic velocities v ∼ 1 we find

F̃E ' F̃z ' Fz +FE ' −16π
M2ρmS

(1− v2)

[
log
(

µSbmax√
1− v2

)
+ γEM − 1

]
.

(6.72)

high frequency limit (ω′M � 1 ⇔ 1− v2 � (MµS)
2) In the

relativistic regime v ∼ 1 we find

F̃E ' F̃z ' Fz +FE ' −16π
M2ρmS

(1− v2)

[
log
(

bmax

20M

)
+ 5.31435− 27

16

]
.

(6.73)

Remember that this expression is valid for bmax ≥ 20M. For a maxi-
mum impact parameter bmax < 20M one needs to perform a (trivial)
numerical integration.

Both relativistic expressions (6.72) and (6.73) are similar in form
with the ones presented recently in Ref. [168], which were motivated
by heuristic arguments and shown to be consistent with numerical evo-
lutions. Again, some differences are to be expected due to the different
ways used to truncate the characteristic (Coulombian) logarithmic
divergence.

6.2.2 Massless scalar field

A massless scalar propagating with momentum −h̄ωez in the lab

frame has ω′ =
√

1+v
1−v ω and k′ = −

√
1+v
1−v ω ez in the BH frame. In this

7 A cutoff in b was also used in Chandrasekhar’s works [52–54]. That a difference
should be expected between the two approaches was also acknowledge in [10].
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case there is obviously no Newtonian limit and the scalar particles
are always ultra-relativistic (i. e., move at the speed of light) in any
frame. So, the factor ρω/µS is not well defined (remember that ρ is
the number density in the rest frame) and must be substituted by the
number density in the lab frame ρ̃ (as can be readily seen by continuity,
taking the ultra-relativistic limit).

low frequency limit (ω ′M � 1 ⇔ ω M �
√

1−v
1+v ) In this

limit we find that the energy accreted by the BH is

F̃E ' F E + vFz

' −16π v(1 + v)
M2ρ̃(h̄ω)

1− v

{
log
(√

1 + v
1− v

ωbmax

)
+ γEM −

1
v

}
,

(6.74)

and the force acting on it is

F̃z ' Fz + vFE

' −16π(1 + v)
M2ρ̃(h̄ω)

1− v

{
log
(√

1 + v
1− v

ωbmax

)
+ γEM − v

}
.

(6.75)

high frequency limit (ω′M � 1 ⇔ ωM �
√

1−v
1+v ) Now, in

the high-frequency limit we obtain

F̃E ' F E + vFz

' −16π v(1 + v)
M2ρ̃(h̄ω)

1− v

{
log
(

bmax

20M

)
+ 5.31435− 27

16v

}
,

(6.76)

and

F̃z ' Fz + vF E

' −16π (1 + v)
M2ρ̃(h̄ω)

1− v

{
log
(

bmax

20M

)
+ 5.31435− 27

16
v
}

. (6.77)

Again, these expressions are valid for bmax > 20M.

6.2.2.1 Geometrical optics approximation

The high-frequency (and large impact parameter) limit corresponds to
the geometrical optics (i. e., particle) approximation – as discussed in
previous sections. So, we can use this approximation as an external
check to our results. Here, we focus on the case of a massless scalar
field, but this approach could equally well be applied to the case
of a massive scalar field. The geometrical optics limit is specially
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interesting in the sense that it provides spin-independent results (i. e.,
the results hold for scalar, fermion, photon, or graviton particles).

In this approximation we study null geodesics in the spacetime of a
moving BH. In isotropic coordinates the Schwarzschild metric is given
by

ds2 = − (1− A)2

(1 + A)2 dt2 + (1 + A)4 (dx2 + dy2 + dz2) , (6.78)

where A ≡ M/(2ρ) and ρ2 ≡ x2 + y2 + z2. Here, the standard
Schwarzschild radial coordinate is related with ρ via r = ρ(1 + A)2.
Perform a boost along the z direction, by letting

t̂ = γ(t + vz) , ẑ = γ(z + vt) , ŷ = y , x̂ = x . (6.79)

This yields the metric describing a BH moving with velocity v and
Lorentz factor γ ≡ 1/

√
1− v2. It is now a simple question to study

the scattering of a beam of null particles: follow initially counter-
moving null geodesics with impact parameter b (i. e., null geodesics
with ŷ(t̂ = 0) = b and ˙̂x = ˙̂y = 0 at large distances) and monitor their
energy E = −Xα pα, where pα is the four-momentum associated with
the geodesic and Xα = (∂t̂)

α (at large distances) the four-velocity of
the observer.

Our results are shown in Fig. 6.1 for different velocities v. There is
a minimum impact parameter b = 3

√
3M, below which the photon

simply falls onto the BH. As we increase the impact parameter starting
from this value, the energy gain peaks very rapidly at a value precisely
(to within numerical precision) described by Eq. (6.1) – these are
photons which are reflected back by the geometry. There are in fact a
multitude of impact parameters for which photons are reflected back;
for, respectively,

b/M = b1/M = 5.356± 0.003 , (6.80)

b/M = b2/M = 5.199± 0.002 , (6.81)

the photon circles the BH exactly half an orbit (with a distance of
minimum approach of r/M = 3.521± 0.001), and one-and-a-half orbit
(with a distance of minimum approach of r/M = 3.001± 0.001). For
impact parameters closer to the critical value, a larger number of orbits
around the BH are possible. At large impact parameters, our numerical
results are perfectly described by the weak-field result

Eweak
f = Ei −

1
ρ̃(1 + v)

dF̃E

2πb db
=

(
1 +

8M2v
b2(1− v)

)
Ei , (6.82)

where we have used Eq. (6.76) with Ei = h̄ω, which was obtained for
a scalar field.

In a scattering experiment, where a plane wave hits a moving BH

head-on, one can define an absorption cross-section

σabs =
Ein − Eout

Ein/Ain
=

F̃E

ρ̃(1 + v)(h̄ω)
, (6.83)
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Figure 6.1: Energy gain of a (high frequency) photon scattered off a moving
BH. The photon has initial energy Ei, impact parameter b and
scatters off a BH moving with velocity v in the opposite direction;
the final energy is E f . The peak of each curves agrees, to numerical
precision, with Eq. (6.1). For impact parameters b < 3

√
3M the

photon is absorbed by the BH.
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where Ein is the total energy in the plane wave, Eout is the total en-
ergy in the outgoing wave after interaction with the BH, and Ain is
the surface area that the incident plane occupies. As we discussed
in previous sections, due to the long-range (1/r) character of grav-
ity, the above absorption cross-section diverges logarithmically [16].
So, we define instead a finite quantity σabs

20 , computed by sending a
constant flux wave centered at the BH, but with finite transverse size
of radius bmax = 20M (at large distances). This quantity is shown in
Table 6.1 for null particles and compared with our result for a scalar
field (Eq. (6.76)),

σabs
20

πM2 '
16

1− v

(
27
16
− 5.31435v

)
. (6.84)

The agreement between the two approaches (expressing the validity
of the geometrical optics approximation) is remarkable for most BH

velocities. For each cutoff bmax there is a critical velocity above which
the moving BH overall deposits energy in its environment (contrary
to the classical idea of being a perfect absorber); for bmax = 20M, this
velocity is v ' 0.32.

v σabs
20 /(πM2) v σabs

20 /(πM2)

0.00 27.0 (27) 0.30 2.1 (2.1)

0.01 26.4 (26.4) 0.50 -31.1 (-31.0)

0.02 25.8 (25.8) 0.80 -205.6 (-205.1)

0.10 20.6 (20.6) 0.90 -496.8 (-495.3)

Table 6.1: Absorption cross-section for a BH moving with velocity v onto a
constant flux wave obtained using the geometric optics approxi-
mation, compared with (6.84) between parenthesis. The incoming
wave has a finite spatial extent in the direction transversal to the
motion, forming a cylinder of radius bmax = 20M. Notice that
the absorption cross-section becomes negative at large velocities,
indicating that BH transfers energy to its environment.

6.2.2.2 Appearance of a moving black hole

The large amplification for strongly-deflected photons implies that a
rapidly moving BH looks peculiar. Downstream photons are deflected
and blueshifted upstream. Thus a rapidly moving BH in a cold gas
of radiation will be surrounded by a bright ring of thickness ∼ M. A
possible image of a moving BH is shown in Fig. 6.2. For a stellar-mass
BH moving at velocities v ∼ 0.9996 through the universe, the ambient
cosmic microwave background will produce a kilometer-sized ring
(locally ∼ 5000 times hotter and brighter than the cosmic microwave
background) in the visible spectrum.
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Figure 6.2: Appearance of a BH moving in a bath of cold (and counter-
moving) radiation. The BH is moving along the z-axis towards
us at a speed v = 0.9. The colors denote energy flux intensity
on a screen placed a short distance away from the BH. The peak
energy flux is ten times larger than that of the environment. The
bright ring has width ∼ M for all boost velocities v. For very
large v even a randomly-moving gas of photons will leave a simi-
lar observational imprint, since counter-moving photons will be
red-shifted away.
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6.3 discussion

The scattering of waves is a fundamental process in physics. In this
chapter we showed that the universal nature of gravity, together with
the 1/r behavior of Newton’s law causes moving BHs to amplify plane
waves, with a divergent cross-section. This is the only known example
of a negative absorption cross section for neutral fields scattering off
a BH. We also showed that even a narrow beam of light can extract
energy from a rapidly (counter-) moving BH. These results apply to
any massless wave (independently of its spin) in the high-frequency
regime. For BHs at rest, the absorption cross-section of low-frequency
electromagnetic or gravitational waves vanishes, which may imply
that amplification happens sooner at low frequencies, for higher spins.
This remains to be understood. These results may have little practical
application, since BHs are not expected to be traveling through our
universe at relativistic speeds: mergers of BHs or neutron stars lead at
best to “kicks” in the remnant of v . 10−2 [176–179] for astrophysical
setups (even the high-energy merger of two BHs leads “only” to kicks of
v . 0.05 [180]). For these velocities, the effects dealt with here are only
important when the BH moves in very extended media. Nevertheless,
our results show how nontrivial strong gravity effects can be.

The overall result of energy transfer to external radiation echoes that
of the inverse Compton scattering for fast-moving electrons in a radia-
tion field [181, 182]. In this latter process, a nearly-isotropic radiation
field is seen as extremely anisotropic to the individual ultra-relativistic
electrons. Relativistic aberration causes the ambient photons to ap-
proach nearly head-on; Thomson scattering of this highly anisotropic
radiation reduces the electron’s kinetic energy and converts it into
inverse-Compton radiation by upscattering radio photons into optical
or X-ray photons. The process we discuss here, involving BHs, is spe-
cial: BHs are natural absorbers, but the universal – and strong, close to
the horizon – pull of gravity can turn them also into overall amplifiers.

On the other hand, the mechanism for energy extraction can be
relevant in the context of fundamental light fields, with confined low-
energy excitations [50]. A BH binary in this setup could slow down
and transfer some of its energy to the fundamental field, "heating" its
environment, and giving rise to potentially observable effects. This
mechanism of (kinetic) energy transfer from a moving BH to its sur-
roundings is closely related with DF. This phenomenon can be of great
importance to test, e. g., the nature of DM (is it a wave or a particle? [10,
23], by studying how BHBs evolve. In this chapter, we obtained for the
first time, from first principles, the DF acting on BHs moving at pos-
sibly relativistic speeds in light scalar field environments. We found
several simple analytical expressions valid for different regimes of
BH velocity (and our framework can be used to compute numerically
the DF for any other velocity not covered by the analytical expres-
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sions). We focused on stationary regimes and extended the Newtonian
treatment in Ref. [10]. Our results complement the recent work in
Ref. [168], where the same problem was solved through numerical
time evolutions, which cover also the non-stationary regime and show
how the stationary regime is attained. Our analytical expressions
should be compared carefully with these numerics (if they allow for a
easy change in their cutoff procedure, as discussed previously). Our
framework can be easily (and it is presently being) extended to spin-
ning moving BHs, where a type of Magnus effect is expected to be at
work (causing a bending on the BH’s trajectory), which would be an
additional potential observable to probe the environment of moving
compact objects.



7
D Y N A M I C A L F R I C T I O N I N S L A B - L I K E
G E O M E T R I E S

Dynamical friction is well understood when an object moves in an
infinite (collisionless or fluid-like) medium [52–56]. Most rigorous
treatments of this phenomenon in the literature consider infinite three-
dimensional media – some few exceptions are [183–185]. Clearly, such
idealization breaks down in thin accretion or protoplanetary disks,
where the geometry of the problem is more "slab-like" [186, 187].
In this context, Muto, Takeuchi, and Ida [184] obtained estimates for
the DF in a steady state using a two-dimensional approximation for the
gaseous medium. However, as the authors pointed out, their simplified
approach has some limitations and a fully three-dimensional treatment
is needed. Also assuming a steady wake, Cantó et al. [185] computed
the DF acting on a hypersonic perturber moving in the midplane of a
gaseous disk with Gaussian vertical density stratification. However,
they did not study how (and if) this steady state is dynamically
attained.

In this chapter we compute the gravitational wake caused by, and
the time-dependent force acting on a massive perturber moving in
a three-dimensional medium with a slab-like geometry, subjected to
either Dirichlet or Neumann conditions at the boundaries. This setup
is a more faithful approximation to the physics of thin disks and I
expect some of the main findings to carry over, at least qualitatively,
to more generic physical situations where boundaries play a role. For
simplicity, here we consider an inviscid adiabatic medium and neglect
the effects of direct collisions between the massive perturber and the
gas.

91
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7.1 unbounded gaseous media

The Euler equations describing the evolution of an inviscid adiabatic
gas are [188]

dρ

dt
= −ρ∇ · v , (7.1)

dv
dt

= −∇p
ρ
−∇φext , (7.2)

ds
dt

= 0 , (7.3)

where ρ, v and s are, respectively, the mass density, velocity and spe-
cific (per unit of mass) entropy of the gas, and φext is the potential of
some external force. The time-derivative d/dt = ∂/∂t + v ·∇ is the
usual Lagrangian (or material) derivative of fluid mechanics. Assum-
ing that the specific entropy is uniform throughout the medium at
some initial instant, then Eq. (7.3) implies s = constant at subsequent
times, and the relation pρ−γ = constant is satisfied, where γ is the
heat capacity ratio. we also assume that the gas is calorically perfect,
which means that it has a constant γ. Its speed of sound is given by
the simple expression cs =

√
(∂p/∂ρ)s =

√
γ p/ρ.

The linearized equations describing the perturbations ρ = ρ0[1 +

α(t, r)] and v = csβ(t, r) in an homogeneous gas of mass density ρ0

with no velocity are [55]

1
cs

∂α

∂t
+∇ · β = 0 , (7.4)

1
cs

∂β

∂t
+∇α = − 1

c2
s
∇φext , (7.5)

where cs is the (constant) speed of sound in the unperturbed medium
and the perturbation scheme is valid for α, |β| � 1. These equations
can be combined to obtain the inhomogeneous wave equation

∇2α− 1
c2

s

∂2α

∂t2 = − 1
c2

s
∇2φext . (7.6)

If the external influence is due to the gravitational interaction with a
massive perturber of mass density ρext(t, r), the potential satisfies a
Poisson’s equation

∇2φext = 4πρext . (7.7)

Equation (7.6) can be solved using a Green’s function G(t, r; t′, r′),
which is a solution of

∇2
r G− 1

c2
s

∂2G
∂t2 = −δ(t− t′)δ(3)(r− r′) . (7.8)

The problem of finding the (linearly) perturbed density ρ(r, t) of an
infinite three-dimensional gaseous medium due to the gravitational
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pull of a point-like mass M moving at velocity V was solved by Os-
triker [55]. The DF acting on the moving mass was therein computed
to be

F =
M2ρ0

c2
s

I(M, t) eV , (7.9)

I = − 4π

M2

[
1
2

log
(

1 +M
1−M

)
−M

]
, M < 1 (7.10)

I = − 4π

M2

[
1
2

log
(

1− 1
M2

)
+ log

(Mcst
rmin

)]
, M > 1

(7.11)

whereM≡ V/cs is the Mach number and rmin is the effective size of
the perturber, which is assumed to satisfy rmin < (M− 1)cst. 1 Notice
that DF is really a friction force, in the sense that it always opposes the
perturber’s motion (F · V < 0).

7.2 gaseous slabs

In this section we consider an inviscid adiabatic gaseous medium with
a slab-like profile: with constant density and extending to arbitrarily
large spatial distances in the x and y directions, but with compact
support in the z direction, with thickness 2L (i. e., −L ≤ z ≤ L). The
linear perturbation in the pressure is δp = (∂p/∂ρ)δρ = c2

s ρ0α(t, r).
Thus, the physically relevant setup δp(t, z = −L) = δp(t, z = L) = 0
is associated with Dirichlet conditions in α(t, r) at the boundaries of
the slab. 2 For completeness, we study the case of Neumann conditions
as well.

green’s function Defining T ≡ t− t′ and R ≡ (x− x′, y− y′)
the solution of Eq. (7.8) with Dirichlet conditions at z = ±L is 3

G =
cs

2πL
Θ(csT − R)

+∞

∑
n=0

cos (mnD)

D
sin[mn(z + L)] sin[mn(z′ + L)] ,

(7.12)

with D ≡
√

c2
s T2 − R2 and mn ≡ nπ/(2L), and where Θ(x) is the

Heviside step function. Rewriting the sines and cosines as complex-
exponential sums, and using the Dirac comb identity ∑+∞

n=−∞ eimnx =

4Lδ (x mod 4L) the last expression reads

G =
cs

4πD
Θ(csT − R)

+∞

∑
l=−∞

i2lδ
(

z− i2lz′ − 2lL± D
)

. (7.13)

1 The DF acting on a supersonic point-like mass has an ultraviolet divergence. Thus, a
cutoff rmin is needed.

2 More about the choice of boundary conditions in Section 7.3.
3 See Appendix E for a derivation of this expression.
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Using the properties of delta functions this expression can be put into
the form

G =
+∞

∑
l=−∞

i2l

4π
√
(z− i2lz′ − 2lL)2 + R2

δ

(√
(z−i2lz′−2lL)2+R2

cs
− T

)
.

(7.14)

gravitational wake The gravitational interaction between the
medium and an external massive perturber is governed by Poisson’s
equation (7.7). Thus, the solution to Eq. (7.6) with Dirichlet boundary
conditions is

α =
+∞

∑
l=−∞

i2l

c2
s

∫ d3r′dt′ ρext(t′, r′)√
(z− i2lz′ − 2lL)2 + R2

δ

(√
(z−i2lz′−2lL)2+R2

cs
− T

)
.

(7.15)

The index l has an interesting physical meaning: it is the number of
reflections that perturbations have undergone at the boundaries. There-
fore, the density perturbation α is expanded in terms of the number
of echoes of the Green’s function on the slab boundaries. This result is
analogous to that of a signal propagating along a four-dimensional
brane in a five-dimensional Kaluza-Klein spacetime, except that bound-
ary conditions are of the Neumann type for that problem [189]. Notice
also that the l = 0 term in the expansion corresponds to direct propa-
gation and describes the fluctuations not sensitive to the boundaries.
Not surprisingly, this term describes exactly the solution for a three-
dimensional infinite medium [55].

Now consider a particle of mass M moving with velocity V = Vex,
with V > 0, on a straight-line through the medium. we will assume
that the perturbation is turned on at t = 0. 4 Then, the source is pre-
scribed through the mass density ρext = Mδ(x′ −Vt′)δ(y′)δ(z′)Θ(t′).
Under these conditions it can be shown that the perturbation in the
medium density is

α =
M
c2

s

+∞

∑
l=−∞

i2ηl
∫ +∞

−∞
dw Θ(w + x)

δ
(

w+s+M
√

(z−2lL)2+w2+y2
)

√
(z−2lL)2+w2+y2

,

(7.16)

with w ≡ x′− x, s ≡ x−Vt, and η ≡ {1, 0} for Dirichlet and Neumann
conditions, respectively.

dynamical friction An infinitesimal element of medium ρ dx dy dz
between r and r + dr acts gravitationally on a particle of mass M at
position r′ = V t through Newton’s law

dF(t, r) =
(ρ dxdydz)M

[(x−Vt)2 + y2 + z2]3/2 (r− V t) . (7.17)

4 The t = 0 can be thought of as the instant when the perturber enters, or forms inside
the gaseous medium. This consideration allows a study of how (and if) a stationary
regime is attained.
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Then, the DF acting on the massive perturber is given by

F(t) = ρ0M
∫

d3r
α(t, r)

[(x−Vt)2 + y2 + z2]3/2 (r− V t) . (7.18)

7.2.1 Subsonic regime

First let me consider the case of a perturber with Mach numberM < 1.
The argument of the delta function in Eq. (7.16) then vanishes for

w = wl ≡ −
s +M

√
s2 + (1−M2)d2

l

1−M2 , (7.19)

where we defined dl ≡
√

y2 + (z− 2lL)2. Each l-contribution to α(t, r)
vanishes for wl + x < 0 or, equivalently,

x2 + d2
l > c2

s t2 . (7.20)

This is a manifestation of the causality principle. The perturber is turned
on at (t, x, y, z) = 0 and moves with velocity V < cs. The perturbation,
on the other hand, propagates with speed cs. These two facts imply
that, at instant t, the maximum domain of influence of the massive
particle is the region in the slab defined by x2 + y2 + z2 ≤ c2

s t2. This
is the domain of influence of the l = 0 term. At fixed t, each l-
term has a different domain of influence. Larger l’s probe smaller
regions since the fluctuation is "busy" traveling between the boundaries
and is unable to probe larger x, y directions. Notice that not all l-
terms contribute to α at an instant t. A given l mode only contributes
from tl = (2|l| − 1)L/cs onwards. Physically, this is due to these terms
being echoes and, therefore, requiring a finite time to reach the slab
boundaries. The only exception is the l = 0 term, which contributes
from t = 0 onwards.

In summary, a massive particle moving at subsonic speeds through
a gaseous slab causes a density fluctuation

α(t, r) =
M
c2

s

+∞

∑
l=−∞

i2ηl Θ
[
c2

s t2 − x2 − d2
l

]√
s2 + (1−M2)d2

l

(7.21)

in the medium, where we used the property |A|δ [A(w− wl)] = δ(w−
wl). A contour plot of the density profile is shown in Fig. 7.1 at
different instants. The perturber is moving at a subsonic speed with
Mach number M = 0.5. The results for ct/L = 0.5 coincide exactly
with the ones obtained for non-compact geometries by Ostriker [55],
since the perturbation did not have time yet to reach the boundaries.

