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Abstract

The first attempts at solving a binary black hole spacetime date back to the 1960s, with

the pioneering works of Hahn and Lindquist. In spite of all the computational advances

and enormous efforts by several groups, the first stable, long-term evolution of the orbit and

merger of two black holes was only accomplished over 40 years later, in 2005. Since then, the

field of Numerical Relativity has matured, and been extensively used to explore and uncover

a plethora of physical phenomena in various scenarios.

In this thesis, we take this field to new frontiers by exploring its extensions to higher

dimensions, non-asymptotically flat spacetimes and Einstein-Maxwell theory. We start by

reviewing the usual formalism and tools, including the “3+1” decomposition, initial data

construction, the BSSN evolution scheme and standard wave extraction procedures. We then

present a dimensional reduction procedure that allows one to use existing numerical codes

(with minor adaptations) to evolve higher-dimensional systems with enough symmetry, and

show corresponding results obtained for five-dimensional head-on collisions of black holes.

Finally, we show evolutions of black holes in non-asymptotically flat spacetimes, and in

Einstein-Maxwell theory.
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Resumo

As primeiras tentativas de evolução da geometria de um sistema binário de buracos negros

datam da década de 60, com o trabalho pioneiro de Hahn e Lindquist. Apesar de todos os

avanços computacionais e enormes esforços por parte de vários grupos, as primeiras evoluções

estáveis da órbita e coalescência de dois buracos negros foram conseguidas apenas 40 anos

depois, em 2005. Desde então, o campo da Relatividade Numérica amadureceu, e tem sido

usado extensivamente para explorar e descobrir fenómenos f́ısicos em vários cenários.

Nesta tese, levamos este campo a novas fronteiras e exploramos extensões a dimensões extra,

espaços não-assimptoticamente planos e teoria de Einstein-Maxwell. Começamos por rever

o formalismo e ferramentas usuais, incluindo a decomposição “3+1”, construção de dados

iniciais, o esquema de evolução BSSN e os procedimentos padrão de extracção de radiação.

Seguidamente apresentamos um procedimento de redução dimensional que permite o uso de

códigos numéricos existentes (com adaptações menores) para evoluir sistemas em dimensões

mais elevadas com simetria suficiente, apresentando ainda os correspondentes resultados

obtidos para colisões frontais de buracos negros em cinco dimensões. Finalmente, mostramos

resultados em espaços não-assimptoticamente planos e teoria de Einstein-Maxwell.
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Chapter 1

Introduction

Why you care about small things? World

very simple place. World only have two

things: things you can eat and things you

no can eat.

Quina

Final Fantasy IX

1.1 Motivation and historical background

Formulated by Einstein in 1915 [1, 2, 3], general relativity is one of the most beautiful theories

ever discovered. Its very elegance, however, can also be a disadvantage. We are able to do

purely analytical calculations—sometimes using just pen and paper—in highly symmetrical

ideal examples where exact solutions are known, or limits where gravity is weak. Alas, Nature

is not that simple.

To attack more complicated problems—such as those with strong and dynamical gravitational

fields—one will eventually need to perform numerical computations. The quintessential

example is the two-body problem. With well known solutions in terms of conics in Newtonian

gravity, the equivalent problem in general relativity—the evolution of a black hole binary—

posses no (known) closed-form solution. Perturbative analytical techniques do exist and some

are very well suited to study certain stages of this problem. In particular, the inspiral phase

(before the merger) is well modelled by post-Newtonian methods; the ringdown phase (after

merger) can be described by perturbative methods using the quasi-normal modes of the final

black hole. Full numerical simulations are required, however, to evolve the system during the

merger.

Much of the motivation to understand the nature of such systems and the corresponding

energy emitted via gravitational radiation originally came from the gravitational wave as-

tronomy field. A first generation of highly sensitive gravitational waves detectors—LIGO [4],

14
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Virgo [5], GEO [6] and TAMA [7]—have been operational and a second generation of even

more sensitive detectors is under construction. These detectors may allow us to study signals

produced from strong-field systems, which carry the specific signature of the system that

produced them. The analysis of these signals may then provide us with a new window to the

universe. For that, however, we rely on source modelling: templates of theoretical waveforms

from likely sources are needed if one wishes to reconstruct the signal.

Numerical relativity can be regarded as a tool to study spacetimes that cannot be studied

by analytical means. It dates back to the mid 1960s with Hahn and Lindquist’s attempts of

numerically evolving Einstein’s field equations for a binary black hole spacetime [8]. Their

computer power was very limited, however, and not much physics could be extracted from the

simulation. More reliable simulations were only performed in the late 1970s by Smarr [9] and

Eppley [10], which again attempted the head-on collision of two black holes. Though almost

a decade after Hahn and Lindquist, the available computer power was still only enough to

evolve low resolution simulations.

With the development of faster computers and the extra motivation of returning to the two-

body problem coming from LIGO, the 1990s finally witnessed the simulation of a head-on

collision of two black holes [11, 12] as well as the study of more complex systems. To name just

a few: simulations of rapidly rotating neutron stars [13], the formation of a toroidal event

horizon in the collapse of a system containing a toroidal distribution of particles [14, 15]

and one of the most influential results, gravitational collapse and its relation with critical

phenomena [16]. For a more comprehensive overview see, for example, [17].

In spite of all these successes, the real breakthrough came only in 2005 with the first simula-

tions of stable, long-term evolutions of the inspiral and merger of two black holes [18, 19, 20].

For an overview of the two-body problem in general relativity see [21].

Since then, numerical codes have considerably improved and much progress has been made.

In particular, we have witnessed numerical evolutions of (see e.g. [22] for a thorough overview

of some recent results):

• binary black hole mergers lasting for 15 orbits before merger [23, 24]. The corresponding

waveforms, which include the infall, non-linear merger and ringdown phase, have been

used in comparisons with post-Newtonian results.

• black hole binaries with mass ratios up to 1 : 100 [25, 26]. Waveforms for high mass

ratios are essential, since they are expected to be the most common, astrophysically.

Computationally, however, they are much more demanding than comparable mass cases.

• rotating black holes with near extremal spin [27, 28].

• zoom-whirl orbits—characterised by black hole trajectories that alternate between a

whirling quasi-circular motion and a highly eccentric quasi-elliptical zooming out [29,

30].

• so called “superkick” configurations—equal mass black holes with (initially) opposite
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spin vectors lying in the orbital plane—where the post-merger recoil velocity can reach

up to ∼ 4000 km/s [31, 32]. Recently [33], this effect was combined with the “hangup”

configuration [34]—where the black holes have spin aligned with the orbital angular

momentum—to predict maximum recoils up to ∼ 5000 km/s. Given that such velocities

are enough to eject a black hole from the centre of a galaxy [35], these results could have

important consequences for astronomy (such as in structure formation), see e.g. [36, 37,

38, 39].

• high velocity collisions of black holes—head-on collisions up to 0.94c [40], where the

radiated energy was found to be around 14% when extrapolating the relative velocity

between the black holes to c; as well as non-head-on collisions [41, 42], where the impact

parameter for black hole merger was determined in the limit where the relative velocity

approaches c.

As we can observe from these previous examples, numerical relativity has now reached a state

of maturity and, at least in the four-dimensional asymptotically flat vacuum case, is largely

under control allowing us to evolve a large class of different configurations.

Motivation to study gravity in the dynamical/strong field regime is not restricted to the

evolution of the two-body problem or variations thereof, and computation of the respective

waveform. Indeed, incentive to study such systems also comes from fields other than gravity

itself. In the following we mention some of these topics and briefly describe how numerical

relativity can be expected to shed light on some outstanding issues.

Tests of cosmic censorship hypothesis

It has been known for some time from the Penrose-Hawking singularity theorems that,

quite generically, solutions of Einstein’s field equations with physically reasonable mat-

ter content can develop singularities [43]. If such singularities are visible to the rest of

spacetime (i.e., no horizon is covering them), predictability may break down. Originally

formulated by Penrose in 1969 [44], what is known as the weak cosmic censorship

conjecture roughly states that, generically, singularities of gravitational collapse are

covered by an event horizon and therefore have no causal contact with distant observers.

In the absence of a generic proof∗, one can try and put the conjecture to the test

in specific configurations. The ability to perform full blown non-linear numerical

simulations in arbitrary spacetimes could here prove invaluable.

With such simulations, the conjecture has been shown to hold under extremely violent

events—the ultra-relativistic collision of black holes [40]. In higher-dimensional gravity,

it was shown by Lehner and Pretorius that cosmic censorship does not seem to hold

generically, even in vacuum [45]. Specifically, it was shown that five dimensional black

strings (solutions of five dimensional vacuum gravity, known to be unstable [46]) display,

when perturbed, a self-similar behaviour that ultimately gives rise to naked singularities

∗Indeed, the conjecture has not even been stated in a rigorous way—as often happens, that is part of the

task.
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in rather generic conditions. Also in higher dimensions, results by Okawa et al. [47] seem

to indicate that in a high-velocity scattering of five-dimensional black holes, curvature

radius shorter than the Planck length can be observed (i.e., no horizon is covering this

region). This could be regarded as an effective singularity in classical gravity.

Stability of (higher-dimensional) black hole solutions

Higher dimensional gravity has a much richer diversity of black object solutions than

its four dimensional counterpart. Spherical topology is not the only allowed topology

for objects with a horizon and one can also have, e.g., black rings (with a donut-like

topology) [48, 49] and even regular solutions with disconnected horizons, such as the

“black Saturn” [50], the “black di-ring” [51] or the “bicycling black rings” [52].

The study of these objects is relevant for a number of reasons. Other than the obvious

intrinsic value that such studies carry and the possibly interesting mathematical prop-

erties that some of these objects may have, the understanding of these solutions can

also be helpful for: (i) quantum gravity—the calculations of black hole entropy within

string theory were first performed in five dimensional spacetimes, and only afterwards

extended to four dimensions; (ii) gauge/gravity correspondence, which maps properties

of D-dimensional black holes to strongly coupled field theories in D − 1 dimensions;

(iii) large extra dimensions scenarios, suggesting that (microscopic) higher-dimensional

black objects could be formed in particle collisions with centre of mass energy & TeV

(such as at the LHC). See the review article [53] for more details and further motivation.

The stability of these higher-dimensional black objects is now starting to be explored.

It had been conjectured that for D ≥ 6 ultra-spinning Myers-Perry black holes will

be unstable [54], and this instability has been confirmed by an analysis of linearised

axi-symmetric perturbations in D = 7, 8, 9 [55].

Clearly, the study of the non-linear development of these instabilities and determination

of the respective endpoint requires numerical methods. Such studies have been recently

presented for a non axi-symmetric perturbation in D = 5 [56] and D = 6, 7, 8 [57],

where it was found that the single spinning Myers-Perry black hole is unstable, for

sufficiently large rotation parameter.

AdS/CFT correspondence

In 1997–98, a powerful tool known as the AdS/CFT correspondence (or the gauge/gra-

vity duality, or even, more generically, as holography) was introduced [58]. This holo-

graphic correspondence (if true in general) is extremely powerful since it maps the

dynamics of a non-perturbative, strongly coupled regime of certain gauge theories in D

dimensions to (D + 1)-dimensional classical gravity. This means that, for such gauge

theories, we can map strongly coupled quantum field theory dynamics to systems of

partial differential equations, which can in principle be solved (numerically, if needed).

In particular, high energy collisions of black holes are said to have a dual description in

terms of high energy collisions with balls of de-confined plasma surrounded by a confin-

ing phase. These are the type of events that may have direct observational consequences

for the experiments at Brookhaven’s Relativistic Heavy Ion Collider (RHIC) [59, 60].
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Numerical relativity in anti-de Sitter (AdS) is notoriously difficult, and therefore pro-

gress has been slow in applying its techniques to the aforementioned problems. Never-

theless, some exciting results have been recently put forth [61, 62, 63].

TeV-scale gravity scenarios

As first pointed out by ’t Hooft [64], if two point particles collide at energies above the

Planck energy, it is expected that gravity should dominate the interaction and thus,

quite remarkably, the process should be well described by general relativity.

Thorne’s Hoop Conjecture [65] further tells us that if one traps a given amount of

Energy E in a region of space such that a circular hoop with radius R encloses this

matter in all directions, a black hole is formed if its Schwarzschild radius RS ≡(
16πGE

(D−2)AD−2c4

) 1
D−3

> R. This conjecture (or rather, the classical variant thereof) has

recently gained more support with the work by Choptuik and Pretorius [66], where it

was shown that collisions of boson stars do form black holes, for sufficiently high boost

parameter.

If this conjecture does hold, it would imply that particle collisions could produce black

holes [67, 68]. As argued above, the production of black holes at trans-Planckian

collision energies (compared to the fundamental Planck scale) should be well described

by using classical general relativity (see also [69] and references therein). Writing down

the exact solution describing the collision of two ultra-relativistic particles in general

relativity is not feasible, however, and approximations have to be used. One possible

approximation (good for its simplicity) is to use black holes, and model the scattering

of point particles by black hole collisions.

This gains further relevance in the context of the so-called TeV-gravity scenarios. Such

models were proposed as a possible solution to the hierarchy problem, i.e., the relative

weakness of gravity by about 40 orders of magnitude compared to the other fundamental

interactions. It has been proposed that this can be resolved if one adopts the idea that

the Standard Model is confined to a brane in a higher dimensional space, such that the

extra dimensions are much larger than the four dimensional Planck scale (they may be

large up to a sub-millimetre scale) [70, 71, 72]. In a different version of the model, the

extra dimensions are infinite, but the metric has an exponential factor introducing a

finite length scale [73, 74].

In such models, the fundamental Planck scale could be as low as 1 TeV. Thus, high

energy colliders, such as the Large Hadron Collider (LHC), may directly probe strongly

coupled gravitational physics [75, 76, 68, 67, 77, 78]. In fact, such tests may even be

routinely available in the collisions of ultra-high energy cosmic rays with the Earth’s

atmosphere [79, 80, 81], or in astrophysical black hole environments [82, 83, 84] (for

reviews see [85, 86, 69]).

Numerical simulations of high energy black hole collisions in higher dimensional space-

times, then, could give an accurate estimate of the fractions of the collision energy

and angular momentum that are lost in the higher-dimensional space by emission of



CHAPTER 1. INTRODUCTION 19

gravitational waves; such information would be extremely important to improve the

modelling of microscopic black hole production, and of the ensuing evaporation phase,

which might be observed during LHC collisions.

The challenge is then to use the classical framework to determine the cross section for

production and, for each initial setup, the fractions of the collision energy and angular

momentum that are lost in the higher dimensional space by emission of gravitational

waves. This information will be of paramount importance to improve the modelling of

microscopic black hole production in event generators such as Truenoir [67], Charyb-

dis2 [87], Catfish [88] or Blackmax [89, 90]. The event generators will then provide

a description of the corresponding evaporation phase, which might be observed during

LHC collisions.

For a thorough review of these topics, challenges and how tools coming from numerical

relativity can help see [91].

1.2 The new frontiers

With these motivations in mind, we propose in this thesis to extend current numerical

relativity tools to new frontiers.

1.2.1 Higher-dimensional gravity

The first such frontier, in light of our discussion in the previous section, is higher-dimensional

gravity. We start by emphasising that full blown 4 + 1, 5 + 1, etc. numerical simulations

of Einstein’s field equations without symmetry are currently (and in the near future) not

possible due to the heavy computational costs. We have thus developed a framework and

a numerical code that can, in principle, be applied to different spacetime dimensions (with

enough symmetry) with little adaptations. This is achieved by taking the D dimensional

vacuum spacetime to have an isometry group fit to include a large class of interesting

problems. If this isometry group is sufficiently large, it allows a dimensional reduction

of the problem to 3+1 dimensions, where our originally higher-dimensional problem now

appears as (four dimensional) general relativity coupled to source terms. Thus, the different

spacetime dimensions manifest themselves only in the different “matter” content of the four

dimensional theory. An obvious advantage of this approach is that we can use existing

numerical codes with small adaptations: taking a working four-dimensional code, the four

dimensional equations need to be coupled to the appropriate source terms and some issues

related to the chosen coordinates must be addressed. Incidentally, other issues possibly

related with the choice of gauge conditions further complicate the problem.

We should here point out that alternative approaches have been proposed to evolve numeri-

cally Einstein’s equations in higher dimensions, as well as other codes tailored to study specific

problems. In particular we note the previously mentioned pioneering works concerned with
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the non-linear development of the Gregory-Laflamme instability [46] of cosmic strings [92, 45];

studies of gravitational collapse [93, 94]; static situations [95]; and the alternative approach,

based on the Cartoon method [96], that has been developed and tested by Yoshino and

Shibata [97, 57]. For a review of numerical relativity in higher-dimensions see also [98, 99].

1.2.2 Non-asymptotically flat geometries

Another frontier has to do with numerical evolutions in non-asymptotically flat spacetimes.

de Sitter

Going back to four dimensions, an obvious first choice of a non-asymptotically flat

spacetime is de Sitter, the simplest model for an accelerating universe. de Sitter is

a maximally symmetric solution of Einstein’s equations with a positive cosmological

constant, describing a Friedmann-Robertson-Walker (FRW) cosmology with a constant

Hubble parameter. There is now a large body of observational evidence for a present

cosmological acceleration well modelled by a positive cosmological constant Λ [100].

Cosmological dynamics should leave imprints in gravitational phenomena, such as

gravitational radiation emitted in a black hole binary coalescence. Identifying such

signatures can thus be phenomenologically relevant in view of ongoing efforts to directly

detect gravitational radiation.

Studying the dynamics of black holes in asymptotically de Sitter spacetimes can also

potentially teach us about more fundamental questions such as cosmic censorship, as in

the following scenario. Consider two black holes of sufficiently large mass in a de Sitter

spacetime. If, upon merger, the final black hole is too large to fit in its cosmological

horizon the end state of such an evolution would be a naked singularity. This possibility

begs for a time evolution of such a configuration, which we will show and discuss.

Black holes in a box

As argued above, having a framework to solve Einstein’s equations in asymptotically

Anti-de Sitter geometries would be of major help for studies of AdS/CFT duality, in

particular in dynamical settings. This is no easy task, however, and a major reason for

that is the “active role” played by the boundary of AdS spaces. This is easily visualised

in the Penrose diagram of AdS, which has a timelike boundary. Null geodesics in AdS

reach the boundary in a finite affine parameter, and one therefore often refers to an

asymptotically AdS space as a “box”, having in mind that AdS boundary conditions

directly affect the bulk physics [101, 102, 103].

As a first step to model the role of the boundary in evolutions, we will here give an

overview of the work reported in [104] where a toy model for AdS was considered.

Therein, as we will explain, the cosmological constant is set to zero and mirror-like

boundary conditions are imposed on a box containing the dynamical system, which

mimics the global AdS geometry.
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Inside this box, black hole binaries are evolved, producing an inspiralling merger. Such

systems are very well tested in standard asymptotically flat spacetimes with purely

outgoing boundary conditions, and differences to these cases can be clearly seen.

Black holes in cylinders

Again in the topic of higher-dimensional gravity, now in scenarios with compact extra

dimensions, a natural question to ask is how the compactness of the extra dimensions

changes the dynamics of such scenarios (as opposed to the asymptotically flat cases) and

understanding the role of the compactness of the extra dimensions in the aforementioned

TeV gravity scenarios.

There is considerable literature on Kaluza-Klein black holes and black holes on cylin-

ders [105, 106, 107, 108], but, to the best of our knowledge, the full non-linear dynamics

of black holes in such spacetimes remain unexplored.

In this spirit, using the formalism developed for higher-dimensional spacetimes, we have

started exploring what happens when one of the directions is compactified.

1.2.3 Einstein-Maxwell

Finally, we have started exploring the electrovacuum Einstein-Maxwell system. We first note

that while the dynamics of black holes interacting with electromagnetic fields and plasmas

have been the subject of a number of numerical studies (e.g. [109, 110]), dynamics of charged

(Reissner-Nordström) black holes have remained rather unexplored.

Studying the dynamics of charged black holes is relevant for a number of reasons. In the

context of astrophysics, charged black holes may actually be of interest in realistic systems.

First, a rotating black hole in an external magnetic field will accrete charged particles up to a

given value, Q = 2B0J [111]. It is thus conceivable that astrophysical black holes could have

some (albeit rather small) amount of electrical charge. It is then of interest to understand the

role of this charge in the Blandford-Znajek mechanism [112], which has been suggested for

extracting spin energy from the hole, or in a related mechanism capable of extracting energy

from a moving black hole [110, 113] to power outflows from accretion disk-fed black holes.

Also of interest is investigating the role of charge in post-merger recoil velocities of black hole

binaries, and see if the recently predicted recoils of ∼ 5000 km/s [33] could be exceeded.

Incentive to study such systems also comes from outside of astrophysics. In particular, as

already mentioned above, it was argued by ’t Hooft [64], that in trans-Planckian particle

collisions, gravity should dominate the interaction and thus the process should be well

described by general relativity—we can say that, for ultra high energy collisions, matter does

not matter [66]. Calculations of shock wave collisions, however, seem to suggest that even

though other interactions—say charge—may become irrelevant in the ultra-relativistic limit,

the properties of the final black hole (and of the associated emission of gravitational radiation)

will in fact depend on the amount of charge carried by the colliding particles [114, 115]. One

then wonders whether the often repeated matter does not matter scenario is actually true.
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Light can be shed in this issue by performing highly boosted collisions of charged black

holes (analogous to the ones performed in vacuum [40, 41]) and comparing the results—in

particular the profile of the corresponding waveform—against equivalent electrically neutral

systems.

With these incentives, we will report on the first steps taken in the numerical evolution of

Reissner-Nordström black holes, building on previous numerical evolutions of the Einstein-

Maxwell system [116, 109, 117, 118].

1.3 Structure

The structure of this thesis is as follows. We start by reviewing, in chapter 2, standard

differential geometry results, summarise the formalism of the “(D−1)+1” decomposition∗ and

conformal decomposition to write Einstein’s equations in a dynamical systems form. In chap-

ter 3 we then review the construction of relevant initial data for the class of problems we will be

interested on and discuss, in chapter 4, the numerical implementation of Einstein’s equations:

first, we need to re-write the evolution equations in the so-called BSSN (Baumgarte, Shapiro,

Shibata, Nakamura) form; we next discuss the gauge conditions and finish by giving a very

brief overview of the numerical code we use for the simulations. In chapter 5 we review the

usual procedures to extract the physical results from numerical simulations: wave extracting

and horizon finding. These chapters consist mostly of review material found in the usual

literature (e.g. [119, 120, 121]). Finally, in chapter 6, we introduce a dimensional reduction

procedure that allows us to reduce higher-dimensional systems (with enough symmetry) to

effective four-dimensional theories with source terms. This enables us to perform numerical

evolutions of such higher-dimensional systems by adapting existing numerical codes. We

also discuss the construction of initial data and present results. Chapter 7 is dedicated to

evolutions in non-asymptotically flat spacetimes: we present the aforementioned collisions of

black holes in asymptotically de Sitter spacetimes, black holes in a box and black holes in

asymptotically cylindrical spacetimes. In chapter 8 we report on evolutions of charged black

holes, in electrovacuum Einstein-Maxwell theory, and we end with some final remarks and

future directions in chapter 9.

1.4 Preliminaries

Let us consider a D-dimensional pseudo-Riemannian manifold (M, g), that is, a differentiable

manifoldM equipped with a smooth, symmetric metric tensor g with signature (−+ · · ·+).

We further assume that the manifold is covered by a set of coordinates {xµ}, µ = 0, . . . , D−1.

A coordinate basis of the tangent space of M at p, TpM, is given by ∂µ ≡ ∂/∂xµ. A vector

∗Usually found in the literature as “3+1” decomposition. Here we will keep the D arbitrary, but the

differences are minimal.
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V ∈ TpM can be written in the form

V = V µ∂µ , (1.4.1)

where V µ are the components of V in the basis ∂µ. When a vector V acts on a function f it

produces the directional derivative of f along V :

V (f) = V µ∂µf . (1.4.2)

A 1-form ω ∈ T ?pM (the cotangent space at p) is an object which is dual to a vector, i.e., it

produces a number when acting on a vector. The simplest example of such an object is the

differential df of a function f . The action of df on V is defined to be

〈df, V 〉 ≡ V (f) = V µ∂µf . (1.4.3)

Since df = ∂µfdxµ, {dxµ} is a natural choice as a basis of T ?pM. We thus naturally expand

an arbitrary 1-form ω as

ω = ωµdxµ . (1.4.4)

The metric tensor g allows us to define a scalar product between two vectors U and V

U · V ≡ g(U, V ) = g (∂µ, ∂ν)UµV ν ≡ gµνUµV ν , (1.4.5)

which induces an isomorphism between vectors and 1-forms, corresponding in the index

notation to the usual raising and lowering of indices: if U is a vector, one can define a 1-form

U[ through

〈U[, V 〉 ≡ g(U, V ) = gµνU
µV ν ≡ (U[)ν V

ν ∀V . (1.4.6)

Analogously, given a 1-form ω we can map it to a vector ω] through

〈σ, ω]〉 ≡ g−1(σ, ω) = g−1 (σµdxµ, ωνdxν) = gµνσµων ≡ σµ
(
ω]
)µ

∀σ . (1.4.7)

Since we will be working mostly in the index notation, and the placement of the index makes

clear whether one is dealing with vectors of 1-forms, we will omit the flat and sharp symbols

throughout.

The metric further allows us to determine the distance between two nearby points in the

manifold according to

ds2 = gµνdxµdxν . (1.4.8)

Notice that a basis of TpM (and of T ?pM) need not be coordinate. One can have, for instance,

the combination eα ≡ Aαµ∂µ. {eα} is an example of a non-coordinate basis.

We now introduce a (generic) non-coordinate basis obeying

[eα, eβ] = cαβ
δeδ , (1.4.9)

where the Lie bracket [X,Y ] is defined by

[X,Y ]f = X (Y (f))− Y (X(f)) . (1.4.10)
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The connection coefficients Γαβγ then take the form

Γαβγ =
1

2
gαδ (gδβ,γ + gδγ,β − gβγ,δ + cδβγ + cδγβ − cβγδ) , (1.4.11)

where Γα[βγ] = −1
2cβγ

α. When using coordinate basis (cβγ
α = 0), these are usually called

the Christoffel symbols.

We now define the Riemann curvature tensor

Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓαλγΓλβδ − ΓαλδΓ
λ
βγ − Γαβλcγδ

λ . (1.4.12)

Mind the notation

Tα,β ≡ ∂eβTα ≡ eβ (Tα) . (1.4.13)

Thus, Tα,σλ = ∂eλ∂eσTα 6= ∂eσ∂eλTα.

General relativity is a geometric theory of gravity which relates the curvature of spacetime

to its matter content via the Einstein field equations, which read

Gµν ≡ Rµν −
1

2
Rgµν = 8πTµν , (1.4.14)

where Rµν ≡ Rλµλν is the Ricci curvature tensor, R its trace (the Ricci scalar), gµν the metric

tensor and Tµν the stress-energy tensor. All these quantities are D-dimensional.

Throughout this work we will always use the (− + · · ·+) metric signature and geometrised

units G = 1 = c.
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(D − 1) + 1 decomposition

We start by briefly stating some known results from differential geometry that will be of use

to us. In this chapter we use the following conventions: Greek indices (α, β, γ, . . . ) run from

0 to D − 1; Latin indices (i, j, k, . . . ) run from 1 to D − 1.

We work on a D-dimensional manifold M with a metric gµν . We denote the torsion-free

Levi-Civita connection on M associated with gµν by D∇. All quantities defined relative to

the manifoldM will have a leading D superscript, e.g., the Riemann curvature tensor onM
is denoted by DRµαβγ .

2.1 Hypersurfaces

2.1.1 Definition

A codimension 1 hypersurface Σ is a (D − 1)-dimensional submanifold of M, defined as the

image of a (D− 1)-dimensional manifold Σ̂ by an embedding Φ, Σ = Φ(Σ̂) [122, 119]. Given

a scalar field t on M, we can select a particular hypersurface Σ by putting a restriction on

the coordinates

t (xα) = 0, (2.1.1)

or by giving parametric equations

xµ = xµ
(
yi
)
, (2.1.2)

where yi are coordinates intrinsic to the hypersurface.

25
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2.1.2 Normal vector

The 1-form ∂µt is normal to the hypersurface. We can introduce a unit normal nµ (if the

hypersurface is not null) as

nµ =
1√
|∂αt∂αt|

∂µt. (2.1.3)

With this definition

nµnµ ≡ σ =

{
−1 if Σ is spacelike

+1 if Σ is timelike
. (2.1.4)

2.1.3 Induced metric

We obtain the induced metric on Σ by restricting the line element to displacements confined

to the hypersurface. Using the parametric equations xµ = xµ
(
yi
)
, we define the vectors

eµi =
∂xµ

∂yi
(2.1.5)

that are tangent to the curves in Σ. For displacements confined to Σ we have

ds2
Σ = gµνdxµdxν

= gµν

(
∂xµ

∂yi
dyi
)(

∂xν

∂yj
dyj
)

= γijdy
idyj , (2.1.6)

where

γij ≡
(
∂xµ

∂yi

)(
∂xν

∂yj

)
gµν (2.1.7)

is the induced metric of the hypersurface (also called the first fundamental form of Σ). Notice

that if u, v ∈ Σ,

u · v = gµνu
µvν = γiju

ivj .

2.1.4 Orthogonal projector

The orthogonal projector onto Σ is a concept closely related with that of the induced metric.

For a hypersurface Σ with unit normal nµ we define it as

Pµν = gµν − σnµnν . (2.1.8)

To see that this definition makes sense, we note that, for any vector vµ in M (or, more cor-

rectly, in TpM, the tangent space ofM at p), Pµν will project it tangent to the hypersurface,

i.e., orthogonal to nµ:

(Pµνv
µ)nν = 0. (2.1.9)
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Notice also that the projector is idempotent:

PµλP
λ
ν = Pµν . (2.1.10)

Finally, note that for u, v ∈ Σ, Pµν acts just like the metric:

Pµνu
µvν = gµνu

µvν = γiju
ivj . (2.1.11)

Thus, we see that the orthogonal projector Pµν is the natural extension of the induced metric

γij for all vectors in TpM. As such, from now on we will no longer make any distinction

between these two concepts, and will denote both by γµν (defined as γµν = gµν − σnµnν).

This way we adopt a D-dimensional point of view, where we treat all tensor fields defined

on Σ as if they were defined on M and we avoid the need to introduce a specific coordinate

system on Σ.

Note that we can project an arbitrary tensor on M onto Σ in the following way. Let

Tµ1···µp
ν1···νq be a tensor field on M. Denoting (γ T )α1···αp

β1···βq another tensor in M such

that

(γ T )α1···αp
β1···βq = γα1

µ1 · · · γαpµpγν1
β1 · · · γνqβqTµ1···µp

ν1···νq , (2.1.12)

we easily see that (γ T )α1···αp
β1···βq is in Σ.

2.1.5 Intrinsic curvature

We now want to define a covariant derivative associated with γµν on Σ, ∇, that has the

“usual properties” of a covariant derivative, in particular that it is torsion-free and satisfies

∇αγµν = 0. (2.1.13)

The easiest way to define it is just to project the covariant derivative D∇ onto Σ using (2.1.8):

∇ρTα1···αp
β1···βq = γα1

µ1 · · · γαpµpγν1
β1 · · · γνqβqγσρD∇σTµ1···µp

ν1···νq . (2.1.14)

It can be shown [119] that this definition of the covariant derivative has all the properties we

want (linearity, Leibniz’ rule, its torsion vanishes, . . . ) and it satisfies (2.1.13).

We can now define the Riemann tensor associated with this connection, Rαβγδ, as the measure

of the non-commutativity of this covariant derivative, associated with the γµν metric on Σ,

∇α∇βvγ −∇β∇αvγ = Rγµαβv
µ, (2.1.15)

where vµ ∈ Σ.

Rαβγδ represents the intrinsic curvature of Σ.
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2.1.6 Extrinsic curvature

The intrinsic curvature of the hypersurface Σ, as the name implies, is a property of the

hypersurface itself. We will now define the extrinsic curvature, which depends on how Σ is

embedded on M. We define it as∗ [123]

Kµν = −γαµγβν∇αnβ. (2.1.16)

It can be shown that Kµν = Kνµ. Defining

aµ = nν∇νnµ, (2.1.17)

we have, after some simple algebra,

Kµν = −∇µnν + σnµaν . (2.1.18)

We will always consider spacelike hypersurfaces, so from now on we will work with σ = −1.

Note that, by definition, Kµν lives on Σ.

2.2 Foliations

We assume that our spacetime can be foliated by a family of spacelike hypersurfaces Σt, that

is, there exists a smooth scalar field t̂ on M such that

Σt ≡
{
p ∈M, t̂(p) = t

}
. (2.2.1)

In the following we will not distinguish between t and t̂.

2.2.1 The lapse function

We write the unit normal vector as

nµ ≡ −α∂µt, (2.2.2)

where

α ≡ 1√
−∂νt∂νt

(2.2.3)

is called the lapse function.

∗Our definition, with the minus sign, agrees with the standard convention used in the numerical relativity

community, but note that some authors use different conventions.
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2.2.2 Normal evolution vector

We define the normal evolution vector as

mµ ≡ αnµ. (2.2.4)

We can easily see that

mµD∇µt = 1,

which means that mµ, unlike nµ, is adapted to the scalar field t. It can be shown [119] that

the hypersurfaces Σt are Lie dragged by mµ. As consequence of this, if vµ is in Σ, Lmv is

also in Σ.