Using Eq. (7.18) one can see that, by the symmetry of the wake, the
net DF acting on the particle points in the ex direction (i. e., F = F ex).
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Figure 7.1: Density wake αc3
s t/M in a gaseous slab along z = 0, due to

the gravitational interaction with a subsonic particle with Mach
numberM = 0.5, for cst/L = (0.5, 5, 11, 50) (left to right, top to
bottom). The horizontal axis represents the coordinate x/(cst) and
the vertical axis y/(cst). The contours represent curves of constant
density. The observed ripples centered at the origin – which turn
on at cst/L ≥ 1, but are only seen in z = 0 at ct/L ≥ 2 – are
echoes of the original density fluctuation. Each ripple is associated
with a different l-term.
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For times cst/L < 1 the only contributing term is the l = 0 and the DF

reduces to

F =
M2ρ0

c2
s

∫ d3r̄ Θ
(
1− r̄2)√

(x̄−M)2 + (1−M2)(ȳ2 + z̄2)

x̄−M
3
√
(x̄−M)2 + ȳ2 + z̄2

(7.22)

for both Dirichlet and Neumann conditions, where we defined barred
coordinates x̄ ≡ x/(cst). This expression is clearly time-independent
and the integration results in (7.10). Thus, for early times cst/L < 1
the perturbation did not probe the boundary and, once again, one
recovers the result of Ostriker [55].

To find the force at late times cst/L� 1 one can start by breaking
the expansion in even and odd l-terms, defining le ≡ 2l and lo ≡ 2l + 1.
After doing that, Eq. (7.18) with the gravitational wake (7.21) becomes

F '2L
cst

M2ρ0

c2
s

∑
|le|≤int[cst/(4L)]

∫
dx̄dȳ

x̄−M
[(x̄−M)2 + ȳ2]3/2

×
Θ
[

1− x̄2 − ȳ2 −
(

4L
cst

)2
l2
e

]
√
(x̄−M)2 + (1−M2)

[
ȳ2 +

(
4L
cst

)2
l2
e

] − (le → lo) ,

(7.23)

where int(k) is the integer part of k. Notice that in the last expression
we already performed the integration in z̄ (which is trivial, since
the integrand is independent of z̄ at late times cst/L � 1). The last
expression shows something remarkable: in slab geometries with
Dirichlet boundary conditions the DF is suppressed at late times! In
particular, at late times F decays linearly with ∼ L/(cst) (modulo
some residual time-dependence arising from the difference between
even and odd l modes).

The numerical results of the integration of Eq. (7.18) with the density
perturbation (7.21) are shown in Fig. 7.2 for a Mach number M =

0.5. The DF is initially the same as that in extended geometries (i. e.,
Eq. (7.10)). However, after the perturbations reach the boundary such
force changes. It is amusing to see that for some time intervals the
force acting on the perturber is positive (i. e., F · V > 0). This can be
traced back to the existence of regions of negative density fluctuation α,
which effectively act in a repulsive way on the particle, due to the
deficit of matter in such region. "Positive drag" (sometimes called
slingshot effect) does not arise with Neumann conditions, nor for
an infinite three-dimensional medium, but nothing forbids it from
appearing – and in fact it does in slab geometries. At late times the DF

exhibits damped oscillations well described by (see Fig. 7.2)

F ' M2ρ0

c2
s

A
(cst/L)

cos
(

2π

T
cst
L

+ ϕ

)
, (7.24)



98 dynamical friction in slab-like geometries

0 10 20 30 40 50 60

-3

-2

-1

0

1

2

3

4

Figure 7.2: Dynamical friction Fc2
s /
(

M2ρ0
)

acting on a particle moving at a
subsonic Mach numberM = 0.5 as function of time cst/L (black
dots). The results are in agreement with the predicted early-
and late-time behavior of the force, as described by Eqs. (7.22)
and (7.23), respectively. Notice that the early-time force (cst/L <
1) is independent of the boundary conditions, and, thus, is the
same as for non-compact geometries; therefore it is described
by well-known results [55] (purple dashed curve). At late times

the force oscillates with a period ∼ 4L
cs

e
M2.23

2(1−M)0.31 and decays as
∼ L/(cst); the orange dashed curve shows the fit expression (7.24).
In green it is shown the (l = 0) contribution from the non-reflected
wake.
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Figure 7.3: Comparison between the early- [Ostriker: (7.22)] and late-
time [Dirichlet: (7.23); Neumann: (7.26)] dynamical friction
Fc2

s /
(

M2ρ0
)

as function of the Mach number M. In the sub-
sonic regime, the DF in a three-dimensional slab with Dirichlet
(Neumann) conditions is always smaller (larger) in magnitude
than the one in an infinite three-dimensional medium.

where A, T and ϕ are functions of M. The period of oscillation is
well approximated by

T ' 4L
cs

exp
( M2.23

2(1−M)0.31

)
. (7.25)

If Neumann conditions are used instead, the numerical results
show that at late times the massive particle feels a constant DF well
approximated by

F ' −7.864
M2ρ0

c2
s

M
(1−M)3/5 . (7.26)

The dependence of the early- and late-time DF on the particle’s Mach
number is shown in Fig. 7.3. The DF in a three-dimensional slab
with Dirichlet (Neumann) conditions is always smaller (larger) in
magnitude than the one in an infinite three-dimensional medium.

7.2.2 Supersonic regime

In the case of a massive perturber moving with Mach numberM > 1
the argument of the delta function in Eq. (7.16) has roots only if

s ≤ −
√
(M2 − 1) d2

l , (7.27)
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and these roots are

wl,∓ ≡
1

M2 − 1

[
s∓M

√
s2 − (M2 − 1)d2

l

]
. (7.28)

With some algebra one can show that Eq. (7.16) becomes

α(t, r) =
M
c2

s

+∞

∑
l=−∞

i2ηl√
s2 − (M2 − 1)d2

l

{
Θ
[
c2

s t2 − x2 − d2
l
]

+ 2Θ
[
c2

s t2(1− 1
M2

)
− d2

l
]
Θ
[
x−

√
c2

s t2 − d2
l

]
Θ
[
− s− dl

√
(M2 − 1)

]}
(7.29)

(where we are considering the Heaviside function to vanish when
evaluated over non-real numbers).

The perturbation in the gas density along the z = 0 plane caused by
a supersonic particle with Mach numberM = 2 is shown in Fig. 7.4
at different times. As expected, for early times cst/L < 1 all the results
are identical to those in infinite media [55]. 5

In the subsonic regime the density perturbation diverged only at the
particle location, and surfaces of constant density in the neighborhood
of that point were concentric oblate spheroids centered at it, with
short-axis along the x direction (just like in infinite media [55]). Thus,
the front-back symmetry of the density perturbation about the particle
suppressed the contribution of this region to the DF, assuring its
finiteness [55, 190]. That is not the case in the supersonic regime. In
fact, it is easy to show that the DF acting on a supersonic point particle
is infinite. Thus, a regularization procedure needs to be introduced.
we follow the standard, physically motivated, procedure of describing
actual sources via an effective size rmin [55]. This introduces a cutoff
in the force integral, describing the effective size of the particle and
assuring that DF remains finite.

Figure 7.5 shows the time-dependence of the drag force for a fixed
Mach number M = 2 and effective size rmin = 10−2L. At early
times cst/L < 1 we find a friction identical to that computed in
infinite three-dimensional gaseous media [55]. Surprisingly, at late
times cst/L � 1 the DF in a slab with Dirichlet conditions is time-
independent. The numerical results indicate (see Fig. 7.6) that this
late-time DF is well approximated by

F ' −M2ρ0

c2
s

[
D +

4π

M2 log
(

L
rmin

)]
, (7.30)

with D ≡ (21.17M0.83 − 22.05)/M2.58, for Mach numberM > 2. The
magnitude of the friction is larger when the size of the particle is

5 Interestingly, the late-time results for the perturbed density profile in a three-
dimensional slab with Neumann conditions mimic those obtained in a truly two-
dimensional setting (i. e., with the gravitational force falling with ∼ 1/r, instead of
the usual ∼ 1/r2) in both subsonic and supersonic regimes.
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Figure 7.4: Density perturbation αc3
s t/M in a gaseous slab along z = 0, due

to the gravitational interaction with a supersonic perturber with
Mach numberM = 2, for cst/L = 0.5, 5, 11, 50 (left to right, up to
down). The horizontal axis represents the coordinate x/(cst) and
the vertical axis y/(cst). The contours represent curves of constant
density. The observed ripples are echoes of the original density
fluctuation. Each ripple is associated with an l-term. There is an
infinite-density shock wave with conic shape (l = 0) and shock
wave echoes (coming from other l-terms) located inside the conic
surface.
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Figure 7.5: Time-dependence of the dynamical friction acting on a supersonic
particle with Mach number M = 2 and size rmin/L = 10−2

(black dots). At early times cst/L < 1 the dots are in agreement
with Eq. (7.11), which is valid for non-compact mediums (purple
dashed curve). At late times cst/L� 1, the numerical results are
well approximated by Eq. (7.30). In green, it is shown the (l = 0)
contribution from the non-reflected wake.
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Figure 7.6: Late-time dynamical friction acting on a supersonic particle with
finite size rmin/L = 10−2 (black dots). The results are well ap-
proximated by the fit expression (7.30) forM > 2 (orange dashed
curve).

smaller, but it is a very mild, logarithmic, dependence. For fixed Mach
numberM, the second term in the expression above is dominant for
a sufficiently small perturber L/rmin � 1.

For a slab with Neumann conditions the numerical results show
that, at late times cst/L� 1, the DF is well approximated by

F ' −M2ρ0

c2
s

[
J +

4π

M2 log
(
M cst

rmin

)]
, (7.31)

where J ∼ 1 is a function ofM. Notice that this is the same late-time
(cst/rmin � 1) behavior of the DF in an infinite three-dimensional
medium in the supersonic regime (7.11) which was obtained by Os-
triker [55]. Thus, interestingly, in a slab with Neumann boundary
conditions both the early- and late-time DF have the same behavior as
in non-compact geometries, in the supersonic regime.

As in the subsonic regime, the DF acting on a particle moving at
supersonic speed in a three-dimensional slab medium with Dirichlet
(Neumann) conditions is always smaller (larger) in magnitude than
the one in an infinite three-dimensional medium.



104 dynamical friction in slab-like geometries

7.3 wake reflections in stratified media

The results of the previous section show that the late-time DF is
strongly dependent on the boundary conditions of the slab. Since
the reflections (echoes) of the wake play an crucial role in this calcula-
tion, it is important to understand if these reflections are also present
in a more realistic, vertically stratified, open medium. Otherwise, the
conclusions obtained with this simple setup cannot be extrapolated
to more realistic astrophysical setups. In this section, we show that,
indeed, wake reflections are also present in open media, provided that
their density falls off sufficiently fast in the vertical direction (com-
pared with the length scale over which the density is nearly constant).
To show that we consider a medium constituted by an homogeneous
slab part and a stratified edge. Note, however, that this is still meant
to be a toy model; in real astrophysical disks, one may not be able to
distinguish between a bulk and an edge part.

Let me start by considering a vertically stratified isothermal gaseous
medium with unperturbed density ρ0(z). Here, we focus on the z-
direction (one-dimensional) dynamics. So, the linearized equation
describing the relative perturbed density is

∂2

∂z2 α− 1
c2

s

∂2

∂t2 α +

(
∂

∂z
log ρ0

)
∂

∂z
α = 0 . (7.32)

Defining ᾱ ≡ α(z, t)e−k(z) with

k ≡ −1
2

log
(

ρ0(z)
ρ0(0)

)
,

Eq. (7.32) gives

∂2

∂z2 ᾱ− 1
c2

s

∂2

∂t2 ᾱ +
[
k′′ −

(
k′
)2
]

ᾱ = 0 , (7.33)

where k′ denotes the derivative of k with respect to z. Now, one can
write ᾱ as the Fourier-integral

ᾱ =
∫

dω ᾱω(z)e−iωt , (7.34)

which after substitution in Eq. (7.33) gives

∂2

∂z2 ᾱω + qω(z)ᾱω = 0 , (7.35)

with

qω ≡
(

ω

cs

)2

+ k′′ −
(
k′
)2 . (7.36)

By looking at the sign of qω, one can identify the regions where ω-
mode fluctuations of the medium density propagate and the ones
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where they evanesce: propagation happens in regions with positive qω

and evanescence in regions with negative qω [191].
As an example consider the unperturbed density profile 6

ρ0 = ρ0(0)
[
1 + (e−z/h − 1)Θ(z)

]
, (7.37)

with h the effective width of the medium’s edge and Θ(z) the Heavi-
side step function. This density profile gives

qω =

(
ω

cs

)2

−Θ(z)
(

1
2h

)2

. (7.38)

We see that any ω-mode can propagate in z < 0, whereas only the
|ω| > cs/(2h) modes can propagate in z > 0. In other words: an ω-
mode coming from z < 0 and propagating in the positive z-direction
gets totally reflected at z = 0, iff |ω| ≤ cs/(2h); otherwise, the ω-mode
is partially reflected and transmitted. The frequency ω = cs/(2h) is
often called cutoff frequency [192].

The gravitational wake produced by a perturber moving at constant
velocity can be modeled by a real-valued wave packet with spatial
width δz ∼ 2L, where 2L is the effective thickness of the medium.
Thus, its Fourier-transform in z is centered at ω/cs = 0 and has
width δω/cs ∼ 1/δz ∼ 1/(2L). So, the frequency content of a grav-
itational wake produced in slab-like media is δω ∼ cs/(2L). 7 Thus,
if h � L the wake is totally reflected at z = 0. In that case, in what
concerns wake reflections this stratified medium is well modeled by
an homogeneous medium (z < h) with Dirichlet conditions at a z = h
(cutoff) boundary. 8

Figure 7.7 shows the results for the time-evolutions of (i) a wave
packet propagating in the stratified setup (7.37), with (open) radiation
boundary conditions; and (ii) a wave packet propagating in an homo-
geneous medium with Dirichlet conditions at z = h. The results are in
accordance with the predictions in the previous paragraph.

Finally, let me consider an additional example. For a disk edge in
isothermal equilibrium the unperturbed density is [193]

ρ0 = ρ0(0)
[

1 +
(

e−
1
2 (

z
h )

2

− 1
)

Θ(z)
]

. (7.39)

This profile gives

qω =

(
ω

cs

)2

−Θ(z)
(

z2

4h4 −
1

2h2

)
. (7.40)

6 Throughout this section, the slab edge spans z > 0; this contrasts with the treatment
in the previous section where the boundary was at z = L.

7 In other words: the only time scale in this system is 2L/cs. So, it is natural to expect
the frequency content of the wake to be δω ∼ cs/(2L).

8 Although there is no propagation in z > 0, the stratified edge introduces a phase shift
in the wave packet. So, in order to take this effect into account, we need to choose
z = h (and not z = 0) as the cutoff boundary.
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Figure 7.7: Time-evolution of a wave packet with initial conditions ᾱ(z, 0) =

e−
1
2 (

z+20
4 )

2
and ∂tᾱ(z, 0) = −cs ∂zᾱ(z, 0) using Eq. (7.33). Blue:

wave packet propagating in the stratified setup (7.37) (also rep-
resented in the figure), with radiation boundary conditions; Pur-
ple: wave packet propagating in an homogeneous medium with
Dirichlet conditions at z = h. Above: initial (incident) wave
packets propagating from left to right; Below: reflected wave
packets propagating from right to left. The parameters used
were cs = 15, ρ0(0) = 10 and h = 1.
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We see that each ω-mode can only propagate in the region

z < zω ≡ h

√
2 +

(
2hω

cs

)2

,

being evanescent in z > zω. Again, the gravitational wave frequency
content is δω ∼ cs/(2L). So, if the edges are sufficiently thin (h� L),
then zω ∼

√
2h for all frequencies composing the wave packet. In

other words: the whole packet is totally reflected at z =
√

2 h. Thus,
once again, concerning the wake reflections this stratified medium
is well modeled by an homogeneous medium (z < h) with Dirichlet
conditions at a z = h (cutoff) boundary. 9

The numerical results also show that the boundary conditions that
a physically realistic slab-like medium satisfies are indeed of the
Dirichlet (reflection with inversion) type. Had we used Neumann
(reflection without inversion) conditions for the time-evolutions, the
reflected wave packets would be inverted with respect to the ones in
(realistic) stratified media.

7.4 discussion

In this chapter we computed the gravitational wake due to and the DF

acting on a massive particle moving in a straight line through a three-
dimensional slab, taking into account reflections of the wake on the
boundaries.

I want to highlight that Namouni [194] also studied the time-
dependence of DF in compact homogeneous media. In particular, the
effect of wake reflections on the boundaries was investigated. However,
only one wake reflection was considered, and, though not explicitly
stated, Neumann boundary conditions were used. As explained be-
fore and showed in the previous section, more realistic boundary
conditions are of Dirichlet type. Thus, an important conclusion was
missed in this previous work: that, generically, wake reflections tend
to suppress DF.

It is worth pointing out that an estimate for the steady DF acting on
a particle moving in a straight line through a very thin disk was made
previously by Muto, Takeuchi, and Ida [184] using a two-dimensional
approximation to describe the disk. This approximation is very good
in describing the contribution to friction coming from perturbations
far from the perturber, which have already felt the slab boundaries. In
very thin disks the dominant contribution to the subsonic DF comes
from far regions and the approximation is expected to hold in that
regime [184]. For an inviscid medium (as in this chapter), Muto,
Takeuchi, and Ida estimated DF to be suppressed with 1/t. This is in

9 As in the last example, we need to choose z = h (and not z =
√

2h) as the cutoff
boundary to account for the correct phase shift introduced by the reflection.
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Figure 7.8: Time-evolution of a wave packet with initial conditions ᾱ(z, 0) =

e−
1
2 (

z+20
4 )

2
and ∂tᾱ(z, 0) = −cs ∂zᾱ(z, 0) using Eq. (7.33). Blue:

wave packet propagating in the stratified setup (7.39) (also rep-
resented in the figure), with radiation boundary conditions; Pur-
ple: wave packet propagating in an homogeneous medium with
Dirichlet conditions at z = h. Above: initial (incident) wave
packets propagating from left to right; Below: reflected wave
packets propagating from right to left. The parameters used
were cs = 15, ρ0(0) = 10 and h = 2.
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very good agreement with my results (see Eq. (7.24)). However, the
approximation in Ref. [184] fails to describe the contribution to DF

from the near region, which is the dominant one in the supersonic
regime. Nevertheless, though not succeeding in obtaining the correct
dependence on L/rmin, the authors estimated the supersonic late-time
drag to be steady and proportional to 1/M2, which is in agreement
with my results for L/rmin � 1 (see Eq. (7.30)). In that case (sufficiently
small perturber) we recover the well-known estimates for the steady
supersonic DF in a three-dimensional medium with effective size L,
both in collisional media [190, 195–197] and collisionless media [198]. 10

Again, this is due to the fact that in the supersonic regime the dominant
contribution to DF comes from the near region. So, one does not expect
the wake reflections to play an important role in the friction; the more
so for a very small particle.

I expect the results of this chapter to be important to the study
of the physics of accretion and protoplanetary disks. There is a sub-
stantial body of theoretical and numerical studies on the disk-planet
gravitational interaction [184, 199–203]. However, in most of them two
oversimplifications are used: (i) the disks are assumed to be very thin
and a two-dimensional approximation is used to treat the medium;
(ii) the gravitational wake is assumed to be completely dissipated at
the boundaries, without any reflection. A full three-dimensional treat-
ment of the gravitational interaction between a planet and a disk not
assuming (i), but maintaining assumption (ii) finds the following [202]:
the migration time of an Earth-sized planet at 5AU is of the order of
106yr, which is 2 or 3 times longer than previously obtained results
using the two-dimensional approximation [204]. Their result is very
relevant: since the formation time of a giant planet at 5AU is of the
order of 106yr [205], the planetary migration must happen in a longer,
or at least comparable, timescale to explain the existence of giant plan-
ets. In that same work the authors also suggested that the reflection
of the gravitational wake on the disk edges (which they neglected)
could weaken even more the disk-planet interaction, increasing the
planet migration time. The results of this chapter clearly support their
intuition in the subsonic regime, where DF is strongly suppressed
(see Fig. 7.2). In the supersonic regime the l = 0 term, which is not
sensitive to the boundaries, accounts for most of the late-time DF. Thus,
even though the drag is also slightly suppressed in the supersonic
regime, I do not expect the effect of wake reflections to be as striking
as in the subsonic regime.

One can argue that all the results derived here assume linear motion
and cannot, formally, be applied in setups involving circular motion.
Despite this being true, Kim and Kim [206] obtained the remarkable

10 In the case of collisionless media there is no notion of sound speed. The analogous
regime to the supersonic motion is when the perturber has a velocity much larger
than the particle dispersion velocity of the medium [55].
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result that the DF formulae derived for linear motion in extended
media by Ostriker [55] give reasonably good estimates for the drag
acting on circular-orbit perturbers. I expect the same to happen here.
In fact, the approach of Refs. [206, 207] to extend the DF formulae
derived in Ref. [55] from linear motion to circular-orbit and binary
motion, respectively, can, in principle, be applied in a straightforward
way to extend results of this chapter to those same motions.

The unbounded-medium approximation derived by Kim and Kim
[206] was used recently to estimate the impact of DF in thin accretion
disks on gravitational-wave observables [62]. It was concluded that DF

may indeed be important and lead to degradation of gravitational-
wave templates for detection. In a physically realistic setup the accre-
tion disk height is L ∼ rcs/vK, where r is the distance from the disk
center and vK ≡ (M/r)1/2 is the local Keplerian velocity at which the
perturber is moving in its circular-orbit motion. In Ref. [62] the authors
assumed that the relative velocity of the perturber with respect to the
disk isM ' vK/cs ∼ r/L, and so, for a thin accretion disk r/L � 1,
the motion is supersonic. Then, as discussed above, the dominant
contribution to DF comes from the region near the perturber. So, even
though the toy model considered in this chapter neglects variations
of cs and L (which are present in realistic disks), I still expect it to
describe appropriately the present setup. Moreover, the sound travel
time to the disk edges is of the same order of the orbital-motion period
(i. e., cs/L ∼ vK/r). Thus, the boundary effects of the disk may be
relevant for DF in thin accretion disks (by suppressing it) and can,
possibly, change the conclusion of Ref. [62].



8
E C C E N T R I C I T Y E V O L U T I O N O F C O M PA C T
B I N A R I E S

Merging black hole binaries (BHBs) are now “visible”, thanks to gravita-
tional wave (GW) astronomy [3, 59]. A good modeling of the dynamics
of such compact binaries is important to increase our ability to actu-
ally see them, to infer the properties of the merging objects and to
impose constraints on the underlying gravitational theory, or other
fundamental interactions [3].

It has long been known that orbits which are initially eccentric
will quickly circularize on relatively short timescales [135, 208, 209].
This is true in vacuum, and thought to describe well stellar mass BHBs,
which form substantially prior to merger and evolve mostly only via
GW emission. However, a re-appreciation of eccentricity evolution is
required for different reasons. To begin with, the formation of su-
permassive BHBs is poorly understood. Some of the mechanisms that
contribute to such binaries forming and merging actually may also
impart a substantial eccentricity, specially in their initial stages [3].
In addition, observations are progressively indicating that large ec-
centricities may not be rare. One known supermassive BHB (OJ287)
was reported to have eccentricity e ∼ 0.65, while evolving around the
disk of the massive component [210]. Such observations were made
in the electromagnetic spectrum, but there are indications that some
of the GW events, such as GW190521 [211, 212] could also originate
from eccentric orbits [213, 214]. It is interesting to note that this same
event may have an associated electromagnetic counterpart, product of
a nontrivial surrounding environment [132]. A nontrivial environment
leads to large center-of-mass drift velocities [215] and may lead to
large eccentricities during evolution. Even in vacuum, spin-spin cou-
plings at the second post-Newtonian order may induce a nontrivial
eccentricity evolution [216–219].

The understanding of eccentricity evolution is also important to
constrain the presence of new fields. Under the assumption of cir-
cular motion, it has been shown that GW observations can impose
severe limits on the dipolar moment and charge of the inspiralling
objects [220, 221]. When the binary components are charged under
new fields, emission in such channels dominates over GW emission
at sufficiently low frequencies; hence the assumption that circular

111
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remains circular (i. e., that radiative processes conspire to circularize
the orbit) must be proved. The purpose of this chapter is precisely to
address the issues above.

8.1 evolution driven by fundamental fields

The problem of eccentricity and orbital radius evolution is tightly
connected to the ratio of energy to angular momentum loss during
the binary evolution. Take a compact binary of two objects of mass
m1, m2, and define the total mass and mass ratio

M ≡ m1 + m2 , q =
m2

m1
. (8.1)

For binaries dominated by the gravitational interaction, the (Newto-
nian) orbital frequency ω0 satisfies Kepler’s law

ω0 =

√
GM
a3 , (8.2)

where a is the orbital semi-major axis. In this case, the conserved
energy and angular momentum on Keplerian motion are

E = −Gm1m2

2a
, (8.3)

L2 =
Gm2

1m2
2a(1− e2)

M
, (8.4)

where e is the eccentricity.
Suppose now that the only decay channel available for the binary

evolution is a (possibly massive) field of frequency ω and azimuthal
dependence eimφ. This could be a GW, but could include also a scalar
or even a vector field. In this circumstance, then the emitted angular
momentum and energy satisfy [43]

L̇rad

Ėrad
=

m
ω

=
1

ω0
. (8.5)

How do the eccentricity and semi-major axis of the binary evolve?
Energy and angular momentum balance yield

Ė = −Ėrad ≤ 0 , L̇ = −L̇rad , (8.6)

so we find

ȧ = −2a2Ėrad

Gm1m2
≤ 0 , (8.7)

ė =

√
M
Ga

√
1− e2

e
Ėrad

m1m2

(
L̇rad

Ėrad
−
√

1− e2

ω0

)
. (8.8)

We see immediately that, if L̇rad/Ėrad have eccentricity-dependence
starting at order higher than e2, then circular orbits are unstable (i.e.
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ė ≥ 0 for e ∼ 0) on account of condition (8.5). In case of L̇rad/Ėrad

having eccentricity-dependence starting at order e2, circular orbits will
also be unstable if the coefficient multiplying e2 is larger than − 1

2ω0
.

We therefore start our analysis by asking how does the emission of
fundamental massless fields affect eccentricity evolution. 1

8.1.1 GW radiation

Let us first assume that our system is in vacuum, isolated from all
other sources in the universe. In this case, the evolution is driven
solely by GW emission. Eccentricity in vacuum-general relativity can
be calculated in a two-step procedure. Take a binary of point-like
objects of mass m1, m2. To lowest post-Newtonian order, their motion
is elliptical, of semi-major axis a and eccentricity e. Their binding
energy E and angular momentum L are simply described by Eqs. (8.3)-
(8.4). Now, when relativistic effects are included, the system radiates
energy and angular momentum, via GWs, at a rate

〈Ė〉 = −32
5

G4m2
1m2

2M
a5(1− e2)7/2

(
1 +

73
24

e2 +
37
96

e4
)

, (8.9)

〈L̇〉 = −32
5

G7/2m2
1m2

2M1/2

a7/2(1− e2)2

(
1 +

7
8

e2
)

. (8.10)

Assuming a slow, adiabatic evolution, one can now follow Peters [135]
and compute the major axis and eccentricity evolution. For small
eccentricity, one finds

〈ȧ〉 = −64G3

5
m1m2M

a3 < 0 , (8.11)

〈ė〉 = −304G3

15
m1m2M

a4 e ≤ 0 . (8.12)

In other words, the major axis decreases with time due to energy loss
in GWs. So does the eccentricity, thus orbits tend to become circular
on long timescales. Note, however, that eccentricity evolution is very
sensitive, in particular, it hardly evolves for quasi-circular orbits. One
is thus forced to consider what happens when other physics sets in.

8.1.2 Scalar and vector radiation

Consider, then, binary components carrying some additional charge.
The simplest examples include scalar charge, as is the case in scalar-
tensor theories, or electromagnetic charge (the theory below also de-

1 This analysis could be extended to massive fields in a straightforward way.
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scribes some dark matter models with mili-charged components [221]).
We model this via the theory of massless fields (2.1) with currents

JS =
2

∑
n=1

q0
n

∫
dτn

δ(4) (xα − x α
n (τn))√−g

, (8.13)

J α
V =

2

∑
n=1

q1
n

∫
dτn

dx α
n

dτn

δ(4)
(
xδ − x δ

n (τn)
)

√−g
. (8.14)

Each of the binary components carries a charge qs
n of the corresponding

spin-s field (s = 0, 1 for scalar and vectors, respectively).
The details of the calculation are shown in Appendix F. As might

be anticipated, in the weak field regime the motion is Keplerian with
energy and angular momentum

E = − G̃m1m2

2a
, L2 =

G̃m2
1m2

2a(1− e2)

M
, (8.15)

where the effective Newton’s constant is now

G̃ ≡ G− 1
4π

qs
1qs

2
m1m2

, (8.16)

where we assume (without loss of generality) that only one further
interaction (s = 0 or s = 1) is turned on.

In the Newtonian approximation, radiation propagates in flat space
and the Green’s function for the problem is well known. Averaging
over an orbit, we find the surprisingly compact expressions for the
rate of energy and angular momentum emission

〈Ėrad〉 = (s + 1)
24π

G̃2

a4 (q
s
1m2 − qs

2m1)
2

(
2 + e2

(1− e2)
5
2

)
, (8.17)

〈L̇rad〉 = (s + 1)
12π

G̃
3
2

√
Ma

5
2 (1− e2)

(qs
1m2 − qs

2m1)
2 , (8.18)

resulting in the spin-independent dipolar ratio

〈L̇rad〉
〈Ėrad〉 =

√
1− e2

ω0

(
1− e2

1 + e2

2

)
. (8.19)

The flux of scalar energy in the circular orbit limit agrees with that of
Refs. [222–224]. Our results for the electromagnetic flux of energy and
angular momentum agree with those in Refs. [225, 226]. In the adia-
batic approximation the major semi-axis and the eccentricity follow

〈ȧ〉 = −2a2〈Ėrad〉
G̃m1m2

< 0 , (8.20)

〈ė〉 =
√

M
G̃a

√
1− e2

e
〈Ėrad〉
m1m2

(
〈L̇rad〉
〈Ėrad〉 −

√
1− e2

ω0

)

= −
√

M
G̃a

(
1− e2

e ω0

) 〈Ėrad〉
m1m2

(
3e2

2 + e2

)
≤ 0 . (8.21)
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Thus, the emission of massless radiation by a binary causes the major
semi-axis and the eccentricity to decrease in time: the orbit shrinks
and circularizes. Although we will not explore the subject further,
it is important to realize that electromagnetic fields couple strongly
to plasmas. Thus, when applied to the Maxwell sector, the previous
results should be taken with care [227].

8.2 eccentricity evolution in constant-density envi-
ronments

The presence of surrounding dust or plasma affects the above picture
in different ways. Binaries, such as the event GW190521 [211, 212],
may in fact evolve within accretion disks, where the density of the
surrounding environment may play an important role. The presence
of matter surrounding a BHB will cause accretion to occur [57, 228,
229]. A second mechanism at play is DF, whereby the moving BHs get
dragged down by the surrounding matter [52, 55, 57, 66, 68].

Consider first accretion. We assume that the surrounding medium
has constant density. This implies in particular that there is a supply
mechanism that keeps the density constant even as the binary sweeps
through and accretes some of the particles. We neglect here the gravita-
tional potential generated by the accretion disk or surrounding matter;
this approximation is expected to be extremely good for BHBs close to
merger. We focus on Bondi-Hoyle accretion [229]. The mass flux at the
horizon is

ṁi = 4πG2ρ
m2

i
(v2

i + c2
s )

3/2
, (8.22)

when the binary components are BHs. These are Newtonian formulas,
expected to be valid up to factors of order 1 when the binary is
non-compact. Here, vi is the relative velocity between BH “i” and
the environment, and cs is the sound speed in the medium. We will
always consider regimes for which vi � cs. Numerical studies indicate
that the above description is solid, even in the presence of wake
instabilities [229].

Binaries in a medium are also subject to the gravitational force due
to the wakes generated by the moving bodies, as we mentioned. This
DF depends on the characteristics of the fluid and on the moving
bodies. In summary, DF can usually be represented by an external
force of the type

Fd,i = −G2m2
i ρId(vi)ṙi , (8.23)
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where the form of the function Id depends on the specifics of the DF

model at hand. We consider the DF in a fluid (collisional) medium in
the supersonic regime (vi � cs), for which [55, 190, 195, 196] 2

Id(vi) =
4πλ

v3
i

, (8.24)

where λ is the Coulomb logarithm. It is easy to see that, for large
velocities, the Chandrasekhar formula for collisionless media [52]
reduces also to the last expression. We adopt λ ∼ 20, unless stated
otherwise, but note that changing λ is equivalent to re-normalizing
the density in the DF expression. As we show below, even a factor
10 variation in this parameter has only a mild effect on the overall
evolution of the system.

Taking then a binary evolving under the influence of accretion and
DF, the EOM can be written as

mi r̈i + ṁi ṙi = ±
Gm1m2

r3 r + Fd,i , (8.25)

where r = r2 − r1 is the orbital separation vector of the binary. Intro-
ducing the center of mass of the binary

R =
m1r1 + m2r2

m1 + m2
, (8.26)

we can write a system of equations describing the vectors r and R,
namely

r̈ = f1ṙ + f2Ṙ + f3r , (8.27)

R̈ = f4ṙ + f5Ṙ + f6r , (8.28)

where the functions fi are given by

f1 = −G2Mqρ(Ia1 + Ia2 + Id1
+ Id2

)

(q + 1)2 , (8.29)

f2 =
G2Mρ[Ia1 + Id1

− q(Ia2 + Id2
)]

q + 1
, (8.30)

f3 = GM
{

G3Mqρ2(Ia1 − qIa2)[Ia1 + Id1
− q(Ia2 + Id2

)]

(q + 1)4 − 1
r3

}
,

(8.31)

f4 =
G2Mqρ[q(Ia2 − Id2

)− Ia1 + Id1
]

(q + 1)3 , (8.32)

f5 = −G2Mρ
[
q2(Ia2 + Id2

) + Ia1 + Id1

]
(q + 1)2 , (8.33)

f6 = −G4M2qρ2(Ia1 − qIa2)
[
q2(Ia2 + Id2

) + 2q(Ia1 + Ia2) + Ia1 + Id1

]
(q + 1)5 .

(8.34)

2 This expression assumes linear motion in an extended medium. The fact that the
binary components do not follow a linear motion and are inside a (possibly thin) disk
introduces some modifications to the DF, which we neglect here for simplicity. For a
more careful analysis of the DF in these type of systems see e.g. Refs. [68, 207, 230].
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Here, we defined

Iai =
4π

(v2
i + c2

s )
3/2

, Idi = Id(vi) . (8.35)

Note that due to accretion, both the mass-ratio and the total mass
evolve in time. We can compute their evolution via Eq. (8.22), obtaining

q̇ =
G2Mqρ(qIa2 − Ia1)

q + 1
, (8.36)

Ṁ =
G2M2ρ

(
q2 Ia2 + Ia1

)
(q + 1)2 . (8.37)

To investigate the evolution of the system, Eqs. (8.27), (8.28), (8.36),
and (8.37) must be solved together. Note that the equations for the
center of mass vector predict a boost, as can be seen in [215]. To
analyze the eccentricity evolution, however, we have to focus into r
instead. Before going into the full regime, it is instructive to focus on
some particular cases.

8.2.1 Equal-mass binaries

For equal mass ratio binaries, q = 1 during the whole evolution, due
to symmetry [c.f. Eq. (8.36)]. 3 In this case, the center of mass remains
at rest (or at constant velocity) and the equations simplify considerably.
Considering R = 0, we have

r̈ = −G2Mρ

2
(Ia + Id)ṙ−

GM
r3 r , (8.38)

where we dropped the particle label index because drag and accretion
forces are the same for both particles. Additionally, the total mass of
the binary also evolves because of accretion. The total mass evolution
is given by

Ṁ =
G2M2ρIa

2
. (8.39)

To track the eccentricity of the system it is useful to describe the
evolution of the total mechanical energy and the angular moment per
reduced mass. The evolution of the mechanical energy can be found
by analyzing the power extracted by the external force. We have that
the evolution of the energy per reduced mass (ε) is determined by

ε̇ = −G2Mρ(Ia + Iv)

2
ṙ · ṙ = −G2Mρk

2v
, (8.40)

3 We note that we are considering a homogeneous medium. Density lumps in the
medium can introduce asymmetries that can affect the outcome of the motion.
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where v = |ṙ|, and we considered (Ia + Iv) ' k/v3, which is valid even
for collisional DF in the limit v/cs � 1. 4 The evolution of the angular
momentum per reduced mass (h = |r× ṙ|) follows from Eq. (8.38),

ḣ = −G2Mρk
2v3 h . (8.41)

Finally, the eccentricity can be found by tracking

e =

√
1 + 2

εh2

G2M2 . (8.42)

8.2.1.1 Averaging the energy and angular momentum evolution for elliptic
orbits

In a similar fashion to that of Section 8.1 where we dealt with fun-
damental fields, we can consider Eqs. (8.40) and (8.41) as “fluxes" in
which the right-hand side is computed for a fixed orbit. For simplicity,
let us consider only DF, i. e., M is constant during the evolution. For
an elliptical orbit, using the average procedure defined in Appendix F,
we find the energy and angular momentum loss for one complete
period

〈ε̇〉 = −
a
(
1− e2)2 Gkρ

√
GM

a

4π

∫ 2π

0
dϕ gε , (8.43)

〈
ḣ
〉
= − a2(1− e2)7/2Gkρ

4π

∫ 2π

0
dϕ gh , (8.44)

gε = (1 + e cos ϕ)−2(1 + e2 + 2e cos ϕ)−1/2 , (8.45)

gh = (1 + e cos ϕ)−2(1 + e2 + 2e cos ϕ)−3/2 . (8.46)

Finally, we can use the following relations

a = −GM
2ε

, e2 = 1− 2
ε h2

G2M2 , (8.47)

to rewrite Eqs. (8.43)-(8.44) in terms of a and e. For low-eccentricity
orbits we find

〈ȧ〉 = −kρ

√
G a5

M

(
1 +

3e2

4
+O(e4)

)
, (8.48)

〈ė〉 = 3
2

kρ

√
G a3

M
e
(

1 +
3e2

8
+O(e4)

)
. (8.49)

From the above relations we see that eccentricity increases in time
under the effect of the dissipative environmental forces. This has been
observed in some works considering motion under the influence of
drag [57, 215, 231].

4 For the model adopted here, considering only DF, we have k = 32πλ (note that
vi = v/2 for symmetric binaries).
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Using the formalism of adiabatic invariants (see e. g., [232]) one may
be led to expect eccentricity to be constant under the adiabatic approx-
imation (which would contradict some of the results discussed here).
While eccentricity is a constant at leading order, the semi-major axis
does evolve on this time scale, and some conclusions can be drawn for
GW binary systems [233]. Although eccentricity is indeed an adiabatic
invariant at leading order, it does not need to be (and it is not, in gen-
eral) a constant of motion at next-to-leading order [234, 235]. However,
under the regime of validity of the adiabatic approximation, it is true
that the eccentricity must change over a timescale much larger than,
for instance, the semi-major axis (which is not a constant of motion
at leading order). We have verified that eccentricity indeed increases
by considering, for instance, a system subject to only accretion-driven
forces (which is subdominant over DF), with the evolution of e(a)
converging for ρ→ 0, indicating that indeed eccentricity does change
in the adiabatic regime.

8.2.1.2 Dissipative forces, GWs and the eccentricity evolution

As seen above, dissipative forces such as DF increase the orbital ec-
centricity of the binary. On the other hand, radiative mechanisms,
such as GW emission, act to decrease the orbital eccentricity. We now
quantify the combined effect, to understand how binaries behave in
astrophysical environments, focusing in the GW channel only. We can
use the equations for 〈ȧ〉 and 〈ė〉 to compute da/de. When only GW

emission contributes [135, 236],

da
de

=
12a
19e

(
1 +

3323
912

e2 +O(e4)

)
(GW-only) . (8.50)

On the other hand, DF alone produces

da
de

= −2a
3e

(
1 +

3
8

e2 +O(e3)

)
(DF-only) . (8.51)

Curiously, the DF result (expressed in this way) does not depend
explicitly on the medium density. At linear order we can combine
the effects of GW emission and DF by simply adding the energy and
angular momentum loss, and find, up to terms of order O(e0),

da
de

=
6a
(

5c5kρ
√

GMa11 + 32G3M4
)

e
(

304G3M4 − 45c5kρ
√

GMa11
) (GW+DF) . (8.52)

Interestingly, when the two effects are combined the density of the
medium manifests itself. This is because the density balances the con-
tribution from the energy and angular momentum loss. For ρ = 0 we
recover the standard vacuum GW case. Clearly, there is a critical value
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Figure 8.1: Eccentricity evolution of a binary system, with an initial semi-
axis a/M = 107. Bottom axis shows the semi-major axis as func-
tion of eccentricity, top axis shows the GW frequency. We run
the binary up to a distance of a = 100M. Blue bands indicate
LISA’s frequency range [141]. Up panel: We consider a system
with an initial eccentricity of e = 10−3 and different values of the
environment density. Dashed line in inset shows threshold values
for which periastron is 100M. Down panel: We fix the density to
be ρM2 = 10−29, changing the initial eccentricity of the system.
The vertical line indicates the critical distance given by Eq. (8.53).
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for the distance as function of the medium density at which da/de
changes sign. We have

ac(
100GM�

c2

) = 3× 104 k−2/11
(

M
100M�

)7/11 (ρ10

ρ

)2/11

, (8.53)

where ρ10 = 10−10 g/cm3. For a . ac, GW emission is dominant over
DF and the eccentricity decreases. For most reasonable scenarios we
have k−2/11 ∈ [0.1, 0.5]. 5

The critical distance given by Eq. (8.53) dictates the balance between
environmental forces and GW emission, indicative of whether quasi-
circular orbits are indeed expected close to coalescence. However, other
factors may be important. One of them is the adiabatic assumption
(which we explore in Section 8.3, where we show evidence that it
does not impact our findings substantially), the other concerns the
eccentricity evolution, which depends on the initial conditions and
which may lead to extremely small periastron distances.

Figure 8.1 shows the result of the integration of Eq. (8.52), including
corrections for the DF part up to order O(e12). We focus on initial
semi-major axis of a(e0) = 107M, for different values of the medium
density and the initial eccentricity of the system, but the results hold
for other initial distances, observing how the density scales with the
separation of the system. Note that

G3

c6 ρM2 = 1.6× 10−24 ρ

ρ10

(
M

100M�

)2

, (8.54)

where we used typical values of event GW190521 [132, 211, 212] as
reference values.

It is clear from the figure that the eccentricity increases when the
environmental effects dominate, for separations larger than those in
Eq. (8.53). In this region e ∝ (a/M)−3/2, regardless of the medium
density and of the initial eccentricity, as predicted by Eq. (8.51). It is
also important to note that, while for small separations GW drives
the process with e ∝ (a/M)19/12, the eccentricity inherited from the
environment-dominated phase may be substantial. Thus, the system
could still be observed with a considerable eccentricity in a wide range
of binary evolution stages. Note that ρM2 ∼ 10−22 or larger are possi-
ble close to the inner edge of thin accretion disks, thus eccentricities
larger than e ∼ 0.1 are expected during a substantial portion of the
time-in band for a detector such as LISA.

It is instructive to understand the initial and final stages of the
binary evolution analytically. As indicated previously, the GW and
medium dominated regions can be estimated by looking into their
respective solutions for low eccentricities [i. e., Eqs. (8.50) and (8.51)].
The link between the two regimes can be estimated by analyzing

5 Considering λ ∈ [0.5, 2000].
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Eq. (8.52), imposing the initial eccentricities e0 = e(a0). Let us assume
that the motion starts far from the critical distance (8.53). We obtain
the following simple expressions for the two regimes

e =

 e0

(
a
a0

)−3/2
, a� ac ,

0.35 e0 ã3/2
0 ã19/12(k ρ̃)37/66, a� ac ,

(8.55)

with ã = a/(GM/c2), and ρ̃ = G3M2ρ/c6. The above solutions are
valid mostly for low densities and low initial eccentricities. These ex-
pressions can be used to understand all of the peculiarities of Fig. 8.1.

For very large eccentricities it is conceivable that the distance of clos-
est approach would be so small that the components would effectively
collide. For the systems we explored this possibility is not realized.
The minimum distance rmin obeys

rmin > 100
GM
c2 , (8.56)

which can be translated to maximum eccentricity of e = 1− 100(GM/c2)/a,
represented by the dashed line in the inset of the left panel of Fig. 8.1.
This indicates that we can expect the objects to pass relatively close
to each other without colliding during the evolution, for the density
range investigated in the figure. Interestingly, this collision avoidance
is only possible due to the GW effect of decreasing the binary eccentric-
ity; if only the medium effects were in play, the objects would collide
much sooner and during a highly eccentric motion.

Newtonian circular binaries emit GWs at a frequency fGW = ω0/π.
Eccentricity makes the spectrum more complex. Elliptical orbits will
in general generate a spectrum

fGW = n
ω0

2π
, with n ≥ 1. (8.57)

Therefore, in general, all harmonics of the orbital frequency contribute
to the GW frequency. The dominant frequency n = n̄ depends on
the eccentricity of the system. The higher the eccentricity, the higher
the value of n̄. In other words, high-frequency bursts are emitted at
periastron [237], which means in practice that the source can enter the
LISA band much sooner than what seems to be implied by the figure.
In Fig. 8.1 we also show the frequency of the system normalized by
the value of n. We highlight that the frequencies fall into the LISA
band while having a considerable eccentricity.

8.2.2 Asymmetric binaries and accretion

To implement the simple adiabatic approximation described in the
previous sections, we have focused on symmetric binaries and ne-
glected accretion. This approximation enabled us to understand the
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Figure 8.2: Eccentricity evolution for different initial mass-ratios (q = 1.0, 1.5
and 2.0) when accretion is included. The dashed line is an analyt-
ical fit that enable us to predict at which distance the system will
reach highly eccentric motion.

evolution under the effects of both DF and GW backreaction. However,
asymmetry leads to novel, important effects. It was realized recently
that unequal-mass binaries may acquire a large center-of-mass velocity
as the evolution proceeds [215]. We can also verify here that accretion
might not play a central role in the earlier stages of eccentricity gain.