2.2.3 Eulerian observers

We can identify the unit timelike vector nµ as the velocity (or the “D-velocity”. . . ) of

some observer, that we will call the Eulerian observer. The worldlines of these observers are

orthogonal to the hypersurfaces Σt, which means that, for a given t, the hypersurface Σt is

the set of events that are simultaneous from the point of view of the Eulerian observer.

We define the acceleration of the Eulerian observer the usual way,

aµ = nν∇νnµ. (2.2.5)

Let us now list some formulæ that will be useful for the following sections:

aµ = ∇µ logα, (2.2.6)
D∇βnα = −Kαβ − nβ∇α logα, (2.2.7)
D∇βmα = −αKα

β − nβ∇αα+ nαD∇βα. (2.2.8)

2.2.4 Evolution of γαβ

From the definition of Lie derivative and equation (2.2.8), one can show

Lmγαβ = −2αKαβ, (2.2.9)

and

Lmγαβ = 0, (2.2.10)

which means that, for any tensor field T on Σt, its Lie derivative along m is also a tensor

field on Σt.
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2.3 Gauss, Codazzi and Ricci equations

We still need a way to relate quantities defined on the hypersurface to those defined on

the manifold M; in particular, we would like to have a relation between the D-dimensional

Riemann curvature tensor, the (D− 1)-dimensional Riemann tensor on the hypersurface and

the extrinsic curvature. Such relations are common in differential geometry—known as the

equations of Gauss, Codazzi and Ricci—which we now state without proof (see, e.g., [119]).

2.3.1 Gauss equation

The starting point is equation (2.1.15). We just need to use equation (2.1.14) to relate ∇αvγ
with D∇αvγ . After some algebra we arrive at

γµαγ
ν
βγ

γ
ργ

σ
δ
DRρσµν = Rγδαβ +Kγ

αKδβ −Kγ
βKαδ, (2.3.1)

which is called the Gauss equation. Contracting this equation on γ and α we get

γµαγ
ν
β
DRµν + γαµγ

ρ
βn

νnσ DRµνρσ = Rαβ +KKαβ −KαµK
µ
β, (2.3.2)

where we defined K ≡ Kµ
µ = Ki

i (where the equality comes from the fact that Kµν lives on

Σ). Taking the trace of this expression we have (noting that KµνK
µν = KijK

ij)

DR+ 2DRµνn
µnν = R+K2 −KijK

ij . (2.3.3)

2.3.2 Codazzi equation

We now start with the following equation

∇α∇βnγ −∇β∇αnγ = Rγµαβn
µ, (2.3.4)

and we project it onto Σ using (2.1.12). Using equation (2.1.18) and after some algebra we

arrive at

γγργ
µ
αγ

ν
βn

σ DRρσµν = ∇βKγ
α −∇αKγ

β, (2.3.5)

which is called the Codazzi equation. Contracting this equation on β and γ we have

γµαn
ν DRµν = ∇αK −∇µKµ

α. (2.3.6)

2.3.3 Ricci equation

We still need one more projection of the Riemann tensor (in fact, the last non-trivial projec-

tion). Again, we start with equation (2.3.4), but this time we project it only twice onto Σt

and one time along nµ:

γαµn
σγνβ

(
D∇νD∇σnµ − D∇σD∇νnµ

)
= γαµn

σγνβn
ρDRµρνσ. (2.3.7)
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Using equations (2.2.7), (2.2.8) and some properties of the Lie derivative we arrive at

γαµγ
ν
βn

ρnσDRµρνσ =
1

α
LmKαβ +

1

α
∇α∂βα+KαµK

µ
β, (2.3.8)

which is called the Ricci equation. We can combine equation (2.3.8) with equation (2.3.2) to

get

γµαγ
ν
β
DRµν = − 1

α
LmKαβ −

1

α
∇α∂βα+Rαβ +KKαβ − 2KαµK

µ
β. (2.3.9)

2.4 Einstein equations

Our goal now is to write the Einstein equations in an explicit dynamical system form. Let

us start by writing the equations themselves in their “traditional” form,

DRµν −
1

2
DRgµν = 8π Tµν . (2.4.1)

The alternative form
DRµν = 8π

(
Tµν −

T

D − 2
gµν

)
, (2.4.2)

where T ≡ gµνTµν , will also be useful to us.

2.4.1 Decomposition of the stress-energy tensor

We define

E ≡ Tµνnµnν , (2.4.3)

jα ≡ −Tµνnµγνα, (2.4.4)

Sαβ ≡ Tµνγµαγνβ, (2.4.5)

which correspond to the matter energy density, the matter momentum density and the matter

stress density, respectively, as measured by the Eulerian observer. We further define S ≡
gµνSµν = γijSij and note that T = S − E.

2.4.2 Projection of the Einstein equations

2.4.2.1 Projection onto Σt

Using equation (2.3.9) we project equation (2.4.2) onto Σt. We get

LmKαβ = −∇α∇βα+ α

[
Rαβ +KKαβ − 2KαµK

µ
β +

8π

D − 2
(S − E)γαβ − 8πSαβ

]
.

(2.4.6)

Note that every single term in this equation lives in Σt. Thus, we can restrict the indices to

spacial ones,

LmKij = −∇i∇jα+ α

[
Rij +KKij − 2KikK

k
j +

8π

D − 2
(S − E)γij − 8πSij

]
. (2.4.7)
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2.4.2.2 Projection along nµ

This step is easy, we just need to contract equation (2.4.1) with nµnν and use (2.3.3), yielding

R+K2 −KijK
ij = 16πE. (2.4.8)

This equation is called the Hamiltonian constraint.

2.4.2.3 Mixed projection

Finally, we need to project equation (2.4.1) once onto Σt and once along nµ. Using equa-

tion (2.3.6) we get

∇j
(
Kij − γijK

)
= 8πji. (2.4.9)

This equation is called the momentum constraint.

2.5 Choice of coordinates

Equations (2.4.7) ((D− 1)D/2 equations), (2.4.8) (1 equation) and (2.4.9) (D− 1 equations)

contain the same information as equation (2.4.1) (it can be checked that the number of

independent components is the same: (D − 1)D/2 + 1 + (D − 1) = D(D + 1)/2). Before

we can cast these equations in a dynamical system form, however, we have to introduce a

specific coordinate system, something we have not yet done.

We will introduce coordinates adapted to the foliation Σt in the following way [119]. On

each hypersurface Σt we have a coordinate system xi = x1, x2, . . . , xD−1 that is varying

smoothly between neighbouring hypersurfaces, so that xα = t, x1, x2, . . . , xD−1 is a well

behaved coordinate system on M. In this coordinate system

nµ = (−α, 0, . . . , 0). (2.5.1)

We define the shift vector β as

β ≡ ∂t −m, (2.5.2)

or in components, βµ ≡ δµt−mµ. Note that nµβ
µ = 0, so β lives on Σt (βt = 0). Using (2.5.2)

we can also write

nµ =
1

α

(
1,−βi

)
. (2.5.3)

Notice also that

∂t · ∂t = −α2 + βµβµ = −α2 + βkβk.
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We are now able to write the metric components gµν relative to this coordinate system,

g00 = gµν (∂t)
µ (∂t)

ν = ∂t · ∂t = −α2 + βkβk,

g0i = gµν (∂t)
µ (∂i)

ν = (m+ β) · ∂i = β · ∂i = βjδ
j
i = βi,

gij = gµν (∂i)
µ (∂j)

ν = γkl (∂i)
k (∂j)

l = γij .

The line element is thus

gµνdxµdxν = −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
, (2.5.4)

or, in matrix form,

gµν =

(
−α2 + βkβ

k βi
βj γij

)
. (2.5.5)

The inverse metric takes the form

gµν =

(
− 1
α2

βi

α2

βj

α2 γij − βiβj

α2

)
. (2.5.6)

The determinants of gµν and γij are related by

√−g = α
√
γ, (2.5.7)

where

g ≡ det gµν , γ ≡ det γij .

2.6 The PDE system

Using the properties of the Lie derivative and the definition of shift vector, equation (2.5.2),

we can write

LmKij = ∂tKij − LβKij . (2.6.1)

Equation (2.2.9) can also be put in the form

(∂t − Lβ) γij = −2αKij . (2.6.2)

We now have our full system, which we rewrite here

(∂t − Lβ) γij = −2αKij , (2.6.3a)

(∂t − Lβ)Kij = −∇i∇jα+ α

[
Rij +KKij − 2KikK

k
j +

8π

D − 2
(S − E)γij − 8πSij

]
,

(2.6.3b)

R+K2 −KijK
ij = 16πE, (2.6.3c)

∇j
(
Kij − γijK

)
= 8πji. (2.6.3d)
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Note that we can write the covariant derivatives ∇k and the Lie derivatives Lβ in terms of

partial derivatives of the coordinates xi, and the Ricci tensor Rij and Ricci scalar R in terms

of γij and its derivatives in the usual way. This way, assuming that the source terms E, ji,

Sij are given, we have a second-order non-linear system of PDEs with the unknowns γij , Kij ,

α, βi.

The above equations (2.6.3) are known in the numerical relativity community as the ADM

equations, after the work of Arnowitt, Deser and Misner [124] on their Hamiltonian formu-

lation of general relativity. In this form, however, the equations were in fact first written

by York [125] (in four spacetime dimensions), and are thus sometimes referred to as the

ADM-York equations.

By now we have cast the Einstein equations on an explicit (D − 1)-dimensional dynamical

system form. Note, however, that whereas equations (2.6.3a) and (2.6.3b) are evolution

equations, equations (2.6.3c) and (2.6.3d) are not. These last two equations constitute

constraints that the system must satisfy at all times. In particular, these constraints must be

satisfied at t = 0. So we would now need to specify the relevant initial conditions, satisfying

equations (2.6.3c) and (2.6.3d), and then evolve them using equations (2.6.3a) and (2.6.3b),

while making sure that equations (2.6.3c) and (2.6.3d) always hold.

The question arises: given a specific physical problem (say, a head-on collision of two black

holes), how does one specify the initial conditions that correspond to the problem we have

in mind? This is the initial data problem which will be the focus of the next chapter.



Chapter 3

Initial data

On any dynamical system, to perform an evolution one needs to supply the initial condi-

tions. In our case, this amounts to providing a snapshot of the gravitational fields on some

hypersurface—the initial data. Then, one evolves this data to neighbouring hypersurfaces

and so on.

In general relativity initial data cannot be freely specified. As we have seen in chapter 2,

not all of Einstein’s equations are evolutions equations. We also have a set of constraint

equations that must be satisfied at all times, the Hamiltonian (2.6.3c) and momentum (2.6.3d)

constraints. In particular, these equations need to be solved at t = 0 for the (γij ,Kij) that

represent the physical system we are interested in evolving. We then feed these values to the

evolution equations themselves.

In general, this step is far from trivial. There is no unique recipe for the writing of initial

data corresponding to an arbitrary gravitational system. For some systems, however,—such

as vacuum spacetimes with moving black holes—recipes do exist. Actually, for the four-

dimensional case, several methods for constructing initial data for different systems have been

explored over the years (see [126] for a review). For higher-dimensional systems, however,

only recently the “standard” way of constructing initial data for moving black holes in the

vacuum was generalised [127, 128].

In this chapter we will give an overview of the procedure of conformal decomposition first

introduced by York and Lichnerowicz [129, 130, 131, 132] which rearranges the degrees

of freedom contained in the three-metric γij and extrinsic curvature Kij via a conformal

transformation and a split of the curvature into trace and traceless part followed by a

transverse-traceless decomposition of the conformally rescaled traceless extrinsic curvature.

We will focus specifically on initial data for vacuum spacetimes, generalising the well-known

Brill-Lindquist [133] and Bowen-York [134, 135] initial data along the lines of [127, 128].

For alternative procedures to tackle the initial data problem we refer the reader to Cook’s

review [126], Alcubierre’s book [120], the recent book by Baumgarte & Shapiro [121] and

references therein.

35
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As in the previous chapter, Greek indices are spacetime indices running from 0 to D − 1;

Latin indices are spatial indices, running from 1 to D − 1.

3.1 Conformal decomposition

3.1.1 Conformal transformations

We start by recalling a known general result: given an N -dimensional manifold with metric

gµν , if one performs the conformal transformation

gµν = φ (xα) ĝµν , (3.1.1)

the Ricci scalars relative to the metrics gµν and ĝµν are related by

R =
R̂

φ
+

1−N
φ2
∇̂α∂αφ−

∂αφ∂
αφ

4φ3
(1−N)(6−N), (3.1.2)

where ∇̂ is the covariant derivative associated with the conformal metric ĝµν .

Let us now consider our case, where we have a (D−1)-dimensional spacelike slice with induced

metric γij and “conformal metric” γ̂ij . We have N = D − 1, and we make

φ = ψp, p =
4

D − 3
.

We have

R = ψ−pR̂+ (2−D)pψ−p−1∇̂k∂kψ. (3.1.3)

We further decompose the extrinsic curvature in trace and trace-free parts,

Kij ≡ Aij +
K

D − 1
γij , (3.1.4)

where K ≡ γijKij and, by definition, γijAij = 0. Defining Aij = γikγjlAkl, we can also write

Kij ≡ Aij +
K

D − 1
γij . (3.1.5)

3.1.1.1 Conformal decomposition of the Hamiltonian and momentum constraint

Under such a transformation, it is a matter of simple substitution to show that the Hamilto-

nian constraint equation (2.6.3c) takes the form

4̂ψ +
ψ

p(2−D)
R̂− ψp+1

p(2−D)
AijAij −

ψp+1

p(D − 1)
K2 = 16πE

ψp+1

p(2−D)
, (3.1.6)

where 4̂ ≡ ∇̂k∇̂k.
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With a straightforward calculation we can easily show that

∇iAij = ψ−q∇̂k
(
ψqAkj

)
, (3.1.7)

with q ≡ 2D+1
D−3 . Thus, we define

Âij ≡ ψqAij ≡ ψ2D+1
D−3Aij , (3.1.8)

and we will lower its indices with γ̂ij ,

Âij ≡ γ̂ikγ̂jlÂkl = ψ2Aij . (3.1.9)

We thus have

∇iKij = ψ−q∇̂iÂij +
ψ−p

D − 1
∇̂jK.

Equation (2.4.9) is then written in the form

∇̂iÂij −
D − 2

D − 1
ψ2D−1

D−3 ∇̂jK = 8πψ2D+1
D−3 jj . (3.1.10)

All we need now is to write equation (3.1.6) as function of Âij , which is very easy. Our system

is now

4̂ψ − D − 3

4(D − 2)
ψR̂+

D − 3

4(D − 2)
ψ−

3D−5
D−3 ÂijÂij −

D − 3

4(D − 1)
ψ
D+1
D−3K2 = −4πE

D − 3

D − 2
ψ
D+1
D−3 ,

(3.1.11)

∇̂iÂij −
D − 2

D − 1
ψ2D−1

D−3 ∇̂jK = 8πψ2D+1
D−3 jj , (3.1.12)

where

gµνdxµdxν = −α2dt2 + ψ
4

D−3 γ̂ij
(
dxi + βidt

) (
dxj + βjdt

)
.

3.2 Initial data for vacuum spacetimes

Let us now consider the equations (3.1.11) and (3.1.12) for the particular case of vacuum

solutions (ji = 0 = E). We further impose that the “conformal metric” γ̂ij is flat (and, thus,

R̂ = 0 ) and the “maximum slicing condition”, K = 0 (to be discussed in section 4.2.1). The

equations (3.1.11) and (3.1.10) greatly simplify, and we are left with

∂iÂ
ij = 0, (3.2.1)

4̂ψ +
D − 3

4(D − 2)
ψ−

3D−5
D−3 ÂijÂij = 0, (3.2.2)

where 4̂ ≡ ∂i∂i is now the flat space Laplace operator.
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Here we make a pause to recall that the Schwarzschild-Tangherlini metric in D dimensions is

ds2 = −
(

1− µ

rD−3

)
dt2 +

dr2

1− µ
rD−3

+ r2dΩ2
D−2, (3.2.3)

where µ = 16πM
(D−2)AD−2

, M being the mass of the black hole and AN−1 = 2πN/2

Γ(N/2) the area of

the hypersphere. By performing the coordinate transformation

r = R
(

1 +
µ

4RD−3

) 2
D−3

we can write it in isotropic coordinates as

ds2 = −
(

1− 16R3+Dµ

(4RD +R3µ)2

)
dt2 +

(
1 +

µ

4RD−3

) 4
D−3 (

dR2 +R2dΩ2
D−2

)
. (3.2.4)

We will shortly make use of this geometry.

3.2.1 Brill-Lindquist initial data

We now assume that the extrinsic curvature vanishes identically, Kij = 0, a condition that

holds for time-symmetric initial data. It can be shown [119] that if Kij = 0 and we choose

coordinates such that α = 1, we have

Lmgαβ = 0,

which means that, locally, mµ is a Killing vector. mµ is also orthogonal to the hypersurface

Σt=0, and as such this configuration is static. This property only holds locally (on Σt=0) and

we therefore call this configuration momentarily static.

For Kij = 0 equation (3.2.1) is automatically satisfied, and (3.2.2) reduces to the standard

D − 1-dimensional flat space Laplace equation,

4̂ψ = 0. (3.2.5)

We impose the following conditions on ψ

lim
r→∞

ψ = 1, (3.2.6)

which is the asymptotic flatness condition (remember that γij = ψ
4

D−3 γ̂ij).

Let r(i) ≡ |r − x(i)|, where the x(i) are arbitrary points in our spacetime. A solution to

equation (3.2.5) is given by

ψ = 1 +

N∑
i=1

C(i)

rD−3
(i)

, (3.2.7)

where the C(i) are arbitrary constants. Note that equation (3.2.7) obeys the condition (3.2.6).

The spatial metric takes the form (recall that the conformal metric γ̂ij is flat)

γijdx
idxj =

(
1 +

N∑
i=1

C(i)

rD−3
(i)

) 4
D−3 (

dr2 + r2dΩ2
D−2

)
. (3.2.8)
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This solution is asymptotically flat (by construction), and if we compare this expression

with (3.2.4), we can identify µ = 4
∑N

i=1C(i), which is the mass parameter measured in the

“principal sheet” (anticipating the interpretation).

We now have to analyse what happens as r → x(i), for a given i. When r → x(i), r(i) → 0 and

r(j) → r(i)(j) ≡ |x(i) − x(j)|. Setting the origin of our coordinate system at r = r(i) (x(i) = 0)

we have

ds2 =

(
C(i)

rD−3
(i)

) 4
D−3

1 +
rD−3

(i)

C(i)

1 +

N∑
j 6=i

C(j)

rD−3
(j)

 4
D−3 (

dr2
(i) + r2

(i)dΩ2
D−2

)
,

and when r(i) → 0

ds2 →
(
C(i)

rD−3
(i)

) 4
D−3

[
1 +A(i)

rD−3
(i)

C(i)

] 4
D−3 (

dr2
(i) + r2

(i)dΩ2
D−2

)
,

where we defined A(i) ≡ 1 +
∑N

j 6=i
C(j)

rD−3
(i)(j)

. With the coordinate transformation r′(i) =
C

2
D−3
(i)

r(i)
we

have

ds2−−−−→
r(i)→0

r′
(i)
→∞

(
1 +A(i)

C(i)

r′(i)
D−3

)(
dr′(i)

2 + r′(i)
2dΩ2

D−2

)
. (3.2.9)

This shows that in this limit the space is also asymptotically flat. Thus, our solution (3.2.8)

describes a space with N + 1 asymptotically flat regions. Note that all “lower sheets” are

separate, i.e., there is no way to travel from one sheet to the other except through the “upper

sheet” (or “principal sheet”). Equation (3.2.9) shows that each sheet, asymptotically, has a

Schwarzschild-Tangherlini form, with the mass measured in the ith sheet being given by

µ̄(i) = 4A(i)C(i) = 4

C(i) +
N∑
j 6=i

C(i)C(j)

rD−3
(i)(j)

 . (3.2.10)

The observer located on the principal sheet (the (N + 1)th sheet) is the only one that sees

a system of N black holes, with total mass µADM = µN+1 = 4
∑N

i=1C(i), as we had already

mentioned. Thus we identify µ(i) ≡ 4C(i) and rewrite our expressions in terms of µ(i),

ψ = 1 +
N∑
i=1

µ(i)

4rD−3
(i)

,

µ̄(i) = µ(i)

1 +
N∑
j 6=i

µ(j)

4rD−3
(i)(j)

 ,

µADM =
N∑
i=1

µ(i),

where r(i) ≡ |r − x(i)| and r(i)(j) ≡ |x(i) − x(j)|. The points x(i) are called punctures.
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Note that µ 6= ∑N
i µ̄(i). This difference can be attributed to the interaction energy between

the black holes. It is important to note that µi, as we have defined it, is just a convenient

label for the mass of the ith black hole (but is not the mass). The mass of the ith black hole

as measured on the ith sheet (its “bare mass”), is given by µ̄(i).
∗

3.2.2 Bowen-York initial data

Brill-Lindquist initial data is very useful because it provides us with an analytical solution

for the constraint equations. However, it also has little physical relevance. Generally, one

is interested in solutions with black holes that are spinning and moving and as such Brill-

Lindquist data is clearly not enough.

In order to have a more general configuration, i.e. one that is not momentarily static, we

cannot impose Kij = 0. Let us recall that our assumptions are: K = 0—the maximum slicing

condition; γ̂ij is flat—the conformal flatness condition; and limr→∞ ψ = 1—the asymptotic

flatness condition.

We now start by writing Âij in the form

Âij = (L̂X)ij + ÂijTT, (3.2.11)

where

(L̂X)ij ≡ ∇̂iXj + ∇̂jXi − 2

D − 1
∇̂kXkγ̂ij . (3.2.12)

By construction, (L̂X)ij γ̂ij = 0, and we impose γ̂ijÂ
ij
TT = 0 = ∇̂jÂijTT. We will also restrict

ourselves to the case ÂijTT = 0. The equations (3.2.1) and (3.2.2) take the form

4̂Xj +
D − 3

D − 1
∂j∂iX

i = 0, (3.2.13)

4̂ψ +
D − 3

4(D − 2)
ψ−

3D−5
D−3 ÂijÂij = 0, (3.2.14)

Âij = (L̂X)ij . (3.2.15)

Thus, we have to solve (3.2.13), plug Xj in (3.2.15) and then solve (3.2.14). We will see that,

even though we will be able to solve (3.2.13) analytically, we generally have to use numerical

methods to solve (3.2.14).

To solve (3.2.13) we make the following decomposition [128], which introduces functions λ

and Vj ,

Xj =
3D − 5

D − 3
Vj −

(
∂jλ+ xk∂jVk

)
. (3.2.16)

∗There seems to be some mismatch in the literature as to the definition of “bare mass”. Brill and

Lindquist [133] clearly define it as µ̄(i), in our notation, and they even point out that the sum of the bare

masses is different from the total mass. However, Brandt and Brügmann [135] seem to define bare mass as

µ(i).
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Equation (3.2.13) then gets the form

3D − 5

D − 3
4̂Vj − xk∂j4̂Vk − 2

D − 2

D − 1
∂j4̂λ−

D − 3

D − 1
∂j

(
xk4̂Vk

)
= 0,

which is solved if {
4̂Vj = 0

4̂λ = 0
. (3.2.17)

We have reduced our problem to solving two flat space Laplace equations, which have known

analytical solutions. In the following we analyse some possible solutions [128].

3.2.2.1 Moving black holes

We start by choosing a solution for the system (3.2.17) of the form

Vj = − 2π

(D − 2)AD−2

Pj
rD−3

, λ = 0. (3.2.18)

AN stands for the area of the N -dimensional hypersphere. Pj are constants that, as we shall

see, will be the linear momentum of the black hole in the j direction.

For such an ansatz we have, from equation (3.2.16),

Xj = − 2π

(D − 2)AD−2

1

rD−3

(
3D − 5

D − 3
Pj + (D − 3)nkPknj

)
, (3.2.19)

where nj ≡ xj
r , and from equations (3.2.15) and (3.2.12)

Âij =
4π(D − 1)

(D − 2)AD−2

1

rD−2

(
niP j + njP i − nkP kγ̂ij + (D − 3)ninjP knk

)
. (3.2.20)

The ADM linear momentum is given by [134, 128, 119]

PADM
i =

1

8π

∫
r→∞

(
Kijn

j −Kni
)√

q dD−2y, (3.2.21)

where we perform the integration on a hypersphere at infinity;
√
qdD−2y denotes the induced

metric on the hypersphere—using spherical coordinates
√
qdD−2y = rD−2dΩD−2 (we can

write the induced metric on a hypersphere S of radius r as ds2
S = qABdyAdyB = r2dΩ2

D−2,

and thus q = det qAB = (r2)D−2dΩ2
D−2); nj is its unit normal vector.

Reminding ourselves that

Âij = ψ2D+1
D−3Aij ,

Âij = ψ2Aij ,

Kij = Aij (we are considering K = 0),

ψ = 1 +O

(
1

r

)
,
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we see that we can calculate the ADM linear momentum without knowing ψ. Plugging (3.2.20)

into (3.2.21) we have that PADM
i = Pi, as expected.

Finally, we note that, as the equation (3.2.1) is linear, we can superimpose N solutions of

the type (3.2.21) corresponding to N Schwarzschild black holes,

ÂabP =

N∑
i=1

ÂabP (i), (3.2.22)

where

ÂabP (i) =
4π(D − 1)

(D − 2)AD−2

1

rD−2
(i)

(
na(i)P

b
(i) + nb(i)P

a
(i) − (n(i))kP

k
(i)γ̂ab + (D − 3)na(i)n

b
(i)P

k
(i)(n(i))k

)
,

(3.2.23)

where na(i) ≡
xa−xa

(i)

r(i)
and the parameters P a(i) correspond to the ADM momentum of the ith

black hole when the separation of the holes is very large.

3.2.2.2 Spinning black holes

Let us now try a solution of (3.2.17) of the form

Vj =
(D − 3)π

(D − 2)AD−2

Jjk n
k

rD−2
, λ = 0, (3.2.24)

where Jjk = −Jkj will be the angular momentum tensor of the black hole. We have

Xj =
4π

AD−2
Jjk

xk

rD−1
, (3.2.25)

and

Âij = −4π(D − 1)

AD−2

1

rD−1

(
J jknkn

i + J iknkn
j
)
. (3.2.26)

The ADM angular momentum is given by (when K = 0) [134, 128, 119]

JADM
ik =

1

8π

∫
r→∞

(xiKjk − xjKik)n
k√q dD−2y. (3.2.27)

We can check that JADM
ik = Jik.

For D = 4 we can define the angular momentum vector in the usual way,

J i =
1

2
εijkJkl. (3.2.28)

As in the previous section, we can now superimpose N solutions of the type (3.2.26),

ÂabJ =

N∑
i=1

ÂabJ(i), (3.2.29)
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where

ÂabJ(i) = −4π(D − 1)

AD−2

1

rD−1
(i)

(
Jbk(i)(n(i))kn

a
(i) + Jak(i)(n(i))kn

b
(i)

)
. (3.2.30)

The parameters Jab(i) correspond to the ADM angular momentum of the ith black hole when

the separation of the holes is very large.

3.2.2.3 General case

We can now combine the results from the two previous sections to build a solution of N black

holes with arbitrary linear momentum and spin,

Âab =
N∑
i=1

(
ÂabP (i) + ÂabJ(i)

)
, (3.2.31)

where ÂabP (i) and ÂabP (i) are given by equations (3.2.23) and (3.2.30).

Note: This solution reduces to the Brill-Lindquist momentarily static solution (Kij = 0)

when P a(i) = 0 = Jab(i). For N = 1, Jab 6= 0 and P a = 0, however, we do not have a slice

of a Kerr (or, for the higher-dimensional case, Myers-Perry) spacetime. It has actually

been shown [136] that there is no foliation of the Kerr spacetime that is axisymmetric,

conformally flat, and reduces smoothly to the Schwarzschild solution in the non-rotating

limit.∗ This means that our Bowen-York solution with Jab 6= 0 does represent a rotating

black hole, but not a stationary one. For the four-dimensional case, when we evolve

the data, the system emits gravitational radiation and eventually settles down to the

Kerr solution [137, 138] (the higher-dimensional case has not been studied as of yet).

This spurious gravitational radiation has no desirable physical properties and is often

referred to as “junk radiation”.

3.2.2.4 Conformal factor

We still need to solve equation (3.2.14) to get the full initial data, and now there is no hope

of finding an analytical solution. Let us rewrite the equation we need to solve,

4̂ψ +
D − 3

4(D − 2)
ψ−

3D−5
D−3 ÂijÂij = 0, (3.2.32)

with Âij given by (3.2.31).

Along the lines of [135] and [128] we write

ψ = ψBL + u, (3.2.33)

∗For the four-dimensional Kerr solution, but there is no reason to believe that the higher-dimensional case

is any different.
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where

ψBL ≡ 1 +
N∑
i=1

µ(i)

4rD−3
(i)

. (3.2.34)

Equation (3.2.32) then takes the form

4̂u+
D − 3

4(D − 2)
ÂabÂabψ

− 3D−5
D−3 = 0 . (3.2.35)

For the four-dimensional case, Brandt and Brügmann [135] were able to show the existence

and uniqueness of C2 solutions for the above equations. Furthermore, the solution for u

is found on an Euclidean manifold; we do not need to impose inner boundary conditions

to avoid singularities. Brandt and Brügmann also show that this solution is the “natural”

generalisation of the Brill-Lindquist initial data, i.e., each puncture represents the infinity of

another asymptotically flat region of the spacetime and there is no way to travel from one

sheet to the other except through the “upper” sheet. The higher-dimensional case has not

been thoroughly studied, but it is believed that the situation is not radically different [128].

3.3 Final remarks

In this chapter we introduced tools for the construction of initial data for higher-dimensional

numerical relativity. As we mentioned, even though the four-dimensional case has been

thoroughly studied, the study of initial data for higher-dimensional systems started only very

recently. As of yet, only Brill-Lindquist and Bowen-York initial data have been generalised,

but with these two approaches one is already able to construct quite interesting systems for

vacuum spacetimes. In particular, the Bowen-York approach allows us to write initial data

for spacetimes with an arbitrary number of moving and spinning black holes.

For the four-dimensional case there are also powerful computer codes to solve the elliptic

equation (3.2.35), such as the spectral method presented by Ansorg et al. [139].

In upcoming chapters we will present a generalisation of the spectral solver in [139] that

solves (3.2.35) for black hole binaries in D ≥ 5 dimensions with non-vanishing initial boost,

and preserves the spectral convergence properties observed in four dimensions.



Chapter 4

Numerical implementation

In chapter 2, we have written Einstein’s field equations explicitly in a form (usually referred

to as ADM equations (2.6.3)) which one could easily give to a computer to evolve. As can be

seen from this system of equations, though, we are still not quite ready to perform numerical

evolutions: we still need to say what happens with the variables α (lapse) and βi (shift). The

Einstein equations have not imposed any evolution equation for these variables. This reflects

our coordinate freedom: fixing the lapse function and shift vector is a gauge choice, which

one could in principle do arbitrarily. In turns out, though, that a good choice is crucial to

achieve a stable numerical integration. We will in this chapter briefly discuss why this is the

case and write down the equations we will be using throughout this work.

It also turns out, as researchers eventually found out empirically in the 1990s when full

three-dimensional evolutions were attempted using the ADM equations, that this system of

evolution equations is not well suited to obtain long-term stable numerical simulations. This is

now known to be due to the fact that the ADM equations are only weakly hyperbolic.∗ People

started experimenting with reformulations of the ADM equations and in 1998 Baumgarte and

Shapiro—revisiting an earlier formulation based on conformal transformations by Nakamura,

Oohara and Kojima [140] and Shibata and Nakamura [141]—showed that this formulation

behaved much better than ADM for all cases considered [142]. This formulation became

known as BSSN (Baumgarte, Shapiro, Shibata and Nakamura) and is today the most popular

scheme used to evolve Einstein’s equations.

It was later realised that indeed the BSSN scheme can be shown to be strongly hyperbolic, as

opposed to only weakly hyperbolic like in the ADM case, and thus well-posed, e.g. [143, 144].

We should also mention that other successful evolution schemes do exit. Most notably, the

generalised harmonic coordinates approach, e.g. [145], was successfully used by Pretorius

in the first ever evolutions of binary black holes through several orbits [18]. Giving a full

overview of such topics falls outside of the scope of this work. We will in this chapter merely

introduce the BSSN evolution equations and we refer the interested reader to, e.g., [120, 121]

∗The ADM equations do allow stable evolutions in spherical symmetry, though (see e.g. [120]).

45
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for comprehensive overviews.

We close this chapter by introducing the numerical code itself used for all the simulations to

be presented.

In this chapter, we restrict ourselves to the four-dimensional case (for completeness, we

present in appendix 4.A the higher-dimensional BSSN scheme), and therefore spatial (Latin)

indices are here restricted to i = 1, 2, 3.

4.1 BSSN formulation

As we have just mentioned, if we were to try and evolve Einstein’s equations in the ADM

formulation (2.6.3) (supplemented with the gauge conditions we will introduce in the next

section) we would find out that the system is severely unstable. In this section we recast the

evolution equations in the BSSN form, which allows for stable numerical evolutions.