In order to understand asymmetric binaries and the influence of
accretion, we integrate the full system of equations given by Eqs. (8.27)-
(8.28) and (8.36)-(8.37), neglecting possible GW backreaction into the
system. This approximation should be valid far from the critical dis-
tance (8.53), where the environmental effects dominate over GW. We
also focus in a regime in which the adiabatic approximation is valid
for symmetric binaries in the absence of accretion.

In Fig. 8.2 we plot the eccentricity as function of the orbital distance
for a medium with density ρM2 = 10−29, with initial separation major
semi-axis a0 = 107M and eccentricity e = 0.001. We verify that the
results remain essentially the same for ρM2 ∈ [10−28, 10−30], indicating
that we are in the regime in which the adiabatic approximation is valid
(more about that in the following section). We also consider initial
mass-ratios q = 1, 1.5, and 2. For higher mass-ratios eccentricity grows
faster as the distance decreases, which is evident by analyzing the
slope of the curves in Fig. 8.2. We also display this eccentricity growth
by using a fit (dashed lines in Fig. 8.2) to extrapolate the evolution
data up to higher eccentricities. This implies that asymmetric binaries
will reach highly eccentric motion faster than symmetric ones.

Accretion has little impact in the evolution of eccentricity, when
compared to DF, at least for the density range considered in this
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paper. However, we should highlight that this is model-dependent;
to perform the computations, we fix the DF model with λ = 20. In
general, in the high-velocity limit, the ratio between the DF force
and accretion force is λ and, as such, λ = 20 indicates a medium in
which DF generally dominates over accretion. Additionally, because λ

appears combined with the medium density in the DF force, it also
influences the density scales in which the orbits evolve adiabatically.

8.3 when the adiabatic assumption fails

We have made extensive use of the adiabatic approximation in the pre-
vious sections to analyze the evolution of the eccentricity of the system
subjected to GW radiation-reaction and environmental forces. However,
depending on the environmental density and the initial separation of
the binary, this approximation may not be valid. In this subsection, we
address how much the adiabatic approximation may underestimate
the eccentricity increase in the system. In order to investigate the
validity of the adiabatic approximation for equal mass binaries we
integrate Eq. (8.38) (neglecting accretion), considering specific initial
conditions. With the numerical solution, we construct the eccentricity
as function of the orbital distance, by tracking the expression (8.42).
Since this system only takes into account the environmental effects, we
compare this solution to the one obtained from the adiabatic approach
by integrating Eq. (8.51) under similar conditions (with higher order
terms of eccentricity included). Using these results, we compute the
relative deviation of the eccentricity, i. e.,

δe
ea

=
|en − ea|

ea
, (8.58)

where en is the result from Eq. (8.38) and ea the one from the adia-
batic approximation (considering terms up to O(e12)). The deviation
depends on the medium density and the initial conditions, but we
expect it to approach zero as the medium density decreases.

In Fig. 8.3 we plot the eccentricity deviation, considering an initial
separation of a = 107M and initial eccentricity e0 = 0.001. For the DF,
we consider λ = 20. We can see that for densities of ρM2 = 10−27 the
adiabatic approximation fails to quantitatively describe the eccentricity
evolution of the system, underestimating the eccentricity increase
from the DF. For densities as small as ρM2 = 10−29 the adiabatic
approach works mostly in the initial stages of the binary evolution. At
late times, meaning short distances, we can see that the eccentricity
deviation increases, indicating a possible breaking of the adiabatic
approximation.

Going beyond the adiabatic approximation shows that the eccen-
tricity increases even further; this effect is enhanced for asymmetric
binaries and accretion, as we discussed in the previous sections.
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Figure 8.3: Comparison between the numerical integration of Eq. (8.38) and
the result from the adiabatic approach. We plot the deviation
normalized by the adiabatic result.

8.4 discussion

In this chapter we studied the evolution of eccentricity of compact
binaries, evolving via emission of massless fields and of environmental
accretion and gravitational drag. We proved that the emission of mass-
less scalars, vectors of tensors circularizes the orbits. In particular, the
critical distance at which the orbits start to circularize is larger when
additional scalar or vector charges are considered. The integration of
Eqs. (8.20)-(8.21) shows that

a
M

∝
e4/3

1− e2 , (8.59)

for scalar or vector-driven binaries. Compare this against the gravitational-
driven result, a/M ∝ κe12/19/(1− e2), at small eccentricities [135]. The
eccentricity for these channels thus decays less quickly than in vacuum.
Nevertheless, even when additional massless fields are considered,
circular orbits remain stable.

By contrast, we show that sources of interest for GW detectors evolv-
ing in thin accretion disks or other relatively large-density environ-
ment may inherit a substantial eccentricity by the time they reach the
mHz band. As we showed, high eccentricity is also a key feature of
large mass ratio binaries, which is one possible explanation of the
GW190521 event [238]. Together with previous results on the center-
of-mass velocity of asymmetric binaries [215], these results show that
modeling binaries in accretion disks or nontrivial environments is
challenging but crucial. In particular, these effects may have an impor-
tant impact in attempts to constrain environmental properties [62, 66,
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84, 239] or on testing fundamental properties of compact binaries [227,
240].

Our results complement previous findings [241, 242]. In particular,
eccentricity excitation via asymmetric torques from circumbinary discs
was found to keep supermassive black holes on eccentric orbits for
a relevant fraction of their evolutionary phase [241]. Along the same
line, it was recently shown that circumbinary disk torques may lead an
equal-mass binary to evolve towards an equilibrium orbital eccentricity
of e ' 0.45 [242]. Interestingly, in that same analysis it was found that,
when the circumbinary gas is in a thin disk, DF causes a damping in
the eccentricity if the orbital eccentricity is e > 0.45. This effect is not
captured by our model, as we do not consider the full modeling of the
fluid perturbations and its gravitational effects.



9
T E S T F I E L D S C A N N O T D E S T R O Y E X T R E M A L B L A C K
H O L E S

In the wake of the proofs of the singularity theorems in general
relativity [243–245], Penrose formulated the weak cosmic censorship
conjecture [246, 247], according to which, generically, the singularities
resulting from gravitational collapse are hidden from the observers at
infinity by a black hole event horizon. Penrose’s expectation was that,
independently of what might happen inside black holes, the evolution
of the outside universe would proceed undisturbed.

To test this conjecture, Wald [248] devised a thought experiment
to destroy extremal Kerr-Newman black holes, already on the verge
of becoming naked singularities, by dropping charged and/or spin-
ning test particles into the event horizon. Both him and subsequent
authors [249, 250] found that if the parameters of the infalling par-
ticle (energy, angular momentum, charge and/or spin) were suited
to overspin/overcharge the black hole then the particle would not
go in, in agreement with the cosmic censorship conjecture. Similar
conclusions were reached by analyzing scalar and electromagnetic
test fields propagating in extremal Kerr-Newman black hole back-
grounds [251–254]. In this case, the fluxes of energy, angular momen-
tum and charge across the event horizon were found to be always
insufficient to overspin/overcharge the black hole. Some of these re-
sults have been extended to higher dimensions [255] and also to the
case when there is a negative cosmological constant [256, 257].

More recently, it was noticed that Wald’s thought experiment may
produce naked singularities when applied to nearly extremal black
holes [258–261]. However, in this case the perturbation cannot be
assumed to be infinitesimal, and so backreaction effects have to be
taken into account; when this is done, the validity of the cosmic
censorship conjecture appears to be restored [262–266]. It can also
be argued that the third law of black hole thermodynamics [267], for
which there is some evidence [268–270], forbids subextremal black
holes from ever becoming extremal, and so, presumably, from being
destroyed. Nonetheless, this cannot be taken as a definitive argument,
since, for instance, extremal Reissner-Nordström black holes can be
formed by collapsing charged thin shells [271].

127
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In this chapter, we consider arbitrary (possibly charged) test fields
propagating in extremal Kerr-Newman, Kerr-Newman-anti de Sitter
(AdS), or Kerr-Newman-de Sitter (dS) black hole backgrounds. Apart
from ignoring their gravitational and electromagnetic backreaction,
we make no further hypotheses on these fields: they could be any
combination of scalar, vector or tensor fields, charged fluids, sigma
models, elastic media, or other types of matter. This also includes
test particles, since they can be seen as singular limits of continuous
media [272, 273]. We give a general proof that if the test fields sat-
isfy the null energy condition at the event horizon then they cannot
overspin/overcharge the black hole. This is done by first establishing,
in Section 9.1, a test field version of the second law of black hole
thermodynamics for extremal Kerr-Newman or Kerr-Newman-AdS
black holes (which does not assume cosmic censorship). We use this
result in Section 9.2, together with the Smarr formula and the first
law, to conclude the proof. This last step requires the black hole to
be extremal, and cannot be extended to near-extremal black holes. In
the same section, we discuss generalizations of this result to other
extremal black holes, including higher dimensions and alternative the-
ories of gravity. Finally, in Section 9.3 determine the timelike Killing
vector field that gives the correct definition of energy for test fields
propagating in a Kerr-Newman-de Sitter spacetime, and use this to
extend the previous result to extremal Kerr-Newman-de Sitter black
holes.

9.1 second law for test fields

In this section we prove that a version of the second law of BH thermo-
dynamics holds in the case of (possibly charged) test fields propagat-
ing on a background Kerr-Newman or Kerr-Newman-AdS BH (either
subextremal or extremal). This calculation is similar to the one in [274],
but we do not assume cosmic censorship, i. e., we do not assume that
the BH is not destroyed by interacting with the test field.

We start by recalling the Kerr-Newman-(A)dS metric, given in Boyer-
Lindquist coordinates by

ds2 =− ∆r

ρ2

(
dt− a sin2 θ

Ξ
dϕ

)2

+
ρ2

∆r
dr2

+
ρ2

∆θ
dθ2 +

∆θ sin2 θ

ρ2

(
a dt− r2 + a2

Ξ
dϕ

)2

, (9.1)
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where

ρ2 = r2 + a2 cos2 θ , (9.2)

Ξ = 1± a2

l2 , (9.3)

∆r = (r2 + a2)

(
1∓ r2

l2

)
− 2mr + q2 , (9.4)

∆θ = 1− pm
a2

l2 cos2 θ (9.5)

(see for instance Ref. [275]). In what follows, the upper sign will
always refer to a positive cosmological constant, and the lower sign to
a negative cosmological constant, given in terms of the parameter l
by 1

Λ = ± 3
l2 . (9.6)

Here m, a and q denote the mass, rotation and electric charge parame-
ters, respectively. These parameters are related to the physical mass
M, angular momentum L and electric charge Q by

M =
m
Ξ2 , L =

ma
Ξ2 , Q =

q
Ξ

. (9.7)

To avoid repetition, we will present all calculations below for the
Kerr-Newman-AdS metric only; the corresponding formulae for the
Kerr-Newman metric can be easily retrieved by making l → +∞.

The Kerr-Newman-AdS metric, together with the electromagnetic
4-potential

A = − qr
ρ2

(
dt− a sin2 θ

Ξ
dϕ

)
, (9.8)

is a solution of the Einstein-Maxwell equations with cosmological
constant Λ. It admits a two-dimensional group of isometries, generated
by the Killing vector fields Xα = (∂t)α and Yα = (∂ϕ)α.

We consider arbitrary (possibly charged) test fields propagating in
this background. Apart from ignoring their gravitational and elec-
tromagnetic backreaction, we make no further hypotheses on the
fields: they could be any combination of scalar, vector or tensor fields,
charged fluids, sigma models, elastic media, or other types of matter.
Since the fields may be charged, their energy-momentum tensor Tαβ

satisfies the generalized Lorentz law 2

∇αTαβ = Fβα Jα , (9.9)

1 Note that the Kerr-Newman metric can be obtained by taking the limit l2 → ∞.
2 See the Appendix G for a complete explanation of the origin and meaning of this

equation.
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where F = dA is the Faraday tensor of the background electromagnetic
field and Jα is the charge current density 4-vector associated to the test
fields. Using the symmetry of Tαβ and the Killing equation,

∇αXβ +∇βXα = 0 , (9.10)

we have

∇α(TαβXβ) = Fβα JαXβ . (9.11)

On the other hand, using the charge conservation equation,

∇α Jα = 0 , (9.12)

we obtain

∇α(Jα AβXβ) = Jα(∇α Aβ)Xβ + Jα Aβ∇αXβ

= Jα(F β
α +∇β Aα)Xβ − Jα Aβ∇βXα

= Fαβ JαXβ + Jα(Xβ∇β Aα − Aβ∇βXα) . (9.13)

Since Aα is invariant under time translations, we have

LX Aα = 0⇔ [X, A]α = 0⇔ Xβ∇β Aα − Aβ∇βXα = 0 , (9.14)

and so from (9.11) and (9.13) we obtain

∇α(TαβXβ + Jα AβXβ) = 0 . (9.15)

This conservation law suggests that the total field energy on a given
spacelike hypersurface S extending from the BH event horizon H + to
infinity (Fig. 9.1) should be

Ẽ′ =
∫
S

dV3(Tαβ + Jα Aβ)XβNα , (9.16)

where Nα is the future-pointing unit normal to S . However, in the Kerr-
Newman-AdS case the non-rotating observers at infinity are rotating
with respect to the Killing vector field Xα with angular velocity

Ω∞ = − a
l2 , (9.17)

and so, as shown in Ref. [276], the physical energy should be computed
with respect to the non-rotating Killing vector field

Kα = Xα + Ω∞Yα = Xα − a
l2 Yα , (9.18)

that is, the physical energy is actually

Ẽ =
∫

S
dV3(Tαβ + Jα Aβ)KβNα . (9.19)

This correction was implemented for test particles in Ref. [256]. The
need for the corresponding correction in the calculation of the physical



9.1 second law for test fields 131

i+i+

i0

i−i−

HH

H +H +

H −H −

I +

I −

IS0S0

S1
S1

Figure 9.1: Penrose diagrams for the region of outer communication of the
Kerr-Newman (left) and Kerr-Newman-AdS (right) spacetimes.

BH mass has been stressed in [277, 278]. Note that in the Kerr-Newman
case Ω∞ = 0 and no correction is needed.

Analogously, but now without ambiguity, the total field angular
momentum on a spacelike hypersurface S extending from the event
horizon to infinity is

L̃ = −
∫
S

dV3(Tαβ + Jα Aβ)YβNα , (9.20)

where the minus sign accounts for the timelike unit normal.
Consider now two such spacelike hypersurfaces, S0 and S1, with S1

to the future of S0 (Fig. 9.1). We assume reflecting boundary conditions
in the Kerr-Newman-AdS case, so that all fluxes vanish at infinity. The
energy absorbed by the BH across the subset H of H + between S0

and S1 is then

∆M =
∫
S0

dV3(Tαβ + Jα Aβ)KβNα−
∫
S1

dV3(Tαβ + Jα Aβ)KβNα , (9.21)

whereas the angular momentum absorbed by the BH across H is

∆L = −
∫
S0

dV3(Tαβ + Jα Aβ)YβNα +
∫

S1

dV3(Tαβ + Jβ Aα)YβNα . (9.22)

Recall that the angular velocity of the black hole horizon is

ΩH =
aΞ

r2
+ + a2

, (9.23)

where r+ is the largest root of ∆r = 0. This means that the (future-
pointing) Killing generator of H + is

Zα = Xα + ΩHYα = Kα + ΩYα , (9.24)

where

Ω = ΩH −Ω∞ (9.25)
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is precisely the thermodynamic angular velocity, i. e., the angular
velocity that occurs in the first law for Kerr-Newman-AdS BH [277].
Therefore, we have

∆M−Ω∆L =
∫
S′

dV3(Tαβ + Jα Aβ)ZβNα−
∫
S1

dV3(Tαβ + Jα Aβ)ZβNα .

(9.26)

Because Zα is also a Killing vector field,

∇α(TαβZβ + Jα AβZβ) = 0 , (9.27)

and so the divergence theorem, applied to the region bounded by S0,
S1 and H, yields

∆M−Ω∆L =
∫

H
dV3(Tαβ + Jα Aβ)ZβZα (9.28)

(we use −Zα as the null normal 3 on H). Since on H + one has

AαZβ = − er+
r2
+ + a2

= −Φ, (9.29)

where Φ is the horizon’s electric potential, then we have∫
H

dV3 Jα AβZβZα = −Φ
∫

H
dV3 JαZα . (9.30)

Using again the divergence theorem, this time together with the charge
conservation equation (9.12), we obtain∫

H
dV3 Jα AβZβZα = −Φ

∫
S0

dV3 JαNα + Φ
∫
S1

dV3 JαNα . (9.31)

Now, the total charge on a spacelike hypersurface S extending from
the event horizon to infinity is

Q̃ = −
∫

S
dV3 JαNα , (9.32)

where the minus sign accounts for the timelike unit normal. Therefore,
denoting by ∆Q the electric charge absorbed by the BH across H, we
have ∫

H
dV3 Jα AβZβZα = Φ∆Q, (9.33)

and so equation (9.28) can then be written as

∆M−Ω∆L−Φ∆Q =
∫

H
dV3(TαβZαZβ) . (9.34)

Since Z is null on H, we have the following test field version of the
second law of BH thermodynamics:

3 Recall that the divergence theorem on a Lorentzian manifold requires that the unit
normal is outward-pointing when spacelike and inward-pointing when timelike.
When the normal is null it is non-unique, and the volume element depends on the
choice of normal; it should be past-pointing in the future null subset of the boundary,
and future-pointing in the past null subset of the boundary.
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second law for test fields If the energy-momentum tensor Tαβ

corresponding to any collection of test fields propagating on a Kerr-Newman
or Kerr-Newman-AdS BH background satisfies the null energy condition at
the event horizon and appropriate boundary conditions at infinity, then the
energy ∆M, angular momentum ∆L and electric charge ∆Q absorbed by the
BH satisfy

∆M ≥ Ω∆L + Φ∆Q . (9.35)

It should be stressed that (9.35) is valid for extremal BHs and it
does not assume cosmic censorship, i. e., it does not assume that
the Kerr-Newman-AdS metric with physical mass M + ∆M, angular
momentum L + ∆L and electric charge is Q + ∆Q represents a BH

rather than a naked singularity. Note that this scenario where the test
fields interact with the geometry and change the values of the black
hole charges is not in contradiction with the test field approximation,
since the change is supposed to be infinitesimal.

9.2 proof of the main result

The physical mass of a Kerr-Newman or Kerr-Newman-AdS BH, given
in (9.7), is completely determined by the BH’s event horizon area A,
angular momentum L and electric charge Q through a Smarr formula

M = M(A, L, Q) . (9.36)

From the first law of BH thermodynamics we know that this function
satisfies

dM =
κ

8π
dA + ΩdL + ΦdQ , (9.37)

where κ is the surface gravity of the event horizon [267, 275, 277]. The
condition for the BH to be extremal is

κ = 0⇔ ∂M
∂A

(A, L, Q) = 0 , (9.38)

which can be solved to yield the area of an extremal BH as a function
of its angular momentum and charge,

A = Aext(L, Q) . (9.39)

The mass of an extremal BH with angular momentum L and electric
charge Q is then

Mext(L, Q) = M(Aext(L, Q), L, Q) . (9.40)
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A Kerr-Newman-AdS metric characterized by M, L and Q will rep-
resent a black hole if M ≥ Mext(L, Q), and a naked singularity
if M < Mext(L, Q). We have

dMext =

(
∂M
∂A

∂Aext

∂L
+

∂M
∂L

)
dL +

(
∂M
∂A

∂Aext

∂Q
+

∂M
∂Q

)
dQ

=

(
κ

8π

∂Aext

∂L
+ Ω

)
dL +

(
κ

8π

∂Aext

∂Q
+ Φ

)
dQ

= ΩdL + ΦdQ , (9.41)

where all quantities are evaluated at the extremal BH.
Consider now an extremal BH with angular momentum L, electric

charge Q and mass M = Mext(L, Q). After interacting with the test
fields, its angular momentum is L + ∆L, its electric charge is Q + ∆Q
and its mass is, using (9.35) and (9.41),

M + ∆M ≥ M + Ω∆L + Φ∆Q

= Mext(L, Q) + ∆Mext

= Mext(L + ∆L, Q + ∆Q) . (9.42)

In other words, the final mass is above the mass of an extremal BH

with the same angular momentum and electric charge, meaning that
the final metric does not represent a naked singularity, i. e., the BH has
not been destroyed.

Thus, we have just proved the following result:

test fields cannot destroy extremal kerr-newman bhs

Test fields satisfying the null energy condition at the event horizon and
appropriate boundary conditions at infinity cannot destroy extremal Kerr-
Newman or Kerr-Newman-AdS BHs. More precisely, if an extremal BH

is characterized by the physical quantities (M, L, Q), and absorbs energy,
angular momentum and electric charge (∆M, ∆L, ∆Q) by interacting with
the test fields, then the metric corresponding to the physical quantities (M +

∆M, L + ∆L, Q + ∆Q) represents either a subextremal or an extremal BH.
Our proof depends only on certain generic features of the Kerr-

Newman or Kerr-Newman-AdS metric and can therefore be adapted
to other BHs. In fact, the above result can be generalized as follows.

test fields cannot destroy extremal bhs Consider a family
of charged and spinning BHs in some metric theory of gravity, with suitable
asymptotic regions, and test fields propagating in these backgrounds, such
that:

1. There exists an asymptotically timelike Killing vector field Kα, de-
termining the BH’s physical mass, and angular Killing vector fields
(Yi)

α, yielding the BH’s angular momenta, such that the event horizon’s
Killing generator is

Z = K + ∑
i

ΩiYi , (9.43)
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where Ωi are the thermodynamic angular velocities (that is, the angular
velocities that occur in the first law).

2. There exists a Smarr formula relating the BH’s physical mass M, its
entropy S, its angular momenta Li and its electric charge Q,

M = M(S, Li, Q) , (9.44)

yielding the first law of BH thermodynamics,

dM = TdS + ∑
i

ΩidLi + ΦdQ , (9.45)

where T is the BH’s temperature and Φ is the event horizon’s electric
potential.

3. Extremal black holes (that is, black holes with T = 0) are charac-
terized by M = Mext(Li, Q), and subextremal black holes by M >

Mext(Li, Q).

4. The test fields satisfy the null energy condition at the event horizon
and appropriate boundary conditions at infinity.

Then the test fields cannot destroy extremal black holes. More precisely, if
an extremal BH is characterized by the physical quantities (M, Li, Q), and
absorbs energy, angular momenta and electric charge (∆M, ∆Li, ∆Q) by
interacting with the test fields, then the metric corresponding to the physical
quantities (M + ∆M, Li + ∆Li, Q + ∆Q) represents either a subextremal or
an extremal BH.

It is easy to check that this result applies to BHs in higher dimen-
sions [279], including the case of a negative cosmological constant [277].
It can also be used for other BHs, like accelerated BHs with coni-
cal singularities [280] or BHs in alternative theories of gravity [281].
There is, however, no a priori reason why it should apply to arbitrary
parametrized deformations of the Kerr metric [282]. It does not apply
directly to the case of a positive cosmological constant, because the first
hypothesis is not strictly satisfied. However, in the following section
we determine the timelike Killing vector field that gives the correct
definition of energy for test fields propagating in a Kerr-Newman-de
Sitter spacetime, and use this to extend the above result to extremal
Kerr-Newman-de Sitter BHs.

9.3 energy in positive cosmological constant space-
times

In all the gedanken experiments to destroy a BH (described in the
beginning of this chapter) one must be very careful with what is
meant by the energy of the test matter, and how it relates to the
increase in the BH mass. In fact, from a logical point of view, these
are independent concepts: the energy of the test matter is computed
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with respect to a given timelike Killing vector field, whereas the BH

mass is a parameter in a BH solution of the Einstein-Maxwell field
equations. In the asymptotic flat case, the two can be related via the
ADM mass: indeed, the ADM mass of a spacetime containing an
isolated BH is precisely the BH mass, whereas the energy of test matter
located in the asymptotically flat region (measured with respect to
the unique timelike Killing vector field) simply adds to the ADM
mass; since this energy is conserved as the test matter moves into the
black hole spacetime, the BH mass should increase by precisely that
amount when the test matter is absorbed. In the non-asymptotically
flat cases, however, there is no ADM mass, and there may exist many
or no timelike Killing vector fields in the asymptotic region. In the
asymptotically anti-de Sitter (AdS) case there are notions of total mass
available [283–285], and these were used in [70], together with the
results in [276], to determine which of the infinitely many stationary
Killing fields should be used to compute the energy of the test matter. 4

Notice that this choice is critical, and in fact incorrect choices have
lead to erroneous claims of violations of weak cosmic censorship in
the literature, as pointed out in [278]; such claims have been disproved
by [256]. In the asymptotically de Sitter (dS) case, on the other hand,
there exists neither a generally accepted notion of total mass 5 (see
however [290, 291]) nor a Killing vector field which is timelike in the
asymptotic region, and so it is not clear how one should compute the
energy of the test matter falling into the BH. The main purpose of this
section is to address this issue, and, as a consequence, to extend the
result of the last section to asymptotically dS BHs. As an added bonus,
we will confirm that the choice of timelike Killing vector field used in
the last section for the asymptotically AdS case is indeed correct.

9.3.1 Kerr-(A)dS

Here we construct a metric that interpolates between two Kerr-(A)dS
regions of different (physical) masses M1 and M2 by letting the mass
parameter become a function of the radial coordinate r. We then
determine, from the Einstein equations, the energy-momentum tensor
of the (unphysical) field generating this metric, and use it to compute
the corresponding energy with respect to a given timelike Killing
vector field. This energy is seen to be precisely the difference M2−M1

4 This Killing vector field turns out to be the one corresponding to the zero angular
momentum observers at infinity; it is singled out by the property that its charge,
as defined in [276], is precisely the BH’s physical mass. Note that in this case the
connection between the test matter energy and the variation in the BH mass is not
as clearcut as in the asymptotically flat case; moreover, it does not extend to the
asymptotically de Sitter case, where the construction in [276] does not apply.

5 For example, certain scalar curvature rigidity results in Riemannian geometry directly
inspired by the positive mass theorem, which hold both for asymptotically flat [286]
and asymptotically hyperbolic (AdS) manifolds [287, 288], are false when transposed
to the positive curvature (dS) setting [289].
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between the two physical masses for a particular choice of Killing
vector field.

We consider the stationary spacetime constructed as follows (Fig-
ure 9.2): for r ≤ r1 it coincides with a Kerr-(A)dS solution with mass
parameter m1; for r ≥ r2 > r1 it corresponds to a Kerr-(A)dS solution
with mass parameter m2 > m1; and for r1 < r < r2 it is the solution
of the Einstein equations obtained by taking m = m(r) (and q = 0) in
(9.1), corresponding to some (unphysical) field which generates the
energy-momentum tensor Tαβ dictated by the Einstein equations. We
assume that r1 is larger than the radius of the event horizon corre-
sponding to the mass parameter m1, and that r2 is smaller than the
radius of the cosmological horizon corresponding to the mass parame-
ter m2 in the Kerr-dS case. In other words, we take the metric (9.1) with
m = m(r) satisfying m(r) ≡ m1 for r ≤ r1, m(r) ≡ m2 for r ≥ r2, and
∆r(r) > 0 for r1 ≤ r ≤ r2; to avoid thin shells, we assume that m(r) is
at least C1, implying in particular that m′(r1) = m′(r2) = 0. For this
spacetime it is fairly obvious what the energy of the field should be:

since the physical masses, M1 =
m1

Ξ2 and M2 =
m2

Ξ2 , correspond to the
total energy contained in the regions r < r1 and r < r2, respectively,
the energy of the field should be E = ∆M ≡ M2 −M1. We would like
to calculate this energy as an integral on a given spacelike hypersur-
face S extending from r = r1 to r = r2. In fact, it turns out that this is
possible in Kerr-AdS, where it is known that (at least for test fields)

Ẽ =
∫
S

dV3TµνKµNν , (9.46)

with Nα the future-pointing unit normal to S , and Kα the Killing vector
field

Kα = Xα − a
l2 Yα . (9.47)

It is interesting to note that (as mentioned in the previous section)
Kα has zero rotation with respect to the zero-angular momentum
observers at infinity. There are some works in the literature (e. g., [292,
293]) where an expression analogous to Eq. (9.46) is used to calculate
the energy of test fields propagating on Kerr-dS, but, this time, using
the Killing vector field

Kα = Xα +
a
l2 Yα . (9.48)

However, to the best of my knowledge, in the literature there is neither
a rigorous proof nor a clear physical motivation for the use of this
definition of energy. In what follows we will show that, in our particu-
lar setup, the definition of Eq. (9.46) gives ∆M in both asymptotically
AdS and dS spacetimes, if one uses the corresponding Killing vector
field Kα, defined by either (9.47) or (9.48), respectively.
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r1

r2

m = m1 m = m2m = m(r)

Figure 9.2: Schematic diagram for the spacetime interpolating between Kerr-
Newman-(A)dS metrics with different masses.

Since the metric gαβ is known (by construction), the energy-momentum
tensor Tαβ of the field is obtained from the Einstein equations as

Tαβ =
1

8π
(Gαβ + Λgαβ) , (9.49)

where Gαβ is the Einstein tensor. Computing Gαβ explicitly, and sub-
stituting the last expression in Eq. (9.46), we obtain

Ẽ =
∫ r2

r1

[
A(r)m′(r) + B(r)m′′(r)

]
dr , (9.50)

where we have chosen a hypersurface S of constant t extending from r1

to r2, and performed the integrations in θ and ϕ. The radial functionsA
and B are given by

A = ∓ l2

a(a2 ± l2)2

[
2a(r2 ∓ l2)− arctan

( a
r

)
r
(
a2 ∓ l2 + 2r2)] ,

(9.51)

B = ∓ l2

2a(a2 ± l2)2

[
ar
(
r2 ∓ l2)− arctan

( a
r

) (
a2 + r2) (r2 ∓ l2)] .

(9.52)

Integrating Eq. (9.50) by parts, we obtain

Ẽ =
∫ r2

r1

[
B′′ −A′

]
m dr +

[(
A−B′

)
m + Bm′

]r2

r1

. (9.53)

Using B′′(r) = A′(r), m′(r2) = m′(r1) = 0, and A(r)− B′(r) =
1

Ξ2 ,
the last expression becomes

Ẽ =
m2 −m1

Ξ2 = M2 −M1 ≡ ∆M , (9.54)



9.3 energy in positive cosmological constant spacetimes 139

as we wanted to show.
We can also calculate the field angular momentum L as an integral

on a given spacelike hypersurface S extending from r = r1 to r = r2.
This can be done in Kerr-AdS (at least for test fields), where it is
known that

L̃ = −
∫
S

dV3TµνYµNν (9.55)

(note the minus sign in the integral, since we are using the future-
pointing unit timelike normal but now the Killing vector field is space-
like). In our particular setup, we know what the angular momentum
of the field should be; since the physical angular momenta, L1 = aM1

and L2 = aM2, correspond to the total angular momentum contained
in the regions r < r1 and r < r2, respectively, the angular momentum
of the field should be L̃ = ∆L ≡ L2 − L1. We will now show that, in
our setup, the definition of Eq. (9.55) does indeed give ∆L in both
asymptotically AdS and dS spacetimes. Computing Gαβ explicitly, and
substituting Eq. (9.49) in the definition of Eq. (9.55), we obtain

L̃ =
∫ r2

r1

[
C(r)m′(r) +D(r)m′′(r)

]
dr , (9.56)

where again we have chosen a hypersurface S of constant t extending
from r1 to r2, and performed the integrations in θ and ϕ. The radial
functions C and D are given by

C = 2l4 a2 + r2

a2(a2 ± l2)2

[
a− r arctan

( a
r

)]
, (9.57)

D = l4 a2 + r2

2a2(a2 ± l2)2

[
ar− arctan

( a
r

) (
a2 + r2)] . (9.58)

Integrating Eq. (9.56) by parts, we obtain

L̃ =
∫ r2

r1

[
D′′ − C ′

]
m dr +

[(
C −D′

)
m +Dm′

]r2

r1

. (9.59)

Using D′′(r) = C ′(r), m′(r2) = m′(r1) = 0, and C(r)−D′(r) =
a

Ξ2 ,
the last expression becomes

L̃ = a
m2 −m1

Ξ2 = a(M2 −M1) ≡ ∆L , (9.60)

as we wanted to show. As a consequence, the energy of the unphysical
field computed by using any timelike Killing vector field of the form

Kα + ωYα = Xα +
(

ω± a
l2

)
Yα (9.61)

is

Ẽ + ωL̃ = (1 + ωa)∆M , (9.62)

strongly suggesting that Kα (that is, ω = 0) is in fact the correct choice.
We will have more to say about the uniqueness of K in Subsection 9.3.4.
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9.3.2 Kerr-Newman-(A)dS

Here we construct a metric that interpolates between two Kerr-Newman-
(A)dS regions of different (physical) masses M1 and M2 and (physical)
charges Q1 and Q2 by letting both the mass and the charge parame-
ters become functions of the radial coordinate r. We then determine,
from the Einstein equations, the energy-momentum tensor of the
(unphysical) field generating this metric, and use it to compute the
corresponding energy with respect to a given timelike Killing vector
field. This energy, appropriately corrected by the electromagnetic field
energy, is seen to be precisely the difference M2−M1 between the two
physical masses for the particular choice of Killing vector field given by
Eqs. (9.47) and (9.48), thus generalizing the results in Subsection 9.3.1.

Let us then take the charge parameter q(r) to be changing in the
region r1 < r < r2, with q(r) ≡ q1 for r ≤ r1 and q(r) ≡ q2 for r ≥ r2.
Moreover, assume that q′(r1) = q′(r2) = 0, and again that ∆r(r) >

0 for r1 ≤ r ≤ r2. In this case we have an electromagnetic field with
energy-momentum tensor Tαβ

EM, and it is not obvious what the mass
contained on a spacelike hypersurface S extending from r1 to r2

should be. In the asymptotically flat case, it is well known that the
physical mass accounts also for the electromagnetic energy in the
whole spacetime. By analogy, the energy contained on a spacelike
hypersurface S extending from r1 to r2 should then be

Ẽ =

(
M2 −

∫
r>r2

Tµν
EM,2KνNµdV3

)
−
(

M1 −
∫

r>r1

Tµν
EM,1KνNµdV3

)
,

(9.63)

where the first term is the mass contained in r < r2, and the second
term is the mass in r < r1. Here, Tαβ

EM,1 and Tαβ
EM,2 are the energy-

momentum tensors of the electromagnetic field in a Kerr-Newman-
(A)dS spacetime with mass parameters m1 and m2, and charge param-
eters q1 and q2, respectively. Note that in (9.63) we have already made
use of the Killing vector field Kα to calculate the electromagnetic en-
ergy. On the other hand, the energy contained on S should be directly

Ẽ =
∫
S

(
Tµν + Tµν

EM

)
KµNνdV3 , (9.64)

where Tαβ
EM is the energy-momentum tensor of the electromagnetic

field in the Kerr-Newman-(A)dS spacetime with varying mass param-
eter m(r) and varying charge parameter q(r). Thus, if our definition
of energy is to be consistent, we must have

∆M =
∫
S

(
Tµν + Tµν

EM

)
KµNνdV3

+
∫

r>r2

Tµν
EM,2KνNµdV3 −

∫
r>r1

Tµν
EM,1KνNµdV3 . (9.65)
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Again, since the metric gαβ is known, the Einstein equations imply
that

Tαβ + Tαβ
EM =

1
8π

(
Gαβ + Λgαβ

)
. (9.66)

Computing Gαβ explicitly, and using Eq. (9.66), allows us to write the
first integral in Eq. (9.65) as∫
S

(
Tµν + Tµν

EM

)
KµNνdV3

=
∫ r2

r1

dr
[
A(r)m′ + B(r)m′′ + E(r)q2 − rE(r)(q2)′ − B(r)

2r
(q2)′′

]
,

(9.67)

where again we have chosen an hypersurface S of constant t extending
from r1 to r2, and performed the integrations in θ and ϕ. The radial
functions A and B are defined as in the last subsection, and

E = ∓ l2

2ar3(a2 ± l2)2

[
ar
(
r2 ∓ l2)− arctan

( a
r

) (
r4 ± a2l2

)]
. (9.68)

Integrating by parts, and using the results of the last section, we have∫
S

(
Tµν + Tµν

EM

)
KµNνdV3 = ∆M

+
∫ r2

r1

dr
[
E + (rE)′ −

( B
2r

)′′]
q2 +

[([ B
2r

]′
− rE

)
q2 − B

2r
(q2)′

]r2

r1

.

(9.69)

Using q′(r1) = q′(r2) = 0, and

E =

[( B
2r

)′
− rE

]′
, (9.70)

we obtain∫
S

(
Tµν + Tµν

EM

)
KµNνdV3 = ∆M +

[( [ B
2r

]′
− rE

)
q2
]r2

r1

. (9.71)

Furthermore, the last two terms of Eq. (9.65) are∫
r>r2

Tµν
EM,2KνNµdV3 −

∫
r>r1

Tµν
EM,1KνNµdV3

= (q2)
2
∫ ∞

r2

dr E(r)− (q1)
2
∫ ∞

r1

dr E(r) , (9.72)

where we used Eq. (9.67), with m ≡ m2 (m ≡ m1), q ≡ q2 (q ≡ q1) in
the first (second) term, but integrating on a spacelike hypersurface of
constant t with r > r2 (r > r1). In the Kerr-Newman-dS case, a hyper-
surface of constant t is not spacelike beyond the cosmological horizon;
nevertheless, since we are integrating a divergenceless quantity, any
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Figure 9.3: Penrose diagram illustrating the deformation of an unbounded
spacelike hypersurface Σ into the union of two hypersurfaces of
constant t, with the corresponding unit normals depicted.

unbounded spacelike hypersurface can be deformed into the union of
a spacelike hypersurface of constant t within the cosmological horizon
and a timelike hypersurface of constant t beyond the cosmological
horizon (see Figure 9.3).

Using (9.70), Eq. (9.72) becomes∫
r>r2

Tµν
EM,2KνNµdV3 −

∫
r>r1

Tµν
EM,1KνNµdV3

= (q2)
2
[([ B

2r

]′
− rE

)]∞

r2

− (q1)
2
[([ B

2r

]′
− rE

)]∞

r1

= −
[([ B

2r

]′
− rE

)
q2
]r2

r1

, (9.73)

where in the last equality we used

lim
r→∞

([B(r)
2r

]′
− rE(r)

)
= 0 .

Putting everything together, we finally obtain∫
S

(
Tµν + Tµν

EM

)
KµNνdV3 +

∫
r>r2

Tµν
EM,2KνNµdV3

−
∫

r>r1

Tµν
EM,1KνNµdV3 = ∆M , (9.74)

showing that our definition of energy is indeed consistent.
In the same way, the angular momentum contained on S should be

L̃ =

(
L2 +

∫
r>r2

Tµν
EM,2YνNµdV3

)
−
(

L1 +
∫

r>r1

Tµν
EM,1YνNµdV3

)
,

(9.75)

where the first term is the angular momentum contained in r < r2, and
the second term is the angular momentum contained in r < r1 (note
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the minus sign in the integral, since we are using the future-pointing
unit timelike normal but now the Killing vector field is spacelike). On
the other hand, the angular momentum contained on S should be
directly

L̃ = −
∫
S

(
Tµν + Tµν

EM

)
YµNνdV3 . (9.76)

Thus, if this definition of angular momentum is to be consistent, the
relation

∆L = −
∫
S

(
Tµν + Tµν

EM

)
YµNνdV3

−
∫

r>r2

Tµν
EM,2YνNµdV3 +

∫
r>r1

Tµν
EM,1YνNµdV3 (9.77)

must hold. Computing Gαβ explicitly, and using Eq. (9.66), allows us
to write the first integral in Eq. (9.77) as

−
∫
S

(
Tµν + Tµν

EM

)
YµNνdV3

=
∫ r2

r1

dr
[
C(r)m′ +D(r)m′′ +F (r)q2 − rF (r)(q2)′ − D(r)

2r
(q2)′′

]
,

(9.78)

where again we have chosen a hypersurface S of constant t extending
from r1 to r2, and performed the integrations in θ and ϕ. The radial
functions C and D are defined as in the last subsection, and

F = l4 a2 + r2

2a2r3(a2 ± l2)2

[
ar + arctan

( a
r

) (
a2 − r2)] . (9.79)

Integrating by parts, and using the results in the last subsection, we
have

−
∫
S

(
Tµν + Tµν

EM

)
YµNνdV3 = ∆L

+
∫ r2

r1

dr
[
F + (rF )′ −

(D
2r

)′′]
q2 +

[([D
2r

]′
− rF

)
q2 − D

2r
(q2)′

]r2

r1

.

(9.80)

Using q′(r1) = q′(r2) = 0, and

F =

[(D
2r

)′
− rF

]′
, (9.81)

we have

−
∫
S

(
Tµν + Tµν

EM

)
YµNνdV3 = ∆L +

[([D
2r

]′
− rF

)
q2
]r2

r1

. (9.82)

Moreover, the last two integrals of Eq. (9.77) are

−
∫

r>r2

Tµν
EM,2YνNµdV3 +

∫
r>r1

Tµν
EM,1YνNµdV3

= (q2)
2
∫ ∞

r2

drF (r)− (q1)
2
∫ ∞

r1

drF (r) , (9.83)
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where we have used Eq. (9.78), with m ≡ m2 (m ≡ m1), q ≡ q2 (q ≡ q1)
in the first (second) term, but integrating on a spacelike hypersurface
of constant t with r > r2 (r > r1). Using Eq. (9.81), the last expression
becomes

−
∫

r>r2

Tµν
EM,2YνNµdV3 +

∫
r>r1

Tµν
EM,1YνNµdV3

= (q2)
2
[([D

2r

]′
− rF

)]∞

r2

− (q1)
2
[([D

2r

]′
− rF

)]∞

r1

= −
[([D

2r

]′
− rF

)
q2
]r2

r1

, (9.84)

where, in the last equality, we used

lim
r→∞

([D(r)
2r

]′
− rF (r)

)
= 0 .

Putting everything together, we finally obtain

−
∫
S

(
Tµν + Tµν

EM

)
YµNνdV3 −

∫
r>r2

Tµν
EM,2YνNµdV3

+
∫

r>r1

Tµν
EM,1YνNµdV3 = ∆L , (9.85)

showing that our definition of angular momentum is indeed consistent.
As a consequence, a timelike Killing vector field of the form

Kα + ωYα = Xα +
(

ω± a
l2

)
Yα (9.86)

will again only satisfy Eq. (9.74) if ωa = 0, strongly suggesting that
Kα (that is, ω = 0) is in fact the correct choice. The uniqueness of Kα

will be further discussed in Subsection 9.3.4.

9.3.3 Linearized calculation

In the previous subsections we showed that there exists a timelike
Killing vector field Kα, given by Eqs. (9.47) and (9.48), such that the
definitions in Eqs. (9.46) and (9.64) give the correct total energy Ẽ
contained in the (unphysical) field that is generated by allowing the
mass and charge parameters to become functions of the radial coor-
dinate. This energy is related to the variation ∆M = M2 −M1 of the
physical mass by Eqs. (9.54) and (9.74). However, the Killing vector
field Kα is defined on a unphysical stationary spacetime that coincides
with Kerr-Newman-(A)dS spacetimes of mass and charge parame-
ters m1 and q1 for r ≤ r1, and mass and charge parameters m2 and q2

for r ≥ r2, whereas our aim is to identify the timelike Killing vector
field that gives the correct definition of energy of test fields on a fixed
Kerr-Newman-(A)dS background.
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To achieve this goal, we consider a solution of the linearized Einstein-
Maxwell equations, possibly coupled to matter, on a Kerr-Newman-
(A)dS background of mass and charge parameters m1 and q1, vanishing
for r ≤ r1 and coinciding with the linearized Kerr-Newman-(A)dS so-
lution of mass and charge parameters m2 = m1 +∆m and q2 = q1 +∆q
for r ≥ r2 (and the same spin parameter a); if the energy com-
puted from the linearized energy-momentum tensor with respect
to the Killing vector field Kα (which is now defined on the fixed
Kerr-Newman-(A)dS background of mass and charge parameters m1

and q1) is ∆M = ∆m/Ξ2 then Kα does indeed give the correct def-
inition of energy. Note that one such linearized solution, albeit for
unphysical matter, can be obtained by linearizing the spacetime con-
structed in the previous sections; as we have shown, the Killing vector
field Kα does give the correct energy in this case. A simple appli-
cation of the divergence theorem then shows that Kα will give the
same energy for any other linearized solution, including solutions
corresponding to physical matter fields. Indeed, if δgαβ(t, r, θ, ϕ) is an
arbitrary linearized metric, δg0

αβ(r, θ) is the linearization of the metric
constructed in the previous subsections, and ρ(t) is a smooth function
satisfying ρ(t) ≡ 1 for t ≤ 0 and ρ(t) ≡ 0 for t ≥ 1, consider the
linearized metric ρ(t − t0)δgαβ + (1− ρ(t − t0))δg0

αβ. The linearized
energy-momentum tensor corresponding to this metric has zero di-
vergence in the Kerr-Newman-(A)dS background, coincides with the
energy-momentum tensor of the arbitrary linearized metric for t = t0,
and with the energy-momentum tensor of δg0

αβ for t = t0 + 1. More-
over, it vanishes for r ≤ r1 and it is time-independent for r ≥ r2 (so in
particular does not depend on the choice of δgαβ in those regions). Ap-

plying the divergence theorem to the vector field Jα =
(
Tαβ + Tαβ

EM

)
Kβ

in the hollow cylinder defined by r1 ≤ r ≤ r2 and t0 ≤ t ≤ t0 + 1 (see
Fig. 9.4), we obtain∫

r1<r<r2

(
Tµν + Tµν

EM

)
KµNνdV3 −

∫
r1<r<r2

(
Tµν

0 + Tµν
EM,0

)
KµNνdV3

−
∫

r=r1

(
Tµν + Tµν

EM

)
KµNνdV3 +

∫
r=r2

(
Tµν + Tµν

EM

)
KµNνdV3 = 0 ,

(9.87)

where the unit normal Nα is future-pointing when timelike and
outward-pointing when spacelike, and the energy-momentum ten-
sor Tαβ

0 + Tαβ
EM,0 refers to δg0

αβ. Since the last two integrals do not
depend on the choice of δgαβ, and their sum clearly vanishes when
one chooses δgαβ = δg0

αβ (because the first two integrals cancel in that
case), it always vanishes; therefore we obtain∫

r1<r<r2

(
Tµν + Tµν

EM

)
KµNνdV3 =

∫
r1<r<r2

(
Tµν

0 + Tµν
EM,0

)
KµNνdV3 ,

(9.88)
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r = r1 r = r2

t = t0

t = t0 + 1

Figure 9.4: Domain for the application of the divergence theorem.

showing tha Kα does indeed yield the correct energy for any linearized
solution.