We start by performing a conformal decomposition of the spatial metric γij in the following

way (observe it is going to be a different decomposition from the one performed in the study

of the initial data)

γ̃ij ≡ χγij . (4.1.1)

The conformal factor χ can in principle be freely prescribed. In the BSSN scheme, one

imposes that the determinant of the conformal metric be equal to the determinant of the flat

metric ηij ,

χ =

(
γ

η

)−1/3

. (4.1.2)

By construction, we have

det γ̃ij = η . (4.1.3)

Since we will stick to Cartesian coordinate systems throughout this work, we will always have

η = 1 = det γ̃ij , which makes χ a scalar density with weight −2/3.

Just like in equation (3.1.4), we decompose the extrinsic curvature Kij into trace and trace-

free parts and apply the conformal transformation we used for the metric to the traceless

part,

Kij ≡ χ−1

(
Ãij +

K

3
γ̃ij

)
. (4.1.4)

Let us now find evolution equations for the variables we have introduced (χ, γ̃ij ,K, Ãij).

Inserting (4.1.1) and (4.1.4) into (2.6.3a) and (2.6.3b) we have, taking the trace,

∂tχ = βk∂kχ+
2

3
χ(αK − ∂kβk), (4.1.5)

and

∂tK = βk∂kK −∇k∂kα+ α

(
ÃijÃij +

1

3
K2

)
+ 4πα(E + S), (4.1.6)
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where in this last equation we have already used the constraint (2.6.3c) to eliminate the Ricci

scalar. Substituting back we can compute the remaining evolution equations, which take the

form

∂tγ̃ij = βk∂kγ̃ij + 2γ̃k(i∂j)β
k − 2

3
γ̃ij∂kβ

k − 2αÃij , (4.1.7)

and

∂tÃij = βk∂kÃij + 2Ãk(i∂j)β
k − 2

3
Ãij∂kβ

k + χ (αRij −∇i∂jα)TF

+ α
(
K Ãij − 2Ãi

kÃkj

)
− 8πα

(
χSij −

S

3
γ̃ij

)
, (4.1.8)

where TF denotes the trace-free part, e.g., RTF
ij = Rij − 1

3γijR.

We further need to decompose the Ricci tensor in two parts,

Rij = R̃ij +Rχij (4.1.9)

where Rχij only depends on χ and R̃ij is the Ricci tensor associated with the metric γ̃ij .

This term contains mixed second derivatives of the metric, something that is undesirable.

For stable numerical integration, the following “conformal connection” variable was intro-

duced [141, 142]

Γ̃i ≡ γ̃jkΓ̃ijk = −∂j γ̃ij . (4.1.10)

In terms of this conformal connection, the conformal Ricci tensor then takes the form

R̃ij = −1

2
γ̃kl∂l∂kγ̃ij + γ̃k(i∂j)Γ̃

k − ∂kγ̃l(i∂j)γ̃kl +
1

2
Γ̃k∂kγ̃ij − Γ̃likΓ̃

k
jl. (4.1.11)

As we can see, the first term in this expression, which involves a Laplacian, is the only explicit

second order derivative operator acting on γ̃ij . All the mixed second derivatives have been

absorbed in derivatives of Γ̃i. Since the BSSN scheme considers Γ̃i to be an independent

variable, we need an evolution equation for it. Acting on (4.1.10) and interchanging the time

and space derivatives we get

∂tΓ̃
i = −∂j

(
βk∂kγ̃

ij − 2γ̃k(j∂kβ
i) +

2

3
γ̃ij∂kβ

k + 2αÃij
)
. (4.1.12)

We further use the momentum constraint (2.6.3d) to do away with the divergence of the

extrinsic curvature and obtain

∂tΓ̃
i = βk∂kΓ̃

i − Γ̃k∂kβ
i +

2

3
Γ̃i∂kβ

k + 2αΓ̃ijkÃ
jk +

1

3
γ̃ij∂j∂kβ

k + γ̃jk∂j∂kβ
i

− 4

3
αγ̃ij∂jK − Ãij

(
3αχ−1∂jχ+ 2∂jα

)
− 16παχ−1ji. (4.1.13)
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The full system of evolution equations is then

∂tγ̃ij = βk∂kγ̃ij + 2γ̃k(i∂j)β
k − 2

3
γ̃ij∂kβ

k − 2αÃij , (4.1.14a)

∂tχ = βk∂kχ+
2

3
χ(αK − ∂kβk), (4.1.14b)

∂tÃij = βk∂kÃij + 2Ãk(i∂j)β
k − 2

3
Ãij∂kβ

k + χ (αRij −∇i∂jα)TF

+ α
(
K Ãij − 2Ãi

kÃkj

)
− 8πα

(
χSij −

S

3
γ̃ij

)
, (4.1.14c)

∂tK = βk∂kK −∇k∂kα+ α

(
ÃijÃij +

1

3
K2

)
+ 4πα(E + S), (4.1.14d)

∂tΓ̃
i = βk∂kΓ̃

i − Γ̃k∂kβ
i +

2

3
Γ̃i∂kβ

k + 2αΓ̃ijkÃ
jk +

1

3
γ̃ij∂j∂kβ

k + γ̃jk∂j∂kβ
i

− 4

3
αγ̃ij∂jK − Ãij

(
3αχ−1∂jχ+ 2∂jα

)
− 16παχ−1ji , (4.1.14e)

where Rij = R̃ij +Rχij

R̃ij = −1

2
γ̃kl∂l∂kγ̃ij + γ̃k(i∂j)Γ̃

k − ∂kγ̃l(i∂j)γ̃kl +
1

2
Γ̃k∂kγ̃ij − Γ̃likΓ̃

k
jl ,

Rχij =
1

2
χ−1

(
∂i∂jχ− ∂kχΓ̃kij

)
− 1

4
χ−2∂iχ∂jχ−

1

2
γ̃ijχ

−1∂kχΓ̃k

+
1

2
γ̃ij γ̃

klχ−1

(
∂k∂lχ−

3

2
χ−1∂kχ∂lχ

)
.

(4.1.15)

Source terms are determined by

E ≡ nαnβTαβ , ji ≡ −γiαnβTαβ ,
Sij ≡ γαiγβjTαβ , S ≡ γijSij .

(4.1.16)

The above system of evolution equations (4.1.14) is known as the BSSN evolution scheme

and has proven to be extremely robust for numerical evolutions of Einstein’s field equations.

Numerous other schemes do exist; most, however, offer no substantial advantage over BSSN,

which has remained extremely popular. We will use BSSN for all our numerical evolutions.

4.2 Gauge conditions

We now turn our attention to the gauge conditions. The first question to ask is: what is a

“good” choice for α and βi? An obvious first choice, also the simplest possible, is to impose

the so-called geodesic slicing (also known as Gaussian normal coordinates),

α = 1 , βi = 0 . (4.2.1)

This choice was in fact used in the pioneering work by Hahn and Lindquist [8]; it is now

known, however, that it is actually a very bad choice for long-term evolutions. We can



CHAPTER 4. NUMERICAL IMPLEMENTATION 49

intuitively understand why this is the case. First we note from equation (2.2.6) that the

Eulerian observers have zero acceleration and thus follow geodesics (hence the name of this

slicing). In the presence of black holes (or other gravitational sources), geodesics tend to

focus. Coordinate observers will then collide with each other, consequently forming coordinate

singularities and crashing the numerical evolution. We thus need better gauge choices. It

falls outside the scope of this work to give an overview on the merits and disadvantages of

the different conditions that have been proposed throughout the years. We will simply state

and motivate the conditions we will be using.

4.2.1 1+log slicing

A famous choice for the lapse function is known as maximal slicing, which corresponds to

imposing that the trace of the extrinsic curvature vanishes throughout the evolution,

K = 0 . (4.2.2)

A nice property of this condition is its singularity avoidance. We can see this by taking

the trace of equation (2.1.18), which with (4.2.2) implies ∇µnµ = 0, an incompressibility

condition on the velocity field of the Eulerian observers. This prevents the observers from

converging and the subsequent appearance of a coordinate singularity, as in the geodesic

slicing case. Such a property is very much desirable, making maximal slicing an attractive

choice. There is an enormous disadvantage, however, which is the need to solve an elliptic

equation at every time step during the numerical evolution in order to ensure (4.2.2). We

therefore would like to have conditions that mimic this property of maximal slicing, yet with

a hyperbolic character.

Such a choice is the so-called 1+log slicing,

(∂t − Lβ)α = −2αK , (4.2.3)

which, being a hyperbolic equation, is trivial to implement numerically, has been shown to be

extremely robust and mimics the singularity avoidance properties of maximal slicing [146].

This condition gets its name from the fact that, when imposing βi = 0, equation (4.2.3) can

be integrated to give

α = 1 + log γ , (4.2.4)

where we recall that γ ≡ det γij .

4.2.2 Gamma driver

Having chosen a condition for the lapse function, it remains then to say what happens to the

shift.

A possible choice, known as the Gamma freezing condition, is the following

∂tΓ̃
i = 0 . (4.2.5)
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Using equation (4.1.14e), we can write the above condition as an elliptic equation for βi.

This condition is related to the “minimal distortion” shift condition [147], which attempts

to choose coordinates such that the time derivative of the 3-metric ∂tγij is minimised. The

disadvantage is once again the need to solve an elliptic equation at each time step.

Researchers have therefore proposed alternative conditions, using parabolic or hyperbolic

equations, that mimic the minimal distortion condition with good approximation. The

following choice (and variations thereof) is now extremely popular

(∂t − Lβ)βi = Γ̃i − ηββi , (4.2.6)

where ηβ is a function of spacetime. This is known as the Gamma driver condition [148].

Use of these gauge choices proved crucial for the 2005 breakthroughs using the moving

puncture technique [20, 19].

4.3 Numerical code

Having chosen a set of evolution equations (4.1.14), gauge conditions (4.2.3), (4.2.6) and

prescriptions for setting initial data (see chapter 3), it remains then to assemble everything

on a numerical code. Such a task is far from trivial. One of the main reasons is that the

presence of very different scales in the spacetimes that are usually evolved requires the use of

mesh refinement. The problem is further complicated by the need to use parallel computing

and to store large amounts of data.

All numerical simulations that will be presented in subsequent chapters have been performed

by adapting the Lean code [149], initially designed for 3 + 1 vacuum spacetimes by U. Sper-

hake. Lean is based on the Cactus computational toolkit [150], it employs the BSSN

formulation of the Einstein equations [141, 142] (with fourth order discretisation in the spatial

derivatives) with the moving puncture method [20, 19], uses the Carpet package for Berger-

Oliger mesh refinement [151, 152], the spectral solver described in [139] for 3 + 1 initial data

and Thornburg’s AHFinderDirect [153, 154] for horizon finding (see section 5.2).

For a given numerical simulation our numerical grid will consist of two types of cubic

refinement levels: n outer levels centred on the origin (remaining stationary throughout

the simulation), and m inner levels centred around each black hole (and following these as

the simulation progresses). The following notation (which we will make frequent use of)

{(256, 128, 74, 24, 12, 6)× (1.5, 0.75), h = 1/48}

specifies a grid with six fixed outer components of “radius” 256, 128, 74, 24, 12 and 6

respectively and two refinement levels with two components each with radius 1.5 and 0.75

centred around either black hole. The resolution is h = 1/48 on the finest level and

successively decreases to 27/48 = 8/3 on the outermost level. Further details about Lean

may be found in [149].
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4.A D-dimensional BSSN equations

For completeness, we here write the full D-dimensional BSSN equations, as first written

in [97]. These equations can be derived in a procedure entirely analogous to the one outlined

in section 4.1.

∂tγ̃ij = βk∂kγ̃ij + 2γ̃k(i∂j)β
k − 2

D − 1
γ̃ij∂kβ

k − 2αÃij , (4.A.1a)

∂tχ = βk∂kχ+
2

D − 1
χ(αK − ∂kβk), (4.A.1b)

∂tÃij = βk∂kÃij + 2Ãk(i∂j)β
k − 2

D − 1
Ãij∂kβ

k + χ (αRij −∇i∂jα)TF

+ α
(
K Ãij − 2Ãi

kÃkj

)
− 8πα

(
χSij −

S

D − 1
γ̃ij

)
, (4.A.1c)

∂tK = βk∂kK −∇k∂kα+ α

(
ÃijÃij +

1

D − 1
K2

)
+

8π

D − 2
α [(D − 3)E + S] , (4.A.1d)

∂tΓ̃
i = βk∂kΓ̃

i − Γ̃k∂kβ
i +

2

D − 1
Γ̃i∂kβ

k + 2αΓ̃ijkÃ
jk +

1

D − 1
γ̃ij∂j∂kβ

k + γ̃jk∂j∂kβ
i

− 2
D − 2

D − 1
αγ̃ij∂jK − Ãij

(
(D − 1)α

∂jχ

χ
+ 2∂jα

)
− 16παχ−1ji, (4.A.1e)

where TF denotes the trace-free part and the Ricci tensor Rij is further split into Rij =

R̃ij +Rχij , where

R̃ij = −1

2
γ̃kl∂l∂kγ̃ij + γ̃k(i∂j)Γ̃

k − ∂kγ̃l(i∂j)γ̃kl +
1

2
Γ̃k∂kγ̃ij − Γ̃likΓ̃

k
jl

Rχij =
D − 3

2
χ−1

(
∂i∂jχ− ∂kχΓ̃kij

)
− D − 3

4
χ−2∂iχ∂jχ−

1

2
γ̃ijχ

−1∂kχΓ̃k

+
1

2
γ̃ij γ̃

klχ−1

(
∂k∂lχ−

(D − 1)

2
χ−1∂kχ∂lχ

) (4.A.2)

Equations (4.1.14) can be recovered with D = 4.



Chapter 5

Wave extraction and horizon

finding

We have thus far covered, essentially, all the main tools necessary to successfully evolve

Einstein’s equations on a computer. Assuming then that we can specify some arbitrary initial

configuration and evolve it for as long as we like, we are still faced with the most important

task: how to extract the relevant physical information. Recalling that the coordinate system

used throughout the evolution is designed to be well suited to the numerical evolution and

not for human-readability, we easily convince ourselves that it is not trivial to read physical

information from the numerical output. For this purpose, tools were developed to enable

the extraction of the gravitational wave information from a numerical simulation and, when

dealing with black hole spacetimes, information about the black hole’s horizon.

In this chapter we will briefly outline the two main methods of extracting gravitational wave

information and the corresponding waveforms: the gauge invariant formalism of Kodama and

Ishibashi [155, 156]—itself a generalisation to higher-dimensional spacetimes of the Regge-

Wheeler-Zerilli formalism [157, 158], later put in a gauge-invariant form by Moncrief [159]—

and the Newman-Penrose formalism [160]. We will also mention the very basics regarding

finding (apparent) black hole horizons.

5.1 Wave extraction

Gravitational waves are ripples in the shape of spacetime that propagate information at finite

speed, just as water waves are ripples in the shape of an ocean’s surface. They are one of

the most important predictions of general relativity. These waves have never been directly

detected; there is, however, strong indirect evidence for its existence since the discovery of

the famous binary pulsar PSR 1913+16 (also known as the Hulse-Taylor binary pulsar after

its discoverers [161]), whose orbital period change is consistent with the general relativistic

prediction for energy loss via gravitational wave emission. Other systems have since been

52
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uncovered, allowing for even more stringent tests, e.g. [162, 163].

These waves are generated by dynamical gravitational fields—roughly speaking, accelerated

bodies in non-spherically symmetric motion will emit gravitational waves∗. As they propagate

throughout spacetime, they carry with them information about the physical properties of the

system that produced them. By measuring them with gravitational wave detectors—such as

the already mentioned LIGO, Virgo, GEO and TAMA—we can have a brand new window

opening up to the universe. The likelihood of such detections is greatly enhanced if one

can use theoretical gravitational wave signals coming from possible astrophysical sources

as templates. Our task here is to briefly introduce the techniques used to generate such

templates from numerical simulations.

Before we begin, let us make one last comment. We have mentioned energy carried away by

gravitational radiation, but as we know there is no notion of local energy of a gravitational

field, so some care has to be taken here. The usual procedure is to write a stress-energy

tensor for the metric fluctuations that is second-order in said fluctuations (the same way

that the stress-energy tensor associated with a scalar or electromagnetic field is second order

in the fields). Modulo some subtleties, such a quantity can be constructed, and meaningful

quantities can be extracted from it. We will not be giving details on its derivation or the

subtleties involved (see, e.g., [164, 165, 166]), but merely present the relevant formulæ that

will be of use to us.

We will start by recalling known four-dimensional results that will be of use. In the weak-field

limit, we can write the metric tensor as the Minkowski metric plus perturbations,

gµν = ηµν + hµν , |hµν | � 1 . (5.1.1)

To first order in hµν , the Riemann tensor is

(4)Rαβµν =
1

2
(∂β∂µhαν + ∂α∂νhβµ − ∂β∂νhαµ − ∂α∂µhβν) . (5.1.2)

It is useful to introduce the usual trace reversed perturbation

h̄µν ≡ hµν −
h

2
ηµν . (5.1.3)

Imposing the Lorenz gauge

∂µh̄
µν = 0 , (5.1.4)

the linearised field equations reduce to

�h̄µν = −16πTµν , (5.1.5)

where � is the d’Alembertian operator in flat space. In vacuum we get the usual wave

equation

�h̄µν = 0 . (5.1.6)

∗For a system to emit gravitational waves the third time derivative of its quadrupole moment has to be

non-zero.
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Since the Lorenz gauge does not completely fix our degrees of freedom, we can further impose

the transverse-traceless (TT) gauge

uν h̄TT
µν = 0 , h̄TTµ

µ = 0 , (5.1.7)

where, to simplify, we can use a Cartesian coordinate system ηµν = diag(−1, 1, 1, 1) and uν is a

unit timelike vector. The second equation reflects the fact that there is no propagating scalar

mode in general relativity. Note that in this gauge h̄µν = hµν . With the constraints (5.1.4)

and (5.1.7) we are left with two degrees of freedom (in four dimensions; generically, in D-

dimensions, we have D(D − 3)/2 degrees of freedom). We can write the plane-wave solution

of equation (5.1.6) subject to the constraints (5.1.7) in the usual form

hTT
µν = Aµνe

ikσxσ , (5.1.8)

taking kµ = (1, 0, 0, 1) and where

Aµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 . (5.1.9)

h+ and h× are the two independent polarisations of the gravitational wave, known as “plus”

and “cross” polarisations.

It can be shown (e.g. [166, 123, 121]) that the outgoing energy flux carried by the gravitational

radiation is given by

FGW =
dEGW

dt
= lim

r→∞

r2

16π

∫ (
ḣ2

+ + ḣ2
×

)
dΩ . (5.1.10)

To derive this formula, we need to expand Einstein’s equations up to second order perturba-

tions. Terms that are quadratic in the first order perturbations of the metric, after suitable

averaging, can then be viewed as sources, constituting an effective stress-energy tensor for

gravitational waves. This stress-energy tensor can then be used to compute energy and

momentum carried away by the gravitational radiation.

5.1.1 Newman-Penrose formalism

We now briefly describe the Newman-Penrose formalism. This formalism (also known as

the spin-coefficient formalism) introduced by Newman and Penrose in 1962 [160] is an

alternative way to write Einstein’s equations which has proven to be extremely useful in many

situations in general relativity, such as in searches of exact solutions, black hole perturbation

theory and studies of gravitational radiation. There is a whole literature devoted to this

formalism. For its application in numerical simulations, we mention for instance the books

by Alcubierre [120], Baumgarte & Shapiro [121] and references therein. Here we will only

state the basic equations that we will need and refer the reader to relevant publications where

appropriate.
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In this section we restrict ourselves to four-dimensional spacetimes since this formalism has

not been generalised to higher dimensions.∗

This formalism starts with introducing a null complex tetrad {l, k,m, m̄} satisfying

− l · k = 1 = m · m̄ , (5.1.11)

where m̄ is the complex conjugate of m and all other inner products vanish.

We further note that the four-dimensional Riemann tensor (4)Rαβγδ has 20 independent

components. Its trace, the Ricci tensor (4)Rαβ has 10. The remaining degrees of freedom

are encoded in the Weyl tensor (4)Cαβγδ, defined as

(4)Cαβγδ ≡ (4)Rαβγδ − (4)gα[γ
(4)Rδ]β + (4)gβ[γ

(4)Rδ]α +
1

3
(4)gα[γ

(4)gδ]β
(4)R . (5.1.12)

The Newman-Penrose formalism encodes these degrees of freedom in a set of complex scalars,

often called Newman-Penrose scalars. The ten independent components of the Weyl tensor

are encoded in the five complex scalars Ψ0, . . . ,Ψ4 (often also called Weyl scalars).† All of

these scalars are formed by contracting the Weyl tensor (and the Ricci) with the complex

null tetrad. Since there is no unique choice for a null tetrad satisfying (5.1.11), the choice of

this tetrad will affect the Weyl scalars and their physical interpretation.

For a class of such tetrads, the so-called quasi-Kinnersley frames, Ψ1 and Ψ3 both vanish,

and we can interpret Ψ0 and Ψ4 as measures of the incoming and outgoing gravitational

radiation, whereas Ψ2 can be interpreted as the “Coulombic” part. Ψ4 and Ψ0 are defined

as‡

Ψ0 ≡ (4)Cαβγδl
αmβlγmδ . (5.1.13)

Ψ4 ≡ (4)Cαβγδk
αm̄βkγm̄δ . (5.1.14)

Since (for the suitable tetrad we mentioned above) the latter quantity encodes the outgoing

gravitational wave signal, this will be of particular use to us (Ψ0 will also be of use in

section 7.2).

In practice, we construct l, k and m from an orthonormal triad er̂, eθ̂, eφ̂ orthogonal to the

unit timelike vector et̂

l =
1√
2

(et̂ + er̂) ,

k =
1√
2

(et̂ − er̂) ,

m =
1√
2

(
eθ̂ + ieφ̂

)
.

(5.1.15)

∗A related formalism also based on spin-coefficients, the Geroch-Held-Penrose (GHP) [167] formalism, has

been extended to higher dimensions [168].
†The ten independent components of the Ricci tensor are analogously written in terms of four scalars and

three complex scalars, but we will never make use of these quantities in this work.
‡Different sign conventions exist in the literature.
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We refer the reader to [169] for a review of the formalism; here we merely note that asymp-

totically the triad vectors er̂, eθ̂, eφ̂ behave as the unit radial, polar and azimuthal vectors.

Having chosen our tetrad, we can now compute an explicit expression for Ψ4 using the

definition (5.1.14). In the TT gauge, this can be shown to be, for outgoing waves [120, 121]

Ψ0 = 0 , (5.1.16)

Ψ4 = −ḧ+ + iḧ× , (5.1.17)

whereas for ingoing waves, we have instead

Ψ0 = ḧ+ − iḧ× , (5.1.18)

Ψ4 = 0 , (5.1.19)

where ˙ denotes a time derivative and h+ and h× are the amplitudes of the plus and cross

polarisation of the gravitational wave (5.1.8), (5.1.9). Herein lies the usefulness of the Ψ4

scalar.

It is useful to perform a multipolar decomposition by projecting Ψ4 onto spherical harmonics

of spin weight s = −2 (cf., e.g., appendix D of [120]):

Ψ4(t, θ, φ) =
∑
l,m

ψlm(t)Y −2
lm (θ, φ) . (5.1.20)

In terms of these multipoles, the radiated flux is given by the expressions [160, 170]

FGW =
dEGW

dt
= lim

r→∞

r2

16π

∑
l,m

∣∣∣∣∫ t

−∞
dt′ψlm(t′)

∣∣∣∣2 . (5.1.21)

In Einstein-Maxwell theory, the right-hand-side of Einstein’s equations reads

Tµν =
1

4π

[
Fµ

λFνλ −
1

4
gµνF

λσFλσ

]
, (5.1.22)

where Fµν is the Maxwell-Faraday tensor. In such cases, we can analogously extract the

electromagnetic wave signal in the form of the scalar functions, Φ1 and Φ2 [160, 170], defined

as

Φ1 ≡
1

2
Fµν (lµkν + m̄µmν) , (5.1.23)

Φ2 ≡ Fµνm̄µkν . (5.1.24)

For outgoing waves at infinity, these quantities behave as

Φ1 ∼
1

2
(Er̂ + iBr̂) , Φ2 ∼ Eθ̂ − iEφ̂ . (5.1.25)

Again, it is useful to perform a multipolar decomposition by projecting Φ1 and Φ2 onto

spherical harmonics of spin weight 0 and −1 respectively:

Φ1(t, θ, φ) =
∑
l,m

φlm1 (t)Y 0
lm(θ, φ) , (5.1.26)

Φ2(t, θ, φ) =
∑
l,m

φlm2 (t)Y −1
lm (θ, φ) . (5.1.27)
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In terms of these multipoles, the radiated flux is given by the expressions [160, 170]

FEM =
dEEM

dt
= lim

r→∞

r2

4π

∑
l,m

∣∣∣φlm2 (t)
∣∣∣2 . (5.1.28)

We see from (5.1.25) that Φ2 encodes the radiative modes.

5.1.2 Kodama-Ishibashi

A different approach to extract gravitational wave perturbations is that of the gauge-invariant

Moncrief formalism [159]. This has been generalised to higher dimensions by Kodama and

Ishibashi (KI) [155, 156], and we will review this approach in the following.

In the KI formalism, we start by writing the metric element as a background metric plus a

perturbation

ḡAB = ḡ
(0)
AB + δḡAB . (5.1.29)

The background spacetime has the form

ds̄2(0) = ḡ
(0)
ABdxAdxB = g

(0)
ab dxadxb + r2dΩD−2 = g

(0)
ab dxadxb + r2Ωāb̄dx

ādxb̄ , (5.1.30)

where the xA coordinates refer to the whole spacetime (A = 0, . . . , D − 1), xa = t, r and Ωāb̄

is the metric on the unit (D − 2)-sphere SD−2.

The procedure now is to expand the metric perturbations ḡAB into harmonic functions. These

exist in three flavours—scalar, vector and tensor harmonics. Metric perturbations can then

be written in terms of gauge invariant quantities [155]:

Tensor harmonics Tāb̄ satisfy (
4̂+ k2

)
Tāb̄ = 0 , (5.1.31)

with the properties

Tāā = 0 , Tāb̄:ā = 0 . (5.1.32)

where 4̂ is the Laplace-Beltrami operator on SD−2 and :ā denotes the covariant deriva-

tive with respect to the metric Ωāb̄ on the sphere. Note that we will omit the index

labelling the harmonic throughout this discussion.

For tensor-type perturbations, the metric perturbations δḡAB = hAB are expanded in

the following way

hab = 0 , haā = 0 , hāb̄ = 2r2HTTāb̄ , (5.1.33)

where HT = HT (t, r) (again, we leave the harmonic labels implicit), and note that there

is sum over the indices of the harmonics in this expression.



CHAPTER 5. WAVE EXTRACTION AND HORIZON FINDING 58

Vector harmonics Vā satisfy (
4̂+ k2

)
Vā = 0 , (5.1.34)

Vā:ā = 0 . (5.1.35)

from this, vector-type harmonic tensors can further be defined

Vāb̄ = − 1

2k
(Vā:b̄ + Vb̄:ā) . (5.1.36)

We expand the vector-type perturbations as

hab = 0 , haā = rfaVā , hāb̄ = 2r2HTVāb̄ , (5.1.37)

where fa = fa(t, r).

Scalar harmonics S satisfy (
4̂+ k2

)
S = 0 , (5.1.38)

from which we can build scalar-type vector harmonics

Sā = −1

k
S:ā , (5.1.39)

and scalar-type harmonic tensors

Sāb̄ =
1

k2
S:āb̄ +

1

D − 2
Ωāb̄S . (5.1.40)

We expand scalar-type perturbations as

hab = fabS , haā = rfaSā , hāb̄ = 2r2 (HLΩāb̄S +HTSāb̄) , (5.1.41)

where fab = fab(t, r).

For l > 1, the metric perturbations can be expressed in terms of the following gauge-

invariant variables [155]

F = HL +
1

D − 2
HT +

1

r
Xar

|a ,

Fab = fab +Xa|b +Xb|a ,

(5.1.42)

where we have defined

Xa =
r

k

(
fa +

r

k
HT |a

)
, (5.1.43)

and we denote the covariant derivative with respect to the metric g
(0)
ab with a subscript

|a.
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Impressively, a master function Φ can be defined that, from the perturbed Einstein equations,

can be shown to obey the simple wave equation [156]

(�− V (r)) Φ = 0 , (5.1.44)

where � is the d’Alembertian operator with respect to g
(0)
ab , and the form of the potential

V (r) depends on whether one is considering scalar, vector or tensor perturbations.

The master function Φ is specially useful since it encodes the gravitational waveform; the

energy emitted via gravitational radiation can also be computed quite effortlessly. Writing

the index l explicitly, the energy flux in each l-multipole is [171]

dEl
dt

=
1

32π

D − 3

D − 2
k2(k2 −D + 2)(Φl

,t)
2 . (5.1.45)

The total energy emitted in the process is then

E =
∞∑
l=2

∫ +∞

−∞
dt

dEl
dt

. (5.1.46)

5.2 Horizon finding

When evolving black hole spacetimes, besides the wave extraction tools, physical information

can also be read from its horizon properties. A black hole is a region of spacetime from which

no future directed null geodesic can reach an outside observer. Its surface, the event horizon,

acts therefore as a one-way membrane. In asymptotically flat spacetimes, the event horizon

can be defined as the boundary of the causal past of future null infinity. It is thus as global

concept, requiring information from the whole spacetime to be located. From the point of

view of a numerical evolution, this is not very useful since one would like to know about the

location of the black hole as the simulation progresses.

A more useful concept in this regard is that of the apparent horizon. It is defined as the

outermost marginally trapped surface on a given spatial hypersurface—a closed surface on

which the expansion of (outgoing) null geodesics vanishes. The apparent horizon is a local

concept, depending only on information present on the given hypersurface, making it an ideal

diagnostic tool for numerical evolutions.

Given a spatial section Σ of a spacetime with 3-metric γij and extrinsic curvature Kij , the

expansion of null geodesics can be shown to be

Θ± = ±∇isi +Kijs
isj −K (5.2.1)

where ∇ is the covariant derivative with respect to the 3-metric γij and si is the spatial

normal to the apparent horizon surface within Σ. Θ+ is the expansion of the outgoing null

geodesics, Θ− the expansion of the ingoing ones. The (black hole) apparent horizon is then

defined by the following equation

∇isi +Kijs
isj −K = 0 . (5.2.2)
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General purpose tools exist to solve this equation during numerical evolutions; for an overview

see e.g. [172] and references therein.

Finally, we emphasise that apparent horizons are slicing dependent. It is possible, for instance,

to foliate the Schwarzschild spacetime in such a way that there is no apparent horizon [173]

(the event horizon, being a global quantity, is an intrinsic property of the geometry and is

thus always present). The presence of an apparent horizon, however, does imply the existence

of a section of an event horizon exterior to it (assuming cosmic censorship and Rµνk
µkν ≥ 0

for all null kµ [174]).



Chapter 6

Higher-dimensional numerical

relativity

As mentioned in the Introduction, the ability to perform fully non-linear numerical evolutions

of Einstein’s field equations in higher-dimensional scenarios has tremendous potential to

answer fundamental questions in physics, with possible applications including studies of the

AdS/CFT duality, explorations of TeV-gravity scenarios and the study of higher-dimensional

black hole solutions.

Numerical relativity in higher dimensions has only recently started being explored, with

pioneering works including those in [92, 97, 175, 57, 176]. In this chapter, we will describe

the approach of [175, 176].

The formalism we will present allows us to consider two classes of models, which are gen-

eralisations of axial symmetry to higher dimensional spacetimes: a D ≥ 5 dimensional

vacuum spacetime with an SO(D − 2) isometry group, and a D ≥ 6 dimensional vacuum

spacetime with an SO(D − 3) isometry group. The former class allows studies of head-on

collisions of non-spinning black holes. The latter class allows to model black hole collisions

with impact parameter and with spinning black holes, as long as all the dynamics take

place on a single plane. This class includes the most interesting physical configurations

relevant to accelerator—and cosmic ray—physics (in the context of TeV-scale gravity), and

to the theoretical properties of higher-dimensional black objects (such as stability and phase

diagrams).

In section 6.1, we introduce a general dimensional reduction procedure from D-dimensional

vacuum general relativity to a lower dimension model; in section 6.2 we specialise the

equations obtained to the case where the D-dimensional spacetime has an SO(D−2) isometry

group, perform the 3+1 splitting of space and time and write down a system of evolution

equations; in section 6.3 we outline the construction of relevant initial data, following the

approach of [177]; in section 6.4, we discuss some code tests, introduce a wave extraction

procedure and present results. We end this chapter with a discussion in 6.5.
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We note that in this chapter, due to the necessity of introducing multiple covariant derivatives,

we shall explain the notation as we go along.

6.1 Dimensional reduction

The starting point of our formalism is a dimensional reduction from D-dimensional general

relativity in vacuum to a lower dimensional model.

The isometry group of a Schwarzschild (or, for D > 4, Tangherlini [178]) black hole is

SO(D − 1) × R. For a head-on collision of two non-rotating black holes, the isometry is

further reduced to SO(D − 2): indeed, neither the time direction nor the direction of the

collision correspond to symmetries, but a rotation of the remaining D − 2 spatial directions

leaves the spacetime invariant.