9.3.4 Uniqueness of Kα

We have now identified a timelike Killing vector field Kα in the Kerr-
Newman-(A)dS spacetime, given by Eqs. (9.47) and (9.48), such that
the definitions in Eqs. (9.46) and (9.64) give the correct total energy Ẽ
contained in linearized (test) fields. This energy is related to the
variation ∆M = M2−M1 of the physical mass by Eqs. (9.54) and (9.74).
Similarly, the definitions in Eqs. (9.55) and (9.76) give the correct
total angular momentum L̃ in the test fields, which is related to
the variation ∆L = a∆M of the angular momentum by Eqs. (9.60)
and (9.85). However, because the variations of energy and angular
momentum are related through the spin parameter a, which we did
not vary, the possibility that Kα is not unique remains.

To understand this, we note that any other future-pointing timelike
Killing vector field can be written in the form

K̃α = γ (Kα + εYα) , (9.89)

with γ > 0 and ε ∈ R appropriately chosen. Combining Eqs. (9.74)
and (9.85), we see that K̃α will also give the correct total energy Ẽ
contained in the unphysical field if and only if

γ∆M− γε∆L = ∆M⇔ γ(1− εa) = 1 , (9.90)

that is, if and only if

K̃α =
1

1− aε(a)
[Kα + ε(a)Yα] , (9.91)

where we made it explicit that ε is an unknown function of a. To show
that ε(a) must be identically zero, and therefore that Kα is unique, we
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allow the spin parameter a to become a function of r in the region r1 ≤
r ≤ r2, while keeping the mass and charge parameters fixed. To
perform the linearization, we assume that a(r) = a0 + δa(r) varies
infinitesimally between a(r1) = a0 and a(r2) = a0 + ∆a (i. e., |δa(r)| �
a0). Since in this case the calculations are much more involved than in
the previous subsections, we assume that all quantities are analytic
functions of a and expand them as power series of a0 (and to linear
order in δa(r)). In particular, we have

ε(a) =
+∞

∑
n=0

εnan . (9.92)

In what follows we will show that ε0 = ε1 = 0. Due to the com-
plexity of the calculations, we have not computed the higher order
coefficients εn with n ≥ 2, but we expect them to also vanish.

To further simplify calculations we consider only the Kerr-(A)dS
case q1 = q2 = 0. Using the definition of Eq. (9.46) with the Killing
vector field K̃(a0), and applying the same procedure of the previous
subsections, we obtain the radial integral

Ẽ =
∫
S

Tµν(K̃(a0))µNνdV3 =
∫ r2

r1

dr[G(r)δa′(r)+H(r)δa′′(r)] , (9.93)

with the radial functions

G = − 1
15l4r3

[(
10ε0l4mr3 ∓ 10ε0l2r6

)
+a0

(
10ε2

0l4mr3 ∓ 10ε2
0l2r6 + 10ε1l4mr3

∓10ε1l2r6 + 20l4m2 + 10l4mr± 75l2mr3 ∓ 40l2r4 + 40r6
)

+a2
0

(
20ε0ε1l4mr3 ∓ 20ε0ε1l2r6 + 4ε0l4m2

+2ε0l4mr∓ 5ε0l2mr3 ∓ 50ε0l2r4 + 52ε0r6
)
+O(a3

0)
]

,

(9.94)

H =
1

30l4r2

[(
10ε0l4mr3 ± 5ε0l2r6

)
+a0

(
10ε2

0l4mr3 ± 5ε2
0l2r6 + 10ε1l4mr3 ± 5ε1l2r6

+20l4m2 + 20l4mr− 20l4r2 ∓ 30l2mr3 ± 40l2r4 − 20r6
)

+a2
0

(
20ε0ε1l4mr3 ± 10ε0ε1l2r6 + 4ε0l4m2 + 4ε0l4mr

−20ε0l4r2 ∓ 50ε0l2mr3 ± 50ε0l2r4 − 26ε0r6
)
+O(a3

0)
]

.

(9.95)

Integrating Eq. (9.93) by parts, we obtain

Ẽ =
∫ r2

r1

dr
(
H′′ − G ′

)
δa +

[(
G −H′

)
δa +Hδa′

]r2
r1

. (9.96)
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Using H′′(r) = G ′(r), δa′(r2) = δa′(r1) = 0, and

G −H′ = −ε0m− a0m
(

ε2
0 + ε1 ±

4
l2

)
− 2a2

0ε0m
(

ε1 ∓
1
l2

)
+O(a3

0) ,

we get

Ẽ = −
[

ε0m + a0m
(

ε2
0 + ε1 ±

4
l2

)
+ 2a2

0ε0m
(

ε1 ∓
1
l2

)]
∆a+O(a3

0) .

(9.97)

On the other hand, it is easily seen from (9.7) that

∆M = ∓4a0m
l2 ∆a +O(a3

0) . (9.98)

Finally, imposing Ẽ = ∆M as an equality of power series in a0 we
obtain ε0 = ε1 = 0.

9.3.5 Extension of the main result

In the previous subsections we have shown that the timelike Killing
vector field Kα given by Eq. (9.48) is the correct choice to compute
the energy of a test field in a Kerr-Newman-de Sitter background, at
least in what concerns its interaction with the BH. On the other hand,
it is well known that the null generator of the event horizon is Zα =

Kα + ΩYα, where Ω is the thermodynamic angular velocity, that is,
the angular velocity that occurs in the first law (see for instance [294,
295]). Therefore, we can apply the main result of the previous section
to conclude that test fields cannot destroy extremal Kerr-Newman-dS
BHs. 6

9.4 discussion

In this chapter we proved that extremal Kerr-Newman or Kerr-Newman-
AdS BHs cannot be destroyed by interacting with (possibly charged)
test fields satisfying the null energy condition at the event horizon
and appropriate boundary conditions at infinity. This includes as par-
ticular cases all previous results of this kind obtained for scalar and
electromagnetic test fields [251–254]. The corresponding results for
test particles [248–250] can also be considered particular cases, since
particles can be seen as singular limits of continuous media [272, 273].
It is interesting to note that if the null energy condition is not satisfied
then the weak cosmic censorship conjecture may indeed be violated,
as shown in Refs. [296, 297] for Dirac fields.

6 The statement of that result requires Kα to be asymptotically timelike; however, it is
clear from the proof that all that is in fact needed is that Kα determines the correct
notion of energy.
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We have also shown that the timelike Killing vector field Kα given
by Eq. (9.48) gives the correct definition of energy for test fields prop-
agating in the Kerr-Newman-dS spacetime. Additionally, we have
confirmed that the timelike Killing vector field Kα given by Eq. (9.47)
gives the correct definition of energy for test fields propagating in
the Kerr-Newman-AdS spacetime. Finally, we used this definition
of energy to extend our main result to extremal Kerr-Newman-dS
BHs. The technique employed in the last subsection, namely allowing
parameters in the metric to become functions in order to interpolate
between BH spacetimes with different physical masses, can be useful
in other situations where the choice of the timelike Killing vector field
with which to compute the energy of test fields is not clear. It is also
possible that these ideas may play a role in determining an appropriate
definition of mass for asymptotically de Sitter spacetimes.
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A
P N E X PA N S I O N O F E I N S T E I N - K L E I N - G O R D O N

In this appendix, we show that the Einstein-Klein-Gordon system
reduces to the Schrödinger-Poisson system in the Newtonian limit.
Then, we obtain the equations describing a perturbation to the Newto-
nian fields up to first post-Newtonian corrections. Finally, we consider
perturbations caused by a point particle. In this section we follow the
treatment in Chapter 8.2 of Ref. [72].

The Einstein-Klein-Gordon system is the set of field equations for Φ
and gµν which is obtained through the variation of action (2.1) with
respect to Φ∗ and gµν, and reads

1√−g
∂µ

(√
−ggµν∂νΦ

)
= µ2

Sc2Φ , (A.1)

Rµν =
8π

c4 T̃S
µν , (A.2)

where the Einstein equations are written in an alternative form using
the trace-reversed stress-energy tensor of the scalar field

T̃S
µν ≡ TS

µν −
1
2

TSgµν = ∂(µΦ∗∂ν)Φ +
1
2

gµνµ2
Sc2|Φ|2 .

In the last equations we used US ∼ µ2
Sc2|Φ|2/2, since we want to

consider a (Newtonian) diluted scalar field |Φ| � 1. Moreover, in the
Newtonian limit, we consider the spacetime metric ansatz

g00 = −1− 2
c2 U +O(c−4) , (A.3)

g0j = O(c−3) , gjk = O(c−2) , (A.4)

with x0 = ct and the Cartesian coordinates xj = {x, y, z}. This gives
the Ricci tensor components

R00 =
1
c2∇

2U +O(c−4) , (A.5)

R0j = O(c−3) , Rjk = O(c−2) . (A.6)

153
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The non-relativistic limit of the scalar field Φ is incorporated in our
perturbation scheme by considering that 1

c−1|∂jφ|/|φ| ∼ O(ε) , c−2|∂tφ|/|φ| ∼ O(ε2) , (A.7)

where we introduced an auxiliary scalar field φ such that

Φ =
1√
µS

e−iµSc2tφ . (A.8)

Then, the components of the trace-reversed stress-energy tensor of the
scalar field are

T̃S
00 =

1
2

µSc2|φ|2 +O(c0) , (A.9)

T̃S
0j = O(c) , T̃S

jk = O(c2) . (A.10)

Therefore, at Newtonian order, the Einstein equations reduce to the
Poisson equation

∇2U = 4πµS|φ|2 , (A.11)

which implies that |φ| ∼ O(ε2). On the other hand, it is easy to
show that, at leading order in ε (and in the Newtonian limit), the
Klein-Gordon equation reduces to the Schrödinger equation

i∂tφ = − 1
2µS
∇2φ + µSUφ . (A.12)

So, we have showed that, in the Newtonian limit, the Einstein-Klein-
Gordon system for Φ and gµν reduces to the Schrödinger-Poisson
system for φ and U.

Let us now extend our perturbation scheme to first post-Newtonian
order. We start by considering the spacetime metric ansatz

g00 = −1− 2
c2 (U + δU)− 2

c4

(
ψ + U2)+O(c−6) , (A.13)

g0j = −
4
c3 Uj +O(c−5) , (A.14)

gjk =

(
1− 2

c2 (U + δU)

)
δjk +O(c−4) , (A.15)

with the post-Newtonian terms Uj, ψ and the perturbation δU. This
results in the Ricci tensor components

R00 =
1
c2∇

2(U + δU) +
1
c4 (3∂2

t U + 4U∇2U +∇2ψ) +O(c−6) ,

(A.16)

R0j =
2
c3∇

2Uj +O(c−5) , (A.17)

Rjk =
1
c2∇

2(U + δU)δjk +O(c−4) , (A.18)

1 It corresponds to the assertion that, in the non-relativistic limit, the energy-momentum
relation is E ∼ h̄µSc2 + 1

2h̄µS
p2 + h̄µSU, with p2 � (h̄µSc)2 and |U| � 1. Here, the

order parameter ε is ε ∼ O(p/(h̄µSc)) ∼ O(
√

U/c).
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where we imposed the harmonic coordinate condition, which results
in

∂tU + ∂jU j = 0 . (A.19)

Now, we introduce a perturbation δΦ to the Newtonian scalar field,
such that

δΦ =
1√
µS

e−iµSc2tδφ , (A.20)

treated in our perturbation scheme with

|δφ| ∼ O(ξε−2) , c−1|∂jδφ|/|δφ| ∼ O(ε) , c−2|∂tδφ|/|δφ| ∼ O(ε2) ,
(A.21)

and δU/c2 ∼ O(ξε−2). Then, the components of the trace-reversed
stress-energy tensor of the scalar field are

T̃S
00 =

1
2

µSc2|φ|2 += (φ ∂tφ
∗)− µSU|φ|2 + µSc2< (φ∗δφ) +O(c−2) ,

(A.22)

T̃S
0j = c=

(
φ ∂jφ

∗)+O(c−1) , (A.23)

T̃S
jk =

1
2

µSc2|φ|2 + µSc2< (φ∗δφ) +O(c0) . (A.24)

Thus, it is possible to show that, at first post-Newtonian order, the
Einstein equations reduce to

∇2ψ = 8π
[
= (φ ∂tφ

∗)− 3µSU|φ|2
]

, (A.25)

∇2Uj = 4π=
(
φ ∂jφ

∗) , (A.26)

∇2δU = 8πµS < (φ∗δφ) , (A.27)

where we used the equations that are satisfied at Newtonian order
and we assumed ∂2

t U = 0, since this happens to be always the case in
this work. On the other hand, at next-to-leading order in ε (but still in
the Newtonian limit), the Klein-Gordon equation reduces to

i∂tδφ = − 1
2µS
∇2δφ + µSUδφ + µSφ δU +

1
2µS

∂2
t φ + iU∂tφ−

U
µS
∇2φ .

(A.28)

Finally, note that, in the case O(ε6) < O(ξ) < O(ε4), the last equation
becomes simply

i∂tδφ = − 1
2µS
∇2δφ + µSUδφ + µSφ δU . (A.29)
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In the case of a perturbation caused by a point particle, one just
needs to include the trace-reversed stress energy tensor of the point
particle (3.8) in the Einstein equation (A.2). This is given by

T̃p
µν ≡ Tp

µν −
1
2

Tpgµν

=
mpc
2u0

(
2uµuν + gµνc2) δ(r− rp)

r2

δ(θ − θp)

sin θ
δ(ϕ− ϕp) ,

(A.30)

with the particle’s 4-velocity uµ ≡ dxµ
p/dτ. We consider that mp ∼

O(ξ) and that the particle is non-relativistic, in particular, we consider
ui ∼

√
U ∼ O(ε) in our perturbation scheme. Then, the components

of the trace-reversed stress-energy tensor of the particle are

T̃p
00 =

mpc2

2
δ(r− rp)

r2

δ(θ − θp)

sin θ
δ(ϕ− ϕp) +O(c0) , (A.31)

T̃p
tj = O(c) , T̃p

jk = O(c2) . (A.32)

Thus, we conclude that we just need to add an extra term to the last
equation in (A.27), which becomes

∇2δU = 4π [2µS < (φ∗δφ) + P] , (A.33)

with

P(t, r, θ, ϕ) ≡ mp
δ(r− rp(t))

r2

δ(θ − θp(t))
sin θ

δ(ϕ− ϕp(t)) . (A.34)

Let us now consider the case of a non-relativistic point particle
sourcing ultra-relativistic scalar perturbations to the Newtonian back-
ground. At Newtonian order, the Einstein equations describing the
perturbation reduce to the Poisson equation 2

∇2δU = 4πP . (A.35)

Finally, at leading order, the Klein-Gordon reduces to

∇2δΦ− ∂2
t δΦ = 2µ2

SΦ δU . (A.36)

2 The assumption of a non-relativistic perturber sourcing an ultra-relativistic scalar
perturbation is consistent as long as the scalar is sufficiently light.
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C O N S TA N C Y O F F U N D A M E N TA L M AT R I X
D E T E R M I N A N T

Consider a first-order matrix ordinary differential equation

dX(r)
dr
−V(r)X(r) = 0 , (B.1)

with X a N-dimensional column vector and V a N × N matrix. A
fundamental matrix of this system is a matrix of the form F(r) ≡(

X(1), ..., X(N)

)
, where {X(1), ..., X(N)} is a set of N independent solu-

tions of Eq. (B.1). The determinant of this N×N matrix can be written
as

det F(r) = εi1 ... iN X1
(i1) ... XN

(iN)
, (B.2)

where ε is the Levi-Civita symbol, and X j
(k) is the j-th component of

the vector X(k). Using Eq. (B.1) it is easy to see that

d
dr

det F =
N

∑
k=1

εi1 ... iN Vk
j X1

(i1) ... X j
(ik)

... XN
(iN)

. (B.3)

Using the relation

εi1 ... iN X1
(i1) ... X j

(ik)
... XN

(iN)
= δ

j
k det F , (B.4)

one gets

d
dr

det F = Tr(V)det F . (B.5)

If the trace Tr(V) ≡ Vk
k is identically zero (which is always the case

in Part i of this thesis), the determinant of the fundamental matrix is
constant.
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S C A L A R F I E L D A C C R E T I O N B Y A S TAT I C B L A C K
H O L E

c.1 incoming flux of energy at the center of a nbs

Here, we compute the incoming flux of energy over a tiny spherical
surface at the center of a fundamental NBS. Consider a stationary NBS

of the form

Φ = Ψ(r)e−i(µS−γ)t , (C.1)

where Ψ is a solution of (4.8) and (4.9). This stationary field can be
written as a sum of incoming and outgoing parts, Φ = Φin + Φout,
where

Φin ≡ e−i(µS−γ)t
∫ 0

−∞
ds Ψ(s)eisr ,

Φout ≡ e−i(µS−γ)t
∫ +∞

0
ds Ψ(s)eisr , (C.2)

with

Ψ(s) =
1

2π

∫ +∞

−∞
dr Ψ(r)e−isr , (C.3)

and where we are using an even extension of Ψ to negative values of
r. Note that Ψ is a real-valued function, since Ψ is real-valued. Now,
the incoming flux of energy over a tiny spherical surface of radius
r+ � R is given by

Ėin ' 4πr2
+Tin

tr (r = 0) . (C.4)

At leading order, one has

Tin
tr (r = 0) ' µS = (Φin∂rΦ∗in)

= −µS

2

∫ 0

−∞
ds′
∫ 0

−∞
ds
(
s′ + s

)
Ψ(s′)Ψ(s) . (C.5)

Numerical evaluation of the last expression for a fundamental NBS

gives

Tin
tr (r = 0) ∼ 2.69× 10−4 µ7

S M5
NBS . (C.6)

Finally, the incoming flux of energy is

Ėin ∼ 3.38× 10−3 r2
+µ7

S M5
NBS . (C.7)
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c.2 introducing a dissipative boundary

In this section we look at two toy models, aimed at understanding
the evolution of an NBS with a small BH at its center. The main effect
that the BH produces is, naturally, dissipation at the horizon. This
dissipative boundary condition can also be mimicked with some toy
models.

c.2.1 A string absorptive at one end

Here, we wish to study a one-dimensional model of absorption of
a scalar structure when the boundary conditions suddenly change.
Consider then a string, initially fixed at x = 0, L, described by the
wave equation

∂2
xΦ− ∂2

t Φ = 0 . (C.8)

A normal mode satisfying Φ(x = 0) = Φ(x = L) = 0 is

Φ = e−iωnt sin ωnx , (C.9)

ωn =
(n + 1)π

L
, n = 0, 1, 2, ... . (C.10)

We take a configuration with ωn = ω0 and use this as initial data
for a problem where the boundary condition at the origin becomes
absorptive. In particular, Laplace-transforming the wave equation
gives

d2Ψ
dx2 + ω2Ψ = −Φ̇(0, x) + iωΦ(0, x) , (C.11)

Ψ(ω, x) =
∫

dteiωtΦ(t, x) . (C.12)

As boundary conditions, we require that

Ψ(ω, L) = 0 , Ψ(ω, x ∼ 0) = sin ωx− εe−iωx . (C.13)

These conditions maintain the mirror-like boundary at one extreme
x = L, while providing an absorption of energy at x = 0. The flux
of absorbed energy scales like ε2 � 1. The solution of Eq. (C.11)
subjected to the above boundary conditions is

Ψ = i
cos2(ωx) sin(πx/L) + sin2(ωx) sin(πx/L)

ω− π/L

+ ε
π sin[ω(L− x)]

ω(π − Lω)(iε cos(ωL) + (ε− i) sin(ωL))
. (C.14)

The original time-domain field is given by the inverse

Φ(t, x) =
1

2π

∫
dωe−iωtΨ(ω, x) . (C.15)
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The integral can be done with the help of the residue theorem. We
separate the response Φ = Φ1 + Φ2. The first term in Eq. (C.14) has a
simple, real pole at ω = ω0 = π/L, and it evaluates to

Φ1(t, x) = sin(πx/L)e−iπt/L , (C.16)

i. e., it corresponds to the initial data. The second term has poles
at complex values of the frequency, which are also the QNMs of the
dissipative system,

ω ≈ nπ + ε− iε2

L
, (C.17)

These poles lie close to the normal modes of the system, including
those not present in the initial data. They dictate an exponential
decay ∼ e−ε2t, and a consequent lifetime τ ∼ ε−2. Note that this
simple exercise shows that all modes are excited when new boundary
conditions are turned on. For NBSs, all the modes cluster around
ω ∼ µS, thus we expect to always be in the low-frequency regime
used to estimate the lifetime.

c.2.2 A black hole in a scalar-filled sphere

A toy model more similar to the problem we wish to study is that of
a BH of mass MBH, at the center of a sphere of radius R, which was
filled with a massive scalar field. The profile for the scalar is, initially,
that of a normal mode (the Klein-Gordon field Φ = Ψ/r),

Ψ = sin ω0r , (C.18)

with ω0 =
√

µ2
S + π2/R2. The problem simplifies enormously when

the scalar is non self-gravitating and is but a small disturbance in
the background of the BH spacetime. This is what we assume from
now onwards. In such a case all one has to do is evolve the Klein-
Gordon equation in a Schwarzschild geometry, subjected to Dirichlet
conditions at the surface of the sphere. The results are summarized in
Fig. C.1. While they do not mimic entirely the process of accretion of
a self-gravitating NBS by a central BH, these results illustrate some of
the possible physics in the more realistic setup.

The figures show the scalar extracted at the horizon (first row), at a
midpoint inside the sphere (second raw) and the flux per frequency bin
(third raw). The scalar, measured either at the horizon or somewhere
within the sphere, decays exponentially. The first noteworthy aspect
is the sensitive dependence of the decay rate on the size of the BH.
Our results are consistent with a decay timescale τ ∼ (MBHµS)

−β,
with β ∼ 4− 5, in agreement with our analysis in Section 5.2 and
also with a quasinormal mode ringdown of such fields [43]. Note that
such suppressed decay for small MµS couplings happens due to the
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Figure C.1: The evolution of a massive scalar field inside a perfectly reflecting
spherical surface of radius RµS = 20. In the center of such a
sphere, there sits a BH of mass MBHµS = 0.2 (left panels) and
MBHµS = 0.1 (right panels). First row: Scalar field measured
on the horizon. Second row: Scalar field measured at rµS = 10.
Third row: Flux measured at the horizon.