One can take advantage of this symmetry to reduce the spacetime dimensionality. This can

be accomplished by writing Einstein’s equations in D dimensions in a coordinate system

which makes the symmetry manifest, allowing for a lower dimensional interpretation of the

D-dimensional Einstein’s equations (in the spirit of the Kaluza-Klein reduction). We remark,

however, that we do not perform a compactification; rather, we perform a dimensional

reduction by isometry, as first proposed by Geroch [179]. The extra dimensions manifest

themselves in the lower dimensionality as a source of Einstein’s equations, defined on the

lower dimensional manifold.

In the original proposal of Geroch [179] the symmetry space was SO(2). This approach

has been applied to numerical relativity, see for instance [180, 181, 182]; a five dimensional

extension, with the same symmetry space, has been derived in [183]. A generalisation to

coset manifolds (like the sphere Sn) was given by Cho in [184, 185], but in these papers the

complete form of Einstein’s equations was not presented.

Following the approach by Cho [184], we will start by deriving the general equations obtained

doing a dimensional reduction by isometry. We will afterwards focus on the isometry group

of the Sn sphere and present the equations obtained with a dimensional reduction to four

dimensions, as well as their numerical implementation.

6.1.1 General formalism

The most general D-dimensional metric ḡAB, A = 0, . . . , d − 1, . . . , (D − 1), can be written

in the following form (in the coordinate basis ∂A = (∂µ, ∂ī))

ds̄2 = ḡABdxAdxB =
(
gµν + e2κ2gīj̄B

ī
µB

j̄
ν

)
dxµdxν + 2eκB ī

µgīj̄dx
µdxj̄ + gīj̄dx

īdxj̄ , (6.1.1)

where µ = 0, . . . , d−1 and ī = d, . . . ,D−1. κ is a scale parameter and e a coupling constant.

This metric is fully general and not an ansatz.
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Assume that ḡAB admits an m-dimensional isometry G, generated by m Killing vector fields

which we express as (assuming D − d is large enough)

ξa = K ī
a∂ī, (6.1.2)

a = 1, . . . ,m ≡ dim G. The Killing vector fields form the Lie algebra of G, satisfying

Lξa ḡAB = 0, (6.1.3)

[ξa, ξb] =
1

κ
f cabξc. (6.1.4)

Defining

[ξa, ∂ī] ≡ F j̄āi∂j̄ = −
(
∂īK

j̄
a

)
∂j̄ ,

and the “dual” form φa
ī

to the Killing fields ξa by

φaīK
j̄
a = δj̄

ī
,

we can derive, from (6.1.3),

∂īgj̄k̄ = F l̄ īj̄gl̄k̄ + F l̄ īk̄gj̄ l̄,

∂j̄B
k̄
µ = −F k̄ j̄īB ī

µ,

∂īgµν = 0,

(6.1.5)

where F k̄ īj̄ ≡ φaī F k̄aj̄ .
Our goal is to compute the Ricci tensor of metric (6.1.1), which is more easily done in a

non-coordinate basis. Details of the computation can be found in appendix 6.A; here we

mention only the final result.

We first define the “covariant derivatives” ∇µ and ∇j̄ as

∇σT īαk̄µ ≡ DσT
īα
k̄µ + F īσl̄T l̄αk̄µ −F l̄σk̄T īαl̄µ + ΓαλσT

īλ
k̄µ − ΓλµσT

īα
k̄λ, (6.1.6)

∇j̄T īαk̄µ ≡ ∂j̄T īαk̄µ + Γī l̄j̄T
l̄α
k̄µ − Γl̄ k̄j̄T

īα
l̄µ, (6.1.7)

where
Dµ ≡ ∂µ − eκB ī

µ∂ī

F k̄µī ≡ eκ∂īBk̄
µ = −eκF k̄ īj̄B j̄

µ,

F k̄ īj̄ ≡ 0,

F k̄µν ≡ −eκGk̄µν ≡ −eκ
(
∂µB

k̄
ν − ∂νBk̄

µ + eκ tk̄ īj̄B
ī
µB

j̄
ν

)
,

tī j̄k̄ ≡ F ī j̄k̄ − F īk̄j̄ ,

(6.1.8)

and both connections are metric,

∇σgµν = ∂σgµν − Γλµσgλν − Γλνσgµλ = 0,

∇k̄gīj̄ ≡ ∂k̄gīj̄ − Γl̄ īk̄gl̄j̄ − Γl̄ j̄k̄gīl̄ = 0.
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Note however that

∇σgīj̄ ≡ Dσgīj̄ −F k̄σīgk̄j̄ −F k̄σj̄gīk̄ 6= 0.

The Ricci tensor of (6.1.1) is (see appendix 6.A)

R̄īj̄ = Rīj̄ −
1

4
gk̄l̄∇βgk̄l̄∇βgīj̄ +

1

2
gk̄l̄∇βgīk̄∇βgj̄ l̄ +

1

4
gαλgβρgj̄k̄gīl̄F k̄βλF l̄ρα −

1

2
∇β∇βgīj̄ ,

(6.1.9)

R̄µī = eκR̄īj̄B
j̄
µ +

1

2
gαλ∇α

(
gīk̄F k̄λµ

)
+

1

4
gk̄l̄∇βgk̄l̄gβλFm̄λµgīm̄ +

1

2
∇k̄
(
gk̄l̄∇µgl̄̄i

)
− 1

2
∇ī
(
gk̄l̄∇µgk̄l̄

)
= R̄īµ, (6.1.10)

R̄µν = Rµν + 2eκB ī
(µR̄ν )̄i − e2κ2R̄īj̄B

ī
µB

j̄
ν −

1

2
gαλgīj̄F īλµF j̄αν −

1

2
∇ν
(
gīj̄∇µgīj̄

)
− 1

4
gīj̄gk̄l̄∇µgīk̄∇νgj̄ l̄ −

1

2
∇k̄F k̄µν , (6.1.11)

and

R̄ = R+ R̃− 1

4
gk̄l̄g

αλgµνF l̄λµF k̄αν −∇µ
(
gk̄l̄∇µgk̄l̄

)
− 1

4
gk̄īgj̄ l̄∇µgk̄l̄∇µgīj̄

− 1

4
gk̄l̄gīj̄∇µgk̄l̄∇µgīj̄ . (6.1.12)

These are the expressions we were looking for. Equivalent forms can be found in [183, 184].

6.1.2 Examples

6.1.2.1 S1

As a first (trivial) exercise, we can reproduce the standard Kaluza-Klein expressions. Re-

member that the Kaluza-Klein metric has the form

ds̄2 = gµνdxµdxν + e2φ
(
dx5 +Aµdxµ

)2
. (6.1.13)

We can easily recover this case from our formalism by making d = 4, D = 5, gīj̄ → e2φ,

gīj̄ → e−2φ, eκB ī
µ → Aµ, and F īµν → −Fµν ≡ − (∂µAν − ∂νAµ) (cf. equations (6.1.8)).

Remember also that for the Kaluza-Klein case nothing depends on the “fifth” dimension,

and as such F īµj̄ = 0. We get the usual Kaluza-Klein expressions,

R̄īj̄ → e2φ

(
1

4
e2φFαβFαβ − ∂αφ∂αφ−∇α∂αφ

)
≡ R̄55,

R̄µī → AµR̄55 +
3

2
∂αe2φFµα + e2φ∇αFµα ≡ R̄µ5,

R̄µν → Rµν + 2A(µR̄ν)5 −AµAνR̄55 −
1

2
e2φFαµFαν −∇ν∂µφ− ∂µφ∂νφ,

R̄→ R− 1

4
e2φFαβFαβ − 2∇α∂αφ− 2∂αφ∂

αφ.
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6.1.2.2 Sn

A more interesting case is performing the dimensional reduction on the Sn sphere, n ≡
D − d ≥ 2. For such an isometry, the Killing vectors ξa, a = 1, . . . , (n+ 1)n/2 satisfy

[ξa, ξb] = εab
cξc , (6.1.14)

where εab
c are the structure constants of SO(n + 1). Because the fibre has the minimal

dimension necessary to accommodate n(n + 1)/2 independent Killing vector fields, we may

assume without loss of generality that the Killing vector fields have components exclusively

along the fibre: ξa = ξ īa∂ī. Furthermore, we may normalise the Killing vectors so that they

only depend on the coordinates of the fibre, i.e. ∂µξ
ī
a = 0.

Equation (6.1.3) gives the following conditions

Lξagīj̄ = 0 , (6.1.15)

LξaB ī
µ = 0 , (6.1.16)

Lξagµν = 0 . (6.1.17)

These expressions can be interpreted either as Lie derivatives of rank-2 tensors defined on

the D-dimensional spacetime, or as Lie derivatives of a rank-2 tensor, a vector and a scalar,

which are defined on Sn.

Together with (6.1.14), conditions (6.1.15)-(6.1.17) have the following implications:

•
gīj̄ = f(xµ)hS

n

īj̄ , (6.1.18)

because, from (6.1.15), gīj̄ admits the maximal number of Killing vector fields and thus

must be the metric on a maximally symmetric space at each xµ. Due to (6.1.14) this

space must be the Sn sphere. hS
n

īj̄
denotes the metric on an Sn with unit radius;

•
gµν = gµν(xµ) , (6.1.19)

because the Killing vector fields ξa act transitively on the fibre and therefore the base

space metric must be independent of the fibre coordinates;

•
B ī
µ = 0 , (6.1.20)

because equation (6.1.16) is equivalent to

[ξa, Bµ] = 0 , (6.1.21)

and there exist no non-trivial vector fields on Sn for n ≥ 2 that commute with all

Killing vector fields on the sphere.
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We write the metric on the sphere as

gīj̄dx
īdxj̄ = e2φhīj̄dx

īdxj̄ , (6.1.22)

with φ = φ(xµ). Our D-dimensional metric has a block diagonal form. Making gīj̄ = e2φhīj̄
and B ī

µ = 0 in the expressions (6.1.9)-(6.1.12) we get

R̄īj̄ = Rīj̄ − e2φhīj̄ (n∂αφ∂αφ+∇α∂αφ) ,

R̄µī = 0,

R̄µν = Rµν − n∇ν∂µφ− n∂µφ∂νφ,
R̄ = R+ R̃− 2n∇µ∂µφ− n(n+ 1)∂µφ∂µφ,

(6.1.23)

where Rīj̄ and R̃ are the Ricci tensor and Ricci scalar for the metric (6.1.22). They evaluate

to

Rj̄ l̄ = (n− 1)hj̄ l̄, R̃ = n(n− 1)e−2φ . (6.1.24)

For D-dimensional vacuum spacetimes R̄AB = 0 = R̄µν = R̄īj̄ . Using also (6.1.24) on (6.1.23)

we get two coupled equations,

e2φ (n∂αφ∂αφ+∇α∂αφ) = n− 1

Rµν = n∇ν∂µφ+ n∂µφ∂νφ
. (6.1.25)

These equations can also be obtained from the following action

S =
1

16πGd

∫
ddx
√−genφ

[
R+ n(n− 1)e−2φ + n(n− 1)∂µφ∂

µφ
]
. (6.1.26)

Performing the substitution e2φ = λp will be useful for the upcoming numerical implementa-

tion. We get

pλp−1
[(np

2
− 1
)
λ−1∂αλ∂αλ+∇α∂αλ

]
= 2(n− 1),

Rµν =
np

2
λ−1∇ν∂µλ+

np

4
λ−2(p− 2)∂µλ∂νλ.

(6.1.27)

For completeness, we write in appendix 6.B the equations of motion obtained when we write

the action (6.1.26) in the Einstein frame.

6.2 Dimensional reduction on a (D − 4)-sphere and 3+1 split

In the previous section we were considering a dimensional reduction under the full isometry

group of the higher-dimensional spacetime. In the case of head-on black hole collisions, this

would produce a reduction down to 3 spacetime dimensions. In practice, we are actually

interested in performing a 4 + (D − 4) split of the D dimensional spacetime. This may be
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done as follows. The metric on a unit SD−3 may always be written in terms of the line

element on a unit SD−4, denoted by dΩD−4, as follows,

hS
D−3

īj̄ dxīdxj̄ = dθ2 + sin2 θdΩD−4 , (6.2.1)

where θ is a polar-like coordinate, θ ∈ [0, π]. Now we introduce four dimensional coordinates,

xµ ≡ (xµ̄, θ), µ = 0, 1, 2, 3, and define a four dimensional metric

gµνdxµdxν = gµ̄ν̄dxµ̄dxν̄ + f(xµ̄)dθ2 , (6.2.2)

as well as a new conformal factor

λ(xµ) = sin2 θgθθ . (6.2.3)

As we have seen in the previous sections, the most general D-dimensional metric compatible

with SO(D − 2) isometry is, for D ≥ 5

dŝ2 = gµνdxµdxν + λ(xµ)dΩD−4 . (6.2.4)

The geometry (6.2.4) has a manifest SO(D − 3) symmetry. We will now perform a dimen-

sional reduction on a (D− 4)-sphere, which yields, from the D-dimensional vacuum Einstein

equations, a set of 3+1 dimensional Einstein equations coupled to quasi-matter. In cases with

larger symmetry (if SO(D−2) is the full isometry group, for example), the quasi-matter terms

do not contain independent degrees of freedom and could in principle be fully determined by

the 3 + 1 dimensional geometry. For such cases we could perform the dimensional reduction

on a (D − 3)-sphere instead (which has the full isometry group SO(D − 2)), which would

yield a 2 + 1 dimensional system. The former method allows, however, the use of existing

numerical codes, with small changes, which justifies our choice.

The SO(D − 3) isometry group allows the study of a large class of black hole collisions with

impact parameter and with spin: the collisions in which the two black holes always move

on the same 2-plane and the only non trivial components of the spin 2-form are on that

same 2-plane—see figure 6.1. With our framework we are able, therefore, to describe not

only head-on collisions of spinless black holes but also a class of collisions for spinning black

holes with impact parameter. As follows from the discussion of (6.1.20), the ansatz (6.2.4)

describes general spacetimes with SO(D−3) isometry in D ≥ 6. We remark that the models

with D ≥ 6 are actually the most interesting for phenomenological studies of large extra

dimensions models (see for instance [86]).

Taking (6.2.4) as an ansatz, we see from (6.1.26) that the D-dimensional Einstein-Hilbert

action takes the form (for reasons related with the numerical implementation, we now use

the variable λ instead of the previously used φ)

S =
1

16πG4

∫
d4x
√−gλD−4

2

[
R+ (D − 4)(D − 5)

(
λ−1 +

1

4
λ−2∂µλ∂

µλ

)]
, (6.2.5)
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z

x1, x2, . . . , xD−3

xD−2

Non head-on
Spinning

SO(D − 3)

isometry

z

x1, x2, . . . , xD−3

xD−2

Head-on
Spinless

SO(D − 2)

isometry

Figure 6.1: D-dimensional representation, using coordinates (t, x1, x2, . . . , xD−3, xD−2, z), of two

types of black hole collisions: (left panel) head-on for spinless black holes, for which

the isometry group is SO(D − 2); (right panel) non head-on, with motion on a single

2-plane, for black holes spinning in that same plane only, for which the isometry group

is SO(D − 3). The figures make manifest the isometry group in both cases.

where the D-dimensional Newton’s constant GD is related to the four dimensional one G4

by the area of the unit D − 4 dimensional sphere: G4 = GD/A
SD−4

. Explicitly, the D-

dimensional Einstein’s equations in vacuum yield the following system of four dimensional

equations coupled to a scalar field:

Rµν =
D − 4

2λ

(
∇µ∂νλ−

1

2λ
∂µλ∂νλ

)
, (6.2.6)

∇µ∂µλ = 2(D − 5)− D − 6

2λ
∂µλ∂

µλ . (6.2.7)

In these equations, all operators are covariant with respect to the four dimensional metric

gµν . These could also be obtained from equations (6.1.27) with p = 1. The energy momentum

tensor is

Tµν =
D − 4

16πλ

[
∇µ∂νλ−

1

2λ
∂µλ∂νλ− (D − 5)gµν +

D − 5

4λ
gµν∂αλ∂

αλ

]
. (6.2.8)

With this four dimensional perspective, the usual 3 + 1 split of spacetime can be performed,

as outlined in section 2.5. As explained therein, the projection operator γµν and the normal

to the three dimensional hypersurface Σ, nµ (nµnµ = −1), are introduced

γµν = gµν + nµnν , (6.2.9)

as well as the lapse α and shift βµ,

∂t = αn+ β , (6.2.10)

where t is the time coordinate. The four dimensional metric is then written in the form

ds2 = gµνdxµdxν = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) , i, j = 1, 2, 3 . (6.2.11)
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As usual, we introduce the extrinsic curvature Kij = −1
2Lnγij , which gives the evolution

equation for the 3-metric (2.6.2). Defining the variable

Kλ ≡ −
1

2
Lnλ = −1

2
nµ∂µλ , (6.2.12)

we further get an evolution equation for λ

(∂t − Lβ)λ = −2αKλ . (6.2.13)