C.2 introducing a dissipative boundary 163

filtering properties of small BHs, keeping out most of the low-frequency
field. This also explains why the ratio between the field measured
at r = 10 and at the horizon increases when the BH size decreases.
Note also that, in accordance with the previous one-dimensional toy
model, overtones are also excited. This is clearly seen in the Fourier
analysis (third raw panels in Fig. C.1), showing local peaks at all the
subsequent overtones, which were absent in the initial data. These

correspond to frequencies ω =
√

µ2
S + π2n2/R2 , n = 0, 1, .... This is

one important difference between this system and NBSs, for which
overtones are all bounded in frequency.





D
S C A L A R Q - B A L L S

Here, we generalize the calculations done in Chapter 4 to Q-balls,
where gravity is absent and self-interactions are necessary.

d.1 background configurations

The field equation for Φ is obtained through the variation of action (2.1)
with respect to Φ∗ and reads

∇µ∂µΦ− 2
dUQ

d|Φ|2 Φ = 0 , (D.1)

where we used gµν = ηµν and the self-interaction potential UQ defined
in Eq. (3.6). We now look for localized solutions of this model with
the form (3.5) – the so-called Q-balls. This ansatz yields the radial
equation

∂2
r Ψ +

2
r

∂rΨ +

[
Ω2 − 2

dUQ

d|Φ|2
]

Ψ = 0 . (D.2)

For the class of nonlinear potentials (3.6), the last equation becomes

∂2
r Ψ +

2
r

∂rΨ +

[
Ω2 − µ2

(
1− Ψ2

Φ2
c

)(
1− 3

Ψ2

Φ2
c

)]
Ψ = 0 . (D.3)

According to the results of Ref. [78], there exist stable Q-ball solutions
for any 0 < Ω < µS, independently of the free parameter Φc. Addi-
tionally, it is known that, in the limit Ω/µS � 1, the radial function Ψ
mimics an Heaviside step function (the so-called thin-wall Q-balls) [78,
298, 299]. On the other hand, in the regime Ω/µS ∼ 1, the function Ψ
starts to fall earlier and drops very slowly (thick-wall Q-ball) [298, 299].
In particular, using the results of Ref. [299] one can show that, in the
thin-wall limit,

Ψ(r) ' Φc

[
1 +

(
Ω

2µS

)2
]

Θ
( µS

Ω2 − r
)

. (D.4)

Notice that the Q-ball radius is approximately given by RQ ' µS/Ω2.
A few examples of radial profiles Ψ(r) constructed numerically from

Eq. (D.3) are shown in Fig. D.1. From these results it is already evident
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166 scalar q-balls

Figure D.1: Three radial profiles Ψ(r)/Φc obtained through numerical in-
tegration of Eq. (D.3) with appropriate boundary conditions
(Ψ(∞)→ 0 and ∂rΨ(0) = 0). Each curve corresponds to a differ-
ent Q-ball.

that, when Ω/µS → 0, the scalar does acquire a Heaviside-type profile.
In such a limit the scalar drops to zero on the outside, on a lengthcale
∼ 1/µS. These results also indicate that the radius of the Q-ball grows
when Ω/µS → 0. This is made more explicit in Fig. D.2, showing the
numerical results for the dependence of the Q-ball radius RQ on the
frequency Ω. 1 The dashed line, corresponding to the thin-wall limit
(D.4), agrees remarkably well with the numerics.

The Q-ball charge Q and mass MQ are obtained through (2.16) and
(3.3), respectively, and read

Q =
4π

h̄
Ω
∫

dr r2Ψ2(r) , (D.5)

MQ =
1
2

QΩ + 4π
∫

dr r2
(
(∂rΨ)2

2
+ U (Ψ2)

)
. (D.6)

For thin-wall Q-balls these become

Q =
4π

3
Ω4

µ6
S

Ψ2
c , (D.7)

MQ =
2π

3
Ω5

µ6
S

Ψ2
c . (D.8)

1 We define the Q-ball radius RQ to be such that
Ψ(RQ)

Ψ(0)
= 1/2.
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Figure D.2: Numerical results for the dependence of the Q-ball radius RQµS
on the internal frequency Ω/µS, obtained through direct integra-
tion of Eq. (D.3). The dashed line is the thin-wall limit prediction,
Eq. (D.4). A fit on the numerical results gives RQ ∼ 1.08µSΩ−2,
within 2% of error, showing a good accordance with the predicted
behavior (Eq. (D.4)).

We are using a flat background spacetime, which requires that MQ/RQ �
1. In the thin-wall limit, this corresponds to

Ω/µS � Ψ−2/7
c . (D.9)

d.2 small perturbations

We now wish to understand the effect of a small perturbation on
such Q-ball configurations. They can be either (free) sourceless small
deformations of the background, or sourced by an external particle.
Such perturber could be another (much smaller) Q-ball, or simply
some scalar charge piercing the Q-ball or orbiting around it. In the
following, the external probe is modelled as point-like, which means
that our results are valid only for objects whose spatial extent are�
RQ. We consider an interaction between the perturber and the Q-ball
described by the action (2.1) with JS = Tp, where Tp ≡ ηµνTµν

p is the
trace of the particle’s energy-momentum tensor defined in (3.8). This
coupling allows for EOMs that are both simple enough to be handled
via our perturbation scheme, described in Chapter 3, and that show
interesting dynamical features, as we shall see later. In the present
analysis, we neglect the backreaction on the particle motion, therefore,
the particle’s world-line xµ

p(τ) is considered to be known.



168 scalar q-balls

An external particle sources a scalar field fluctuation of the form (3.7)
in the Q-ball background, which satisfies the linearized equation

∇2δΨ− ∂2
t δΨ +

[
Ω2 − µ2

S

(
1− 8

Ψ2

Φ2
c
+ 9

Ψ4

Φ4
c

)]
δΨ

+ 2iΩ∂tδΨ + 2µ2
S

Ψ2

Φ2
c

(
2− 3

Ψ2

Φ2
c

)
δΨ∗ = TpeiΩt . (D.10)

The sourceless case is recovered simply by setting Tp = 0. Decompos-
ing the particle stress-energy trace as

TpeiΩt = ∑
l,m

∫ dω√
2πr

[
Tωlm

1 Ym
l e−iωt +

(
Tωlm

2

)∗
(Ym

l )∗ eiωt
]

,

(D.11)

where Tωlm
1 and Tωlm

2 are radial complex-functions defined by

Tωlm
1 ≡ r

2
√

2π

∫
dtdθdϕ sin θ Tpei(ω+Ω)t (Ym

l )∗ , (D.12)

Tωlm
2 ≡ r

2
√

2π

∫
dtdθdϕ sin θ Tpei(ω−Ω)t (Ym

l )∗ . (D.13)

Plugging the decompositions (3.10) and (D.11) in Eq. (D.10), one ob-
tains the matrix equation 2

∂rZ−VQ(r)Z = T , (D.14)

with the vector Z ≡ (Z1, Z2, ∂rZ1, ∂rZ2)T, the matrix VQ given by

VQ ≡


0 0 1 0

0 0 0 1

Vs − (ω + Ω)2 Vc 0 0

Vc Vs − (ω−Ω)2 0 0

 ,

where we defined the radial potentials

Vs(r) ≡
l(l + 1)

r2 + µ2
S

(
1− 8

Ψ2
0

Φ2
c
+ 9

Ψ4
0

Φ4
c

)
, (D.15)

Vc(r) ≡ −2µ2
S

Ψ2
0

Φ2
c

(
2− 3

Ψ2
0

Φ2
c

)
. (D.16)

and the source term 3

T(r) ≡
(
0, 0, T1, T2

)T . (D.17)

2 The symmetry of this system implies that the radial functions satisfy Z2(ω, l; r) =
Z1(−ω, l; r)∗. The functions Z1 and Z2 are clearly independent of the azimuthal
number m.

3 To simplify the notation, we omit the labels ω, l and m in the functions Tωlm
1 and

Tωlm
2 .
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To solve for the small perturbations, either in the sourced or sourceless
case, we need to establish suitable boundary conditions. We require
regular solutions at the origin,

Z(r → 0) ∼
(

arl+1, brl+1, a(l + 1)rl , b(l + 1)rl
)T

,

with (complex) constants a and b, and the Sommerfeld radiation
condition at infinity

Z(r → ∞) ∼
(

Z∞
1 eik1r, Z∞

2 eik2r, ik1Z∞
1 eik1r, ik2Z∞

2 eik2r
)

, (D.18)

with

k1 ≡ ε1

√
(ω + Ω)2 − µ2

S , (D.19)

k2 ≡ ε2

(√
(ω−Ω)2 − µ2

S

)∗
, (D.20)

where we are using the principal complex square root.
Consider then the set of independent solutions {Z(1), Z(2), Z(3), Z(4)}

uniquely determined by

Z(1)(r → 0) ∼
(

rl+1, 0, (l + 1)rl , 0
)T

,

Z(2)(r → 0) ∼
(

0, rl+1, 0, (l + 1)rl
)T

,

Z(3)(r → ∞) ∼
(

eik1r, 0, ik1eik1r, 0
)T

,

Z(4)(r → ∞) ∼
(

0, eik2r, 0, ik2eik2r
)T

. (D.21)

The 4 × 4 matrix F(r) ≡
(
Z(1), Z(2), Z(3), Z(4)

)
is the fundamental

matrix of the system (D.14). As shown in Appendix B, for a system of
the form (D.14), the determinant det(F) is independent of r.

d.2.1 Sourceless perturbations

Free oscillations of Q-ball configurations are regular scalar fluctua-
tions satisfying the Sommerfeld radiation condition at infinity. They
correspond to scalar perturbations of the form

δΨ =
1√
2πr

[
Z1Ym

l e−iωt + Z∗2 (Y
m
l )∗ eiω∗t

]
, (D.22)

where Z1 and Z2 are solutions of system (D.14) with T = 0. For
complex-valued ω, the free oscillations are QNMs. For a real ω, these
are termed normal modes. Notice that for the discrete set {ωQNM} of
QNM frequencies, the solutions {Z(1), Z(2), Z(3), Z(4)} are not linearly
independent. In fact, it is easy to see that the condition det(F) = 0
holds if and only if ω is a QNM frequency (i. e., ω ∈ {ωQNM}).
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d.2.2 External perturbers

Let us now turn to the perturbations induced by an external particle,
which interacts with the background scalar field. How is such a body
exciting the Q-ball, how much radiation does the interaction give rise
to, what backreaction does the Q-ball exert on the perturber? These
are all questions that can be raised in this context, and that we wish
to answer here. In order to do that, one needs to find the solutions of
system (D.14) that are regular at the origin and satisfy the Sommerfeld
condition at infinity. These can be obtained through the method of
variation of parameters,

Z1(r) =
4

∑
k=3

[
2

∑
n=1

F1,n(r)
∫ r

∞
dr′F−1

n,k Tk +
4

∑
n=3

F1,n(r)
∫ r

0
dr′F−1

n,k Tk

]
,

(D.23)

Z2(r) =
4

∑
k=3

[
2

∑
n=1

F2,n(r)
∫ r

∞
dr′F−1

n,k Tk +
4

∑
n=3

F2,n(r)
∫ r

0
dr′F−1

n,k Tk

]
.

(D.24)

The total scalar field energy, linear and angular momenta radiated
during a given process can be found using solely the amplitudes Z∞

1
and Z∞

2 . These are given by

Z∞
1 =

4

∑
k=3

∫ ∞

0
dr′F−1

3,k (r
′)Tk(r′) , (D.25)

Z∞
2 =

4

∑
k=3

∫ ∞

0
dr′F−1

4,k (r
′)Tk(r′) . (D.26)

Let us now apply our framework to two physically interesting setups:
a particle plunging into a Q-ball configuration, and a particle in a
circular orbit within the Q-ball.

plunging particle . Consider a particle moving at a constant
velocity v = −vez (with v > 0), plunging into a Q-ball, and crossing
its center at t = 0. In this case, the trace of the particle’s energy-
momentum tensor reads

Tp =− [δ (r + vt) δ (θ)Θ(−t) + δ (r− vt) δ (θ − π)Θ(t)]

×mp δ(ϕ)

√
1− v2

r2 sin θ
. (D.27)
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Therefore, the source decompositions (D.12) and (D.13) read

T1 =−
[

cos
(
(ω + Ω)r

v

)
δeven

l − i sin
(
(ω + Ω)r

v

)
δodd

l

]
×mp Y0

l (0, 0)δ0
m

√
1− v2
√

2πrv
, (D.28)

T2 =−
[

cos
(
(ω−Ω)r

v

)
δeven

l − i sin
(
(ω−Ω)r

v

)
δodd

l

]
×mp Y0

l (0, 0)δ0
m

√
1− v2
√

2πrv
. (D.29)

These satisfy the property

T2(ω, l, 0; r) = T1(−ω, l, 0; r)∗ . (D.30)

Thus, due to the form of the system (D.14), one has

Z2(ω, l, 0; r) = Z1(−ω, l, 0; r)∗ , (D.31)

Z∞
2 (ω, l, 0) = Z∞

1 (−ω, l, 0)∗ . (D.32)

Finally, the spectral fluxes (3.16), (3.22) and (3.27) become, respectively,

dErad

dω
= 4 |ω + Ω| <

[√
(ω + Ω)2 − µ2

S

]
∑

l
|Z∞

1 (ω, l, 0)|2 ,

(D.33)

dPrad
z

dω
= ∑

l

8(l + 1)Θ
[
(ω + Ω)2 − µ2

S

] ∣∣(ω + Ω)2 − µ2
S

∣∣√
(2l + 1)(2l + 3)

×< [Z∞
1 (ω, l, 0)Z∞

1 (ω, l + 1, 0)∗] , (D.34)

dLrad
z

dω
= 0 . (D.35)

orbiting particle Now we consider a system composed by a
particle describing a circular orbit of radius rorb and angular frequency
ωorb inside a Q-ball and in its equatorial plane. The trace of the
particle’s stress-energy tensor is

Tp = − mp

r2
orb

√
1− (ωorbrorb)

2 δ(r− rorb)δ
(

θ − π

2

)
δ(ϕ−ωorbt) ,

(D.36)

which implies

T1,2 = −mp

√
π

2
Ym

l

(π

2
, 0
) √1− (ωorbrorb)

2

rorb

× δ (r− rorb) δ (ω±Ω−mωorb) . (D.37)
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Notice that T2(ω, l, m) = (−1)mT1(−ω, l,−m), hence due to the form
of system (D.14), we have

Z2(ω, l, m; r) = (−1)mZ1(−ω, l,−m; r)∗ , (D.38)

Z∞
2 (ω, l, m) = (−1)mZ∞

1 (−ω, l,−m)∗ . (D.39)

Then, the emission rate expressions (3.17) and (3.28) imply, omitting
the arguments (ω, l, m),

Ėrad =
2
π

∫
dω |ω + Ω| <

[√
(ω + Ω)2 − µ2

S

]
∑
l,m
|Z∞

1 |2 ,

L̇rad
z =

2
π

∫
dω ε1(ω)<

[√
(ω + Ω)2 − µ2

S

]
∑
l,m

m |Z∞
1 |2 .

where we remind that ε1 ≡ sign(ω + Ω + µS). Re-writing expres-
sion (D.37) in the form

T1,2 = T̃(ωorb, rorb) δ (r− rorb) δ (ω±Ω−mωorb) , (D.40)

the previous expressions for the rate of emission read

Ėrad =
2
π ∑

l,m
T̃2
[

a1

∣∣∣F−1
3,3 (mωorb −Ω; rorb)

∣∣∣2
+ a2

∣∣∣F−1
3,4 (mωorb + Ω; rorb)

∣∣∣2 ] , (D.41)

L̇rad
z =

2
π ∑

l,m
mT̃2

[
ε1a1

∣∣∣F−1
3,3 (mωorb −Ω; rorb)

∣∣∣2
+ ε1a2

∣∣∣F−1
3,4 (mωorb + Ω; rorb)

∣∣∣2 ] . (D.42)

where

a1 = |mωorb|<
[√

(mωorb)
2 − µ2

S

]
,

a2 = |mωorb + 2Ω| <
[√

(mωorb + 2Ω)2 − µ2
S

]
. (D.43)

d.3 free oscillations

The numerical search for QNM frequencies for Q-balls is summarized
in Table D.1, for the particular configuration with Ω = 0.3µS. When
ωQNM are pure real numbers, they are normal modes of the object.
For a mode to be normal, it must not be dispersed to infinity, hence
the condition ω < µS −Ω is necessary, which also implies that such
modes are screened from far-away observers by the Q-ball background
itself. This means that perturbations associated with the real-valued
frequencies in Table D.1 do not reach spatial infinity. Such modes
are the analogs of the NBS modes found in Chapter 4, which were
all normal (Table 4.1). Q-balls have, in addition to such modes, also
quasi-normal modes, which decay in time since they have a sufficiently
large energy to disperse to infinity.



D.3 free oscillations 173

l ωQNM/µS

0 0.439 0.689 0.931− 1.2× 10−4i 1.153− 1.6× 10−2i

1 0.300 0.555 0.806− 9.8× 10−4i 1.04− 3.3× 10−3i

Table D.1: Some QNM frequencies of a Q-ball configuration with Ω/µS = 0.3,
for l = {0, 1, 2}. Note that the first column corresponds to normal
modes, with ω < µS, hence screened from distant observers;
they are confined to a spatial extent ∼ RQ, the radius of the
Q-ball (these modes are the analogs of the NBS modes in Table
4.1). There is an infinity of QNM frequencies, parametrized by an
integer overtone index n. At large n, < (ωQNM) ∼ 0.22n ∼ πn/RQ,
as might be anticipated by a WKB analysis. Our results for the
imaginary part of ωQNM carry a large uncertainty, and should be
taken only as an order of magnitude estimate.

d.3.1 Particles plunging into Q-balls

For concreteness, here we restrict the discussion to a large-velocity
plunge v = 0.8c. The multipolar energy spectrum dErad

l /dω of ra-
diation released during such process is shown in Fig. D.3 for the
first lowest multipoles, obtained through numerical evaluation of
Eq. (D.33). Just like a hammer hitting a bell excites its characteristic
vibration modes, the effect of a plunging particle is to excite the QNMs

of a Q-ball. Figure D.3 illustrates this feature very clearly, the peaks in
the energy spectrum are all coincident with the QNMs, some of them
identified in Table D.1. This feature was absent in the dynamics of
NBSs simply because the modes of NBSs (Table 4.1) are all normal and
confined within the NBS; they do not arrive at spatial infinity. We see
that most of the radiation is dipolar, looking at Fig. D.3, but a sub-
stantial amount is also emitted in higher multipoles. For example, the
l = 4 mode still carries roughly 10% of the total radiated energy. Our
results are compatible with an exponential suppression at large l, of
the form Erad

l ∼ 0.085e−0.39l . We can use this to sum over all multipoles
and find the total energy radiated,

Erad ∼ 0.188 m2
p µS . (D.44)

The emitted radiation carries linear momentum, which is due to an
interference term between multipoles (Eq. (D.34)). Figure D.4 shows
the contribution of the multipoles l ≤ 4 to the spectral flux of lin-
ear momentum dPrad

z /dω, obtained through numerical evaluation
of (D.34). Again, most of the contribution comes from the excitation
of the Q-ball’s QNMs. Note the interesting feature that, although not
shown in the figures, in some frequency ranges and for some inter-
ference terms, the radiated momentum is actually positive along ez,
i. e., opposite to the direction of the motion. We observed numerically
that the total flux of linear momentum Prad

z converge exponentially
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Figure D.3: Energy spectra of scalar radiation emitted when a particle of rest-
mass mp plunges through a Q-ball with Ω = 0.3µS, with a large
velocity v = 0.8c. The spectrum was decomposed into multipoles
(Eq. (D.33)). The sharp peaks correspond to the excitation of QNM

frequencies ωQNM (Table D.1).

Figure D.4: Linear momentum spectra of scalar radiation emitted when a
particle plunges through a Q-ball with Ω = 0.3µS, with a velocity
v = 0.8. Different lines correspond to the different multipolar
cross-terms in Eq. (D.34).
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in l, for sufficiently large l. The total radiated momentum is always
negative, and, thus, represents a slowing-down of the moving point
particle. Using a similar fitting procedure to sum over all multipoles,
we find for this particular configuration,

Prad ∼ −0.088 m2
p µS . (D.45)

d.3.2 Orbiting particles

The average dipolar flux of energy and angular momentum emitted
by a particle in circular orbit inside a Q-ball (Ω = 0.3µS), at an orbital
distance rorbµS = 1/3, are shown in Fig. D.5. The point-like source
is assumed to be orbiting due to some external force, and its orbital
frequency is varied, scanning possible resonant behavior with the
Q-ball. As expected, and verified numerically, the quantity Ėrad is an
even function of ωorb, whereas L̇rad

z is an odd one. A few features
are apparent in the results above (obtained evaluating Eqs. (D.41)-
(D.42)). The fluxes have clear peaks, which correspond to the resonant
excitation of the QNMs of the Q-ball. It is worth to note that for each
QNM frequency listed in Table D.1 there are two peaks associated
with different orbital frequencies separated by a distance 2Ω; the
resonances now occur at ωorb = Ω±ωQNM. This comes directly from
the decomposition (D.11).

In flat space, a scalar charge on a circular orbit also emits radia-
tion [222, 300]. For small orbital frequencies and massless fields, the
flux is dipolar and of order Ė ∼ q2r2

orbω4
orb/(12π) [222, 300] (with

a scalar charge q = mp, in our coupling). This explains the rise of
the dipolar flux when the orbital frequency increases. However, at
large frequencies, the radiation becomes of synchrotron type, and it is
emitted preferentially in higher multipoles [301, 302]. This is apparent
in Fig. D.6 where we show the contribution of higher multipoles to
the flux. Note that all other multipoles also have resonant peaks, but
these are less pronounced than the dipolar. At large Lorentz factors γ,
there is a critical m mode after which the fluxes becomes exponentially
suppressed. The critical multipole is of order mcrit ∝ γ2 [301, 302].
Thus an evaluation of a large number of multipoles is necessary to
have an accurate estimate of fluxes at large velocities. Our results are
consistent with such a prediction. We find that as ωorb increases, the
flux peaks at higher and higher m, but there is always a threshold
m beyond which the radiation output is exponentially suppressed.
Finally, since this process is not axially symmetric, one cannot use
expression (3.22) to compute the flux of linear momentum along z.
Nevertheless, it is straightforward to show that the average rate of
linear momentum radiated Ṗrad

z vanishes.
One interesting aspect, not seen in the study of NBSs, concerns

monopolar emission and emission from particles at rest. Both features
are usually absent. It follows from Eq. (D.41), that for Q-ball configura-
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Figure D.5: Average dipolar (|m| = l = 1) rate of energy (up), and angular
momentum (down) radiated by a particle describing a circular
orbit around a Q-ball with Ω = 0.3µS, at radius rorbµS = 1/3 and
with orbital frequency ωorb. The peaks are associated with the
excitation of QNM frequencies ωQNM for ωorb = < (ωQNM)±Ω
– each QNM frequency is excited by two different ωorb spaced
by 2Ω. The excitation of the QNM frequencies with <(ωQNM) =
{0.806, 1.04 (in Table D.1), 1.298}µS is clearly seen from these
plots. However, it seems that not all the QNM frequencies can be
efficiently excited; e. g., <(ωQNM)/µS = 2.30 (in Tab. D.1).
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Figure D.6: Average rate of energy radiated by a particle describing a circular
orbit around a Q-ball with Ω = 0.3µS, at a radius rorbµS = 1/3
and with orbital frequency ωorb for different values of l = m. At
low frequencies the radiation is mostly dipolar. At large orbital
frequencies the radiation is synchrotron-like and peaked at large
l = m. In the high-frequency regime, there is a critical multipole
m beyond which the energy radiated decreases exponentially
(see main text for further details). There are QNM peaks for
all multipoles, but they are visible only for the dipolar and
quadrupolar.
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Figure D.7: Average rate of energy radiated by a particle describing a circular
orbit around a Q-ball with Ω = 0.7µS, at radius rorbµS = 1/3
and with orbital frequency ωorb. For such a scalar configuration
there is radiation emitted also in the monopole mode, and it
dominates the emission, as seen in the inset.