Using the relation

DαDβλ = −Kαβn
σ∂σλ+ γµαγ

ν
β∇ν∂µλ , (6.2.14)

where Dα denotes now the covariant derivative with respect to the 3-metric γµν on Σ, and

equation (6.2.7) we can get an evolution equation for Kλ. The contraction of equation (6.2.14)

with gαβ, yields

�λ = γijDi∂jλ− 2KKλ − nµnν∇ν∂µλ . (6.2.15)

Noting that

LnKλ = nµ∂µKλ = −1

2
nµ∇µnν∂νλ−

1

2
nµnν∇µ∂νλ , (6.2.16)

and

nµ∇µnν =
1

α
Dνα , (6.2.17)

we obtain

−nµnν∇µ∂νλ = 2LnKλ +
1

α
Dνα∂νλ . (6.2.18)

Noticing also that Dνα∂νλ = γij∂iα∂jλ, we write

�λ = γijDi∂jλ− 2KKλ + 2LnKλ +
1

α
γij∂iα∂jλ . (6.2.19)

Moreover, from equation

Dµλ = γνµ∂νλ = ∂µλ− 2nµKλ , (6.2.20)

we get

∂αλ∂
αλ = γij∂iλ∂jλ− 4K2

λ , (6.2.21)

so that the evolution equation for Kλ is

1

α
(∂t − Lβ)Kλ = − 1

2α
γij∂iλ∂jα+ (D − 5) +KKλ +

D − 6

λ
K2
λ −

D − 6

4λ
γij∂iλ∂jλ

− 1

2
Dk∂kλ . (6.2.22)

Equations (6.2.13) and (6.2.22) are the evolution equations for the quasi-matter degrees of

freedom.
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6.2.1 BSSN formulation

For numerical implementation, we write the evolution equations in the BSSN formulation,

as introduced in section 4. The evolution equations are those of (4.1.14) with source terms

determined by (4.1.16) where the energy momentum tensor is given by equation (6.2.8). A

straightforward computation shows that

4π(E + S)

D − 4
= −(D − 5)λ−1 +

1

2
λ−1χ3/2γ̃ijD̃i

(
χ−1/2∂jλ

)
+
D − 6

4
λ−2χγ̃ij∂iλ∂jλ− λ−1KKλ − (D − 5)λ−2K2

λ ,

(6.2.23a)

8πχ
(
Sij − S

3 γij
)

D − 4
=

1

2
χλ−1D̃i∂jλ+

1

4
λ−1

(
∂iλ∂jχ+ ∂jλ∂iχ− γ̃klγ̃ij∂kλ∂lχ

)
− 1

4
χλ−2∂iλ∂jλ

− λ−1KλÃij −
1

6
γ̃ijλ

−1χ3/2γ̃klD̃k

(
χ−1/2∂lλ

)
+

1

12
γ̃ijλ

−2χγ̃kl∂lλ∂kλ ,

(6.2.23b)

16πχ−1ji

D − 4
= 2λ−1γ̃ij∂jKλ − λ−2Kλγ̃

ij∂jλ− γ̃ikγ̃ljÃklλ−1∂jλ−
γ̃ij

3
Kλ−1∂jλ ,

(6.2.23c)

where D̃i is the covariant derivative with respect to γ̃ij .

Finally, the evolution equations for λ and Kλ are

(∂t − Lβ)λ = −2αKλ, (6.2.24a)

(∂t − Lβ)Kλ = α

{
(D − 5) +

6−D
4

[
λ−1χγ̃ij∂iλ∂jλ− 4λ−1K2

λ

]
+KKλ −

1

2
χ3/2γ̃klD̃k

(
χ−1/2∂lλ

)}
− 1

2
χγ̃ij∂jα∂iλ .

(6.2.24b)

As stated before, in the case of head-on collisions of spinless black holes the full symmetry

of the D-dimensional system we want to consider makes equations (6.2.24) redundant, by

virtue of (6.2.3). This allows to determine the quasi-matter degree of freedom in terms of

the three dimensional spatial geometry, at each time slice. The extra symmetry manifests

itself in the fact that γij possesses, at all times, (at least) one Killing vector field. If one

chooses coordinates adapted to this Killing vector field, ∂/∂θ, the metric can then be written

in the form (6.2.2), and then the quasi-matter degree of freedom can be determined from the

spatial geometry by (6.2.3). In the numerical implementation, one can either determine, at

each time-step, the scalar field through (6.2.3), or impose (6.2.3) only in the initial data, and

then evolve the scalar field using equation (6.2.24). We have implemented the latter method.

6.3 Higher-dimensional initial data

Having written our system of evolution equations, we now need to construct relevant initial

data. Building on the results outlined in chapter 3 (based on [127, 128]), we now present a
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generalisation of the spectral solver in [139] that generates initial data for black hole binaries

in D ≥ 5 dimensions with non-vanishing initial boost [177].

In this section we need to make some changes to our notation. Early lower case Latin indices

a, b, c, . . . will here extend from 1 to D− 1, late lower case Latin indices i, j, k, . . . run from

1 to 3 and early upper case Latin indices A, B, C, . . . from 4 to D − 1.

6.3.1 Coordinate transformation

We start by recalling, from chapter 3 that, for a system of boosted black holes, we can

solve the momentum constraint equation (2.6.3d) analytically. It remains then to solve

equation (3.2.35), which we re-write here:

4̂u+
D − 3

4(D − 2)
ÂabÂabψ

− 3D−5
D−3 = 0 . (6.3.1)

The numerical solution of this equation will be our task in this section.

First, it is convenient to transform to a coordinate system adapted to the generalised axial

symmetry SO(D− 2) in D = 5 dimensions and SO(D− 3) in D ≥ 6 dimensions as discussed

in section 6.2. For this purpose we consider the (flat) conformal spatial metric in cylindrical

coordinates

γ̂abdx
adxb = dz2 + dρ2 + ρ2

(
dϕ2 + sin2 ϕdΩD−4

)
, (6.3.2)

where dΩD−4 is the metric on the (D − 4)-sphere. Observe that ϕ is a polar rather than an

azimuthal coordinate, i.e. ϕ ∈ [0, π]. Next, we introduce “incomplete” Cartesian coordinates

as

x = ρ cosϕ , y = ρ sinϕ , (6.3.3)

where −∞ < x < +∞ and 0 ≤ y < +∞. The D dimensional initial data for the spatial

metric is then

γ̄abdx
adxb = ψ

4
D−3

[
dx2 + dy2 + dz2 + y2dΩD−4

]
. (6.3.4)

We can transform the D − 1 dimensional Cartesian coordinates X a = (x1, . . . , xD−1) to the

coordinate system Ya = (x, y, z, ξ1, ξ2, . . . , ξD−4) with hyperspherical coordinates ξ1, . . . , ξD−4

by
x1 = x

x2 = y cos ξ1

x3 = z

x4 = y sin ξ1 cos ξ2 (D ≥ 6)

x5 = y sin ξ1 sin ξ2 cos ξ3 (D ≥ 7)

...

xD−3 = y sin ξ1 · · · sin ξD−6 cos ξD−5 (D ≥ 7)

xD−2 = y sin ξ1 · · · sin ξD−5 cos ξD−4 (D ≥ 6)

xD−1 = y sin ξ1 · · · sin ξD−4 (D ≥ 5)

. (6.3.5)
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Without loss of generality, we can always choose coordinates such that the black holes are

initially located on the z axis at z1 and z2 and have momenta of equal magnitude in opposite

directions P a(1) = −P a(2). Inserting the momenta into equation (3.2.23) then provides the

conformal traceless extrinsic cuvature and the differential equation (6.3.1) which is solved

numerically for u.

The class of symmetries covered by the formalism developed in this chapter includes head-on

and grazing collisions of non-spinning black holes with initial position and momenta

xa(1) = (0, 0, z1, 0, . . . , 0) , xa(2) = (0, 0, z2, 0, . . . , 0)

P a(1) = (P x, 0, P z, 0, . . . , 0) = −P a(2) . (6.3.6)

Note that a non-zero P y is not compatible with the assumed symmetries. On the other hand,

the x-axis can always be oriented such that the collision takes place in the xz plane. Our

formalism therefore covers general grazing collisions of non-spinning black hole binaries in D

dimensions.

6.3.2 Four dimensional initial data for a general D head-on collision

We will now discuss in detail the case of black holes with momenta in the z direction, that

is, the case given by setting P x = 0 in equation (6.3.6). The linear momenta are thus given

by

P a(1) = (0, 0, P z, 0, . . . , 0) = −P a(2). (6.3.7)

The rescaled trace-free part of the extrinsic curvature for such a configuration is

Âab = Â
(1)
ab + Â

(2)
ab , (6.3.8)

where Â
(1)
ab and Â

(2)
ab are given by equation (3.2.23) with (6.3.6) and (6.3.7). Using equa-

tion (6.3.5) we can write this in the coordinate system Ya adapted to the spacetime symmetry:

Â
(1)
ab =

4π(D − 1)P z

(D − 2)AD−2(x2 + y2 + (z − z1)2)
D+1

2

(
â

(1)
ij 0

0 â
(1)
AB

)
, (6.3.9)

with

â
(1)
ij =

(−[−(D−4)x2+y2+(z−z1)2](z−z1) (D−3)xy(z−z1) x[x2+y2+(D−2)(z−z1)2]
(D−3)xy(z−z1) −[x2−(D−4)y2+(z−z1)2](z−z1) y[x2+y2+(D−2)(z−z1)2]

x[x2+y2+(D−2)(z−z1)2] y[x2+y2+(D−2)(z−z1)2] [x2+y2+(D−2)(z−z1)2](z−z1)

)
,

(6.3.10)

and

â
(1)
AB = −y2(z − z1)

[
x2 + y2 + (z − z1)2

]
hAB , (6.3.11)

where hAB is the metric on the (D − 4)-sphere. The expression for Â
(2)
ab is analogous, but

with z2 in place of z1 and −P z in place of P z in equation (6.3.9).

We now need to re-express these quantities in terms of our 3 + 1 quantities, (γij ,Kij , λ,Kλ),

as introduced in the previous section. These are the variables evolved in time and therefore
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the variables we ultimately wish to construct from the initial data calculation. For their

extraction we first note that γij , Kij and Kλ are related to the (D − 1)-dimensional metric

γ̄ab and extrinsic curvature K̄ab by

γ̄ij = γij , γ̄AB = λhAB ,

γ̄iA = 0 , (6.3.12)

K̄ij = Kij , K̄AB =
1

2
KλhAB ,

K̄iA = 0 , K̄ = K +
D − 4

2

Kλ

λ
. (6.3.13)

Using these relations and equation (6.2.4) we can express all “3+1” variables in terms of

those describing the initial data

γij = ψ
4

D−3 δij , λ = ψ
4

D−3 y2 ,

Kij = ψ−2(Â
(1)
ij + Â

(2)
ij ) , Kλ = 2ψ−2y2(P+ + P−) ,

K = −(D − 4)Kλ

2λ
,

(6.3.14)

where

P+ ≡ − 4π(D − 1)P z(z − z1)

(D − 2)AD−2(x2 + y2 + (z − z1)2)
D−1

2

,

P− ≡ 4π(D − 1)P z(z − z2)

(D − 2)AD−2(x2 + y2 + (z − z2)2)
D−1

2

.

(6.3.15)

The conformal factor is

ψ = 1 +
µ1

4 [x2 + y2 + (z − z1)2](D−3)/2
+

µ2

4 [x2 + y2 + (z − z2)2](D−3)/2
+ u , (6.3.16)

and u is the solution of the equation(
∂ρρ + ∂zz +

D − 3

ρ
∂ρ

)
u =

3−D
4(D − 2)

ÂabÂabψ
− 3D−5
D−3 , (6.3.17)

where

ÂabÂab = (Â
(1)
ij + Â

(2)
ij )(Âij(1) + Âij(2)) + (D − 4)(P+ + P−)2 . (6.3.18)

Our numerical construction of the function u will be based on the spectral solver developed

in [139]. This solver employs coordinates specifically adapted to the asymptotic behaviour of

u at spatial infinity. In order to investigate this behaviour, we next consider a single black

hole with non-zero linear momentum.

6.3.3 Single puncture with linear momentum

For a single puncture with momentum P z located at the origin z = 0, equation (3.2.23)

implies

ÂabÂab =
16π2(D − 1)2

(D − 2)2A2
D−2r

2(D−2)
P 2
z

[
2 +D(D − 3)

(z
r

)2
]
, (6.3.19)
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so that equation (6.3.17) takes the form

4̂u+
8π2(D − 1)2(D − 3)

(D − 2)3A2
D−2r

2(D−2)
P 2
z

[
1 +

D(D − 3)

2

(z
r

)2
]
ψ−

3D−5
D−3 = 0 . (6.3.20)

It turns out to be convenient for solving this differential equation to introduce a hyperspherical

coordinate system on the D−1 dimensional spatial slices, such that the flat conformal metric

is

dŝ2 = γ̂abdx
adxb = dr2 + r2

[
dϑ2 + sinϑ2

(
dϕ2 + sin2 ϕdΩD−4

)]
,

with cosϑ = z
r . We further introduce the radial coordinate

X ≡
(

1 +
µ

4rD−3

)−1
, (6.3.21)

which reduces to the coordinate A of equation (31) in [139] for the case of D = 4 spacetime

dimensions. Expressed in the new coordinate system, equation (6.3.20) becomes{
∂XX +

2

X
∂X +

1

(D − 3)2X2(1−X)2

[
∂ϑϑ + (D − 3) cotϑ∂ϑ

+
1

sin2 ϑ
(∂ϕϕ + (D − 4) cotϕ∂ϕ)

]}
u

= −α
(
Pz
µ

)2

X−
D−7
D−3 (1 + uX)−

3D−5
D−3

(
1 +

D(D − 3)

2
cos2 ϑ

)
, (6.3.22)

with

α ≡ 128π2(D − 1)2

(D − 3)(D − 2)3A2
D−2

.

For D = 4 we recover equation (40) of [139]. In order to study the behaviour of the solution

at spatial infinity, we now perform a Taylor expansion in v ≡ Pz
µ ,

u =

∞∑
j=1

v2juj . (6.3.23)

Odd powers of v have to vanish in order to satisfy equation (6.3.22). We have the following

equation for u1{
∂XX +

2

X
∂X +

1

(D − 3)2X2(1−X)2
[∂ϑϑ + (D − 3) cotϑ∂ϑ]

}
u1

= −αX−
D−7
D−3

(
1 + D(D−3)

2 cos2 ϑ
)
. (6.3.24)

In order to solve equation (6.3.24), we make the ansatz

u1 = f(X) + g(X)QD(cosϑ) , (6.3.25)
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where QD(cosϑ) = (D−1) cos2 ϑ−1. By solving equation (6.3.24), we find that the functions

f(X) and g(X) take the form

f(X) =
32π2(D − 3)

(D − 2)2A2
D−2

(
1−X

D+1
D−3

)
, (6.3.26)

g(X) = k1

(
X

1−X

) 2
D−3

+ k2

(
1−X
X

)D−1
D−3

− α D(D−3)3

2(D+1)(D−1)

[
1

D−1

X
D+1
D−3

(1−X)
2

D−3
2F1

(
−D−1
D−3 ,

D−1
D−3 ; 2D−2

D−3 ;X
)

− 1
2DX

D+1
D−3 (1−X)

D−1
D−3 2F1

(
2

D−3 ,
2D
D−3 ; 3D−1

D−3 ;X
)]

, (6.3.27)

where 2F1(a, b; c;X) is the hypergeometric function and k1,2 are constants to be fixed by

imposing that g(X = 1) = 0 and g(X = 0) is smooth. Requiring analyticity at X = 0 and

using the property F (a, b, c, 0) = 1, we immediately find k2 = 0.

We are now interested in the large X → 1 limit. Therefore, we use the z → 1 − z

transformation law for the hypergeometric functions [186],

F (a−c+1, b−c+1, 2−c, z) =

(1−z)c−a−b Γ(2− c)Γ(a+ b− c)
Γ(a− c+ 1)Γ(b− c+ 1)

F (1−a, 1−b, c−a−b+1, 1−z)

+
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b) F (a−c+1, b−c+1,−c+a+b+1, 1−z) . (6.3.28)

Requiring a regular solution we find that k1 has to satisfy

k1 =
64π2D(D − 3)2

(D − 2)3(D + 1)A2
D−2

Γ
(

2(D−2)
D−3

)2

Γ
(

3D−5
D−3

) . (6.3.29)

Let