Figure D.8: Average rate of energy radiated in the case of a particle standing
at a fixed radius rorbµS = 1/3 as function of Ω/µS. It is shown
the dominant contributions from the modes l = 0 and l = 1. The
average rate of angular momentum radiated in this case vanishes.
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tions with Ω ≤ µS/2 there is no emission of l = 0, and the first mode
contributing to the radiation is l = 1. For these objects there is no
radiation emitted if the particle is at rest, with ωorb = 0. However, for
Q-balls with Ω/µS > 1/2 there is indeed emission from l = 0 modes,
contributing more than (or, at least as much as) the l = 1 modes to
the radiation (Fig. D.7). Interestingly, for these Q-balls there is also
radiation emitted even when the particle is at rest (Fig. D.8). This
type of behavior is due to the scalar coupling between two dynamical
entities: the external perturber (through Tp) and the Q-ball configura-
tion (through Φ). The different coupling (purely gravitational, with no
scalar charge) considered in the treatment of NBSs led to the absence
of these features.





E
G R E E N ’ S F U N C T I O N O F G A S E O U S S L A B S

Here we derive expression (7.12). The Green’s function G(t, r; t′, r′) of
a three-dimensional gaseous slab is a solution of

∇2
r G− 1

c2
∂2G
∂t2 = −δ(t− t′)δ(3)(r− r′) , (E.1)

with Dirichlet boundary conditions

G(t, x, y, z = ±L; t′, r′) = G(t, r; t′, x′, y′, z′ = ±L) = 0 . (E.2)

Since the slab is homogeneous in the x and y directions, the Green’s
function is translation-invariant in these directions and can only de-
pend on R = (x− x′, y− y′). In the same way, since the medium was
assumed to be static, the Green’s function is time translation-invariant
and only depends on T = t − t′. Now, note that the most general
function of T, R, z and z′ satisfying (E.2) can be expanded as

G =
1

(2π)3L ∑
n,n′>0

∫
dω d2K G̃nn′(ω, K)e−i(ωT−K·R)

× sin[mn′(z′ + L)] sin[mn(z + L)] , (E.3)

with mn = nπ/(2L). Using the relations

δ(T)δ2(R) =
1

(2π)3

∫
dω d2K e−i(ωT−K·R) , (E.4)

δ(z− z′) =
1
L ∑

n>0
sin[mn(z′ + L)] sin[mn(z + L)] , (E.5)

where the second expression is the completeness relation of the orthonor-
mal basis { 1√

L
sin[mn(z+ L)]}n>0 of the function space L2(−L, L) with

Dirichlet conditions at the boundaries. 1 Then, Eq. (7.12) implies

G̃ =
δnn′

k2 + m2
n −

(
ω
c

)2 . (E.6)

1 The completeness relation comes directly from the fact that any function f (z)
in L2(−L, L) with Dirichlet conditions at the boundaries can be expanded as

f (z) =
1√
L

∑
n>0

{
1√
L

∫ L

−L
dz′ f (z′) sin[mn(z′ + L)]

}
sin[mn(z + L)] .

Interchanging the order of the sum and the integration one arrives at the relation.
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Now, note that∫
dωd2K

e−i(ωT−K·R)

K2 + m2
n −

(
ω
c

)2 = −2πc2
∫ ∞

0
dK KJ0(KR)

∫ ∞

−∞
dω

e−iωT

ω2 −ω2
K

= (2π)2c2 Θ(T)
∫ ∞

0
dK KJ0(KR)

sin(ωKT)
ωK

= (2π)2c Θ(cT − R)
cos

(
mn
√
(cT)2 − R2

)
√
(cT)2 − R2

, (E.7)

where ωK = c
√

K2 + m2
n and J0 is a Bessel function of the first kind.

The first equality results from the integration in the angle between K
and R (note that both vectors are two-dimensional), the second equal-
ity results from an integration in ω over the complex-plane using
Cauchy’s integral formula, and for the third equality we used for-
mula 6.737.5. of Ref. [303].

Finally, plugging (E.6) back in the Fourier expansion (E.3) and using
the result of the last integration one finds

G =
c

2πL
Θ(cT − R) ∑

n>0

cos(mnD)

D
sin[mn(z′ + L)] sin[mn(z + L)] ,

(E.8)

where D =
√
(cT)2 − R2. That is exactly expression (7.12). All the

steps could be repeated in a similar fashion to derive

G =
c

2πL
Θ(cT − R) ∑

n≥0

cos(mnD)

D
cos[mn(z′ + L)] cos[mn(z + L)]

(E.9)

for Neumann boundary conditions.
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S C A L A R A N D V E C T O R C H A R G E D B I N A R I E S

In addition to GW emission, many theories predict that binaries could
also emit through other channels, such as scalar and vector radia-
tion. These additional emission can take place, for instance, if the
BHs composing the binaries have scalar charges, as it is the case for
self-interacting scalar fields, or even electromagnetic charges, as pre-
dicted by the Kerr-Newman class of BHs. In what follows, we explore
the consequences of additional radiative sectors for the evolution of
binaries.

f.0.1 Scalar charged

f.0.1.1 The theory

Consider the theory (2.1) with currents

JS =
2

∑
n=1

q0
n

∫
dτn

δ(4) (xα − x α
n (τn))√−g

, (F.1)

J α
V = 0 , (F.2)

describing a massless real scalar field sourced by two particles moving
on a curved spacetime with metric gαβ. Here x α

n (τn) is the world-line
of the particle n = {1, 2} parametrized by its proper time τn. Particle n
has mass and scalar charge, respectively, mn and q0

n. This theory has
been extensively studied in the past (see, e.g., Refs. [304, 305]).

The Einstein EOM (2.4) is

Gαβ = 8πG

[
T αβ

S +
2

∑
n=1

(mn + q0
nΦ)

×
∫

dτn
dx α

n
dτn

dx β
n

dτn

δ(4)
(
xδ − x δ

n (τn)
)

√−g

]
, (F.3)

with the scalar energy-momentum tensor given in (2.7), the scalar EOM (2.2)
is

1√−g
∂α

(√
−g gαβ∂βΦ

)
=

2

∑
n=1

q0
n

∫
dτn

δ(4) (xα − x α
n (τn))√−g

,

(F.4)
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and EOM of the particles is(
mn + q0

nΦ
)

u α
n ∇αu β

n = −q0
n

(
gαβ + u α

n u β
n

)
Φ,α , (F.5)

where uα
n ≡ dx α

n /dτn is the 4-velocity of particle n.

f.0.1.2 Newtonian binary with no radiation

Consider a slowly-moving, Newtonian binary, such that energy and
angular momentum fluxes can be neglected at leading order. In this
limit Eq. (F.3) becomes a simple Poisson equation [72]

∇2U = 4πG
2

∑
n=1

mjδ
(3)(x− rn(t)) , (F.6)

where x α
n ≡ (t, rn(t)). The gravitational potential U(t, x) is weak,

i.e. |U| � 1, and enters in the Newtonian metric

ds2 = −(1 + 2U)dt2 + dr2 + r2 (dθ2 + sin2 θdϕ2) . (F.7)

There is a (slowly time-varying) scalar field sourced by the point
charges described by Eq. (F.4), which in this limit becomes also a
Poisson equation

∇2Φ0 =
2

∑
n=1

q0
nδ(3)(x− rn(t)) , (F.8)

The equation of motion of the particles (F.5) simplifies to

u α
n ∇αu β

n = −
q0

j

mj + q0
j Φ0

gαβΦ,α . (F.9)

We see that the particles are accelerated by the scalar. With the Newto-
nian metric (F.7) and assuming q1, q2 � |r2 − r1|, this equation can be
written in a familiar form 1

d2

dt2 rn = −∇U(t, rn)−
q0

n
mn

∇Φ0(t, rn) , (F.11)

1 One can see this directly by plugging the Newtonian metric (F.7) inside the particles
action (2.11) obtaining

Spart = ∑
j

mj

∫
dt
√
(1 + 2U)− |dr j/dt|2

'∑
j

mj

∫
dt
(

1 + U − 1
2 |dr j/dt|2

)
. (F.10)

This is just the action describing a non-relativistic system of particles in a gravitational
potential U.
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where ∇ is the usual 3-dimensional gradient operator. Using equa-
tion (F.6) we obtain 2

U(t, r1) =
Gm2

|r2(t)− r1|
, U(t, r2) =

Gm1

|r2 − r1(t)|
, (F.12)

Φ0(t, r1) =
q0

2
4π|r2(t)− r1|

, Φ0(t, r2) =
q0

1
4π|r2 − r1(t)|

. (F.13)

f.0.1.3 Elliptic motion and orbit-averaging

As one expects, Eqs. (F.11) with (F.13) describes a Keplerian orbital mo-
tion with energy and angular momentum given by Eq. (8.15). These dif-
fer from (8.3) and (8.4) due to the scalar interaction. Using spherical co-
ordinates with origin at the system’s center of mass the trajectories can
be written as r1 =

(
r1(ϕp), ϕp, π/2

)
and r2 =

(
r2(ϕp), ϕp + π, π/2

)
with

r1 =
m2

M
rp , r2 =

m1

M
rp , (F.14)

rp(ϕp) =
a(1− e2)

1 + e cos ϕp
. (F.15)

Their angular velocity is

ϕ̇p =

√
G̃M
a3 (1− e2)−3/2(1 + e cos ϕ)2 . (F.16)

Finally, we define the average of a quantity X over one period T as

〈X〉 = ω0

2π

∫ 2π

0

dϕ

ϕ̇
X(ϕ) . (F.17)

where ω0 is the (Keplerian) orbital frequency.

f.0.1.4 Radiation emitted by a Newtonian binary

A Newtonian binary sources a scalar field described by Eq. (F.4), which
can be put in the form

�Φ = ρ(t, x) ≡ 1√−g

2

∑
n=1

q0
nδ(3) (x− rn(t)) . (F.18)

Thus, the binary will lose energy and angular momentum through this
channel and the motion will not be truly Keplerian; the radiation reac-
tion force entering (F.5) (which we are neglecting in the computation
of the radiation, since we are using an adiabatic approximation) will

2 Actually, in this step we cannot really consider point sources, otherwise we would
find problems with a diverging “self-force”. Fortunately, this is not a real problem,
and we can proceed by assuming that the particles have a small, but finite size.
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be responsible for a deviation to the Keplerian orbit. Let us compute
the radiation emitted by this binary of scalar charges at the (leading)
dipole approximation.

In the Newtonian approximation the scalar radiation propagates in
flat space. So, the solution of the (sourced) scalar wave equation is

Φ(t, x) =
∫

d3x′
√
−g′

ρ(t− |x− x′|, x′)
4π|x− x′| . (F.19)

In the dipole approximation it is straightforward to show that

Φ(t, r → ∞, θ, ϕ) ' 1
4πr

er · ṗ(t− r) , (F.20)

with the dipole moment

p(t) ≡
∫

d3x′
√
−g′ρ(t, x′) x′ =

(
q0

1m2 − q0
2m1

M

)
rp(t) .

This approximation is valid for scalar waves with frequency ω ∼
ω0 � 1/a, where ω0 is the orbital frequency (which is compatible
with the Newtonian approximation). The radiated energy flux is

Ėrad = − lim
r→∞

r2
∫

dΩ TS
rt , (F.21)

and the angular momentum through

L̇rad = lim
r→∞

r2
∫

dΩ TS
rϕ . (F.22)

Plugging the dipole approximation in the (real) scalar’s energy-momentum
tensor (2.7) we can write the last two expressions in the form

Ėrad =

(
q0

1m2 − q0
2m1

4πM

)2 ∫
dΩ

[
er · r̈p

]2

=
1

12π

G̃2

r4
p
(q0

1m2 − q0
2m1)

2 , (F.23)

where we used r̈p = −G̃Mrp/r3
p and integrated over the sphere, and

L̇rad = −
(

q0
1m2 − q0

2m1

4πM

)2 ∫
dΩ

(
er · r̈p

)
∂ϕ

(
er · ṙp

)
=

1
12π

G̃
3
2

√
a(1− e2)√

Mr3
p

(q0
1m2 − q0

2m1)
2 . (F.24)

Averaging over an orbit we find

〈Ėrad〉 = 1
24π

G̃2

a4 (q
0
1m2 − q0

2m1)
2

(
2 + e2

(1− e2)
5
2

)
, (F.25)

〈L̇rad〉 = 1
12π

G̃
3
2

√
Ma

5
2 (1− e2)

(q0
1m2 − q0

2m1)
2 , (F.26)
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resulting in the ratio

〈L̇rad〉
〈Ėrad〉 =

√
1− e2

ω0

(
1− e2

1 + e2

2

)
. (F.27)

In the adiabatic approximation the major semi-axis and the eccentricity
follow

〈ȧ〉 = −2a2〈Ėrad〉
G̃m1m2

< 0 , (F.28)

〈ė〉 =
√

M
G̃a

√
1− e2

e
〈Ėrad〉
m1m2

(
〈L̇rad〉
〈Ėrad〉 −

√
1− e2

ω0

)

= −
√

M
G̃a

(
1− e2

e ω0

) 〈Ėrad〉
m1m2

(
3e2

2 + e2

)
≤ 0 . (F.29)

Thus, the emission of scalar radiation by a binary causes the major
semi-axis and the eccentricity to decrease in time: the orbit shrinks
and circularizes. In the circular orbit limit our results are in agreement
with those of Refs. [222–224].

f.0.2 Vector charged

f.0.2.1 Theory

Here we consider the theory (2.1) with currents

JS = 0 , (F.30)

J α
V =

2

∑
n=1

q1
n

∫
dτn

dx α
n

dτn

δ(4)
(
xδ − x δ

n (τn)
)

√−g
. (F.31)

Particle n has mass mn and electric charge q1
n.

The sourced Maxwell EOM (2.3)

∇µFαβ = J β
V . (F.32)

In the Newtonian approximation and neglecting radiation (valid for
slowly moving charges) we can repeat the exact same steps that
we applied to the scalar charges to find that the electric charges
also describe a Keplerian orbit; the only difference being that in the
definition of G̃ we have now electric charges instead of scalar charges.
The energy-momentum tensor of the electromagnetic field is given in
Eq. (2.8).

f.0.2.2 Radiation emitted by a Newtonian binary

Again, the binary will radiate energy and angular momentum – in
this case through electromagnetic waves – and the motion will not
be truly Keplerian; we are considering the regime in which the orbits
change adiabatically.
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Using the Lorenz gauge ∇µ Aµ = 0 the sourced Maxwell equations
become

�Aα = J α
V , (F.33)

which we can decompose into

�Φ = ρ(t, x) ≡ 1√−g

2

∑
n=1

q1
nδ(3) (x− rn) , (F.34)

�A = j(t, x) ≡ 1√−g

2

∑
n=1

q1
nvnδ(3) (x− rn) , (F.35)

where we used that the sources are non-relativistic. In the Newtonian
approximation we consider that the electromagnetic waves propagate
in flat space. So, the solution to the (sourced) Maxwell equations is

Φ(t, x) =
∫

d3x′
√
−g′

ρ(t− |x− x′|, x′)
4π|x− x′| , (F.36)

A(t, x) =
∫

d3x′
√
−g′

j(t− |x− x′|, x′)
4π|x− x′| . (F.37)

In the dipole approximation one can show that

Φ(t, r → ∞, θ, ϕ) ' 1
4πr

er · ṗ(t− r) , (F.38)

A(t, r → ∞, θ, ϕ) ' 1
4πr

ṗ(t− r) , (F.39)

with the dipole moment

p(t) ≡
∫

d3x′
√
−g′ρ(t, x′) x′ =

(
q1

1m2 − q1
2m1

M

)
rp(t) .

Now, the magnetic field is

B(t, r → ∞, θ, ϕ) ≡ ∇× A ' − 1
4πr

er × p̈(t− r) (F.40)

and using Ampère-Maxwell’s law we have

Ė(t, r → ∞, θ, ϕ) = ∇× B = Ḃ× er , (F.41)

which, integrating in time, gives the electric field

E(t, r → ∞, θ, ϕ) = B× er . (F.42)

These result in the Poynting vector

S(t, r → ∞, θ, ϕ) ≡ E× B = |B|2er , (F.43)

where we used Lagrange’s rule for the triple cross product and that (B ·
er) = 0. Now using the scalar quadruple product identity we have

|B|2 =
1

16π2r2

(
|p̈|2 − (p̈ · er)

2
)

. (F.44)
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So the radiated energy flux is

Ėrad = − lim
r→∞

r2
∫

dΩ TV
rt = lim

r→∞
r2
∫

dΩ S · er

=

(
q1

1m2 − q1
2m1

4πM

)2 ∫
dΩ

[
|r̈p|2 −

(
r̈p · er

)2
]

=
1

6π

G̃2

r4
p
(q1

1m2 − q1
2m1)

2 , (F.45)

where we used r̈p = −G̃Mer/r2 and integrated over the sphere. The
radiated angular momentum flux

L̇rad = lim
r→∞

r2
∫

dΩ TV
rϕ

= 2
(

q1
1m2 − q1

2m1

4πM

)2

×
∫

dΩ
[(

er · r̈p
)

∂ϕ

(
er · ṙp

)
−
(
er · r̈p

) (
eϕ · r̈p

)]
=

1
6π

G̃
3
2

√
a(1− e2)√

Mr3
p

(q1
1m2 − q1

2m1)
2 . (F.46)

Thus, averaging over one orbital period, we conclude that electric
charges radiate twice the energy and twice the angular momentum
per unit of time in comparison with scalar charges (compare with
Eqs. (F.23) and (F.24)). So, the ratio between the angular momentum
and energy carried by the radiated electromagnetic field 〈L̇rad〉/〈Ėrad〉
is the same as for the scalar field and is given by (F.27). So, the emission
of electromagnetic waves by a binary causes both the major semi-axis
and eccentricity to decrease in time: the orbit shrinks and circularizes
(see (F.28) and (F.29)). Our results for the electromagnetic radiation
emitted by a binary are in agreement with the ones of Refs. [225, 226].





G
G E N E R A L I Z E D L O R E N T Z L AW

To obtain equation (9.9), we observe that the charged test fields (with
charge current density Jα) generate an extra electromagnetic field with
Faraday tensor f satisfying the Maxwell equations d f = 0 and

∇µ f µν = −Jν . (G.1)

The total electromagnetic energy-momentum tensor is then

TEM
µν = (Fµα + fµα)(F α

ν + f α
ν )− 1

4
gµν(Fαβ + fαβ)(Fαβ + f αβ) . (G.2)

Besides the stationary part, due solely to F, one has to consider, in the
test field approximation, the cross terms

tµν = fµαF α
ν + Fµα f α

ν −
1
2

gµνFαβ f αβ . (G.3)

We have

∇µtµν = −JαF α
ν + fµα∇µF α

ν + Fµα∇µ f α
ν −

1
2
(∇νFαβ) f αβ − 1

2
Fαβ∇ν f αβ

= −Fνα Jα, (G.4)

where we used (G.1), the Maxwell equation ∇µFµα = 0, the fact that

fµα∇µFνα − 1
2
(∇νFαβ) f αβ =

1
2

fαβ

(
∇αFνβ +∇βFαν −∇νFαβ

)
= 0

(G.5)

(because of the Maxwell equation dF = 0), and the fact that

Fµα∇µ f να− 1
2

Fαβ∇ν f αβ =
1
2

Fαβ

(
∇α f νβ +∇β f αν −∇ν f αβ

)
= 0 (G.6)

(because of the Maxwell equation d f = 0). Therefore, in the test field
approximation, we have

∇µ
(

Tµν + TEM
µν

)
= 0⇔ ∇µ

(
Tµν + tµν

)
= 0⇔ ∇µTµν = Fνα Jα, (G.7)

which is equation (9.9).
One may wonder why not use the conserved current

∇µ(TµνKν + tµνKν) = 0 (G.8)
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to define the energy of the test field as

E′′ =
∫
S

dV3(Tµν + tµν)KνNµ . (G.9)

The reason is that this expression accounts for the energy of the inter-
action between the charged field and the background electromagnetic
field through the electromagnetic cross terms (G.3), whereas (9.19)
localizes it on the charges. As is well known, the physical mass of
a charged BH includes the energy of its background electromagnetic
field; when charge enters the BH, the interaction energy should be
transferred from the energy of the electromagnetic field to the BH’s
mass. This accounting is accomplished by (9.19), but not by (G.9). 1

One might also worry that the presence of the extra energy-momentum
tensor tµν with nonzero divergence (G.4) could invalidate our previ-
ous conclusions. That is not the case, however, because tµν does not
contribute to the flux across the horizon. In fact, using (9.14) and the
Killing equation (9.10), we have∫

H
tµνZµZν =

∫
H

2 f α
µ FναZµZν =

∫
H

2 f α
µ (∇ν Aα −∇α Aν)ZµZν

=
∫

H
2 f α

µ (Aν∇νZα − Zν∇α Aν)Zµ

=
∫

H
2 f α

µ (−Aν∇αZν − Zν∇α Aν)Zµ

= −
∫

H
2Zµ f α

µ ∇α(AνZν) = 0 , (G.10)

since the vector field Zµ f α
µ is tangent to the event horizon, i. e.,

Zµ f α
µ Zα = 0, (G.11)

and AνZν = Φ is constant along the event horizon.

1 As a toy model of this situation, consider a distribution of test charges with density ρ

on a background electrostatic field E = −∇φ generated by a closed surface kept at a
constant potential Φ. Using Gauss’s law, it is easily seen that the total electrostatic
energy outside the surface is

∫
out ρφ =

∫
out E · e− qinΦ, where e is the electric field

generated by the test charges and qin is the total test charge inside the surface.
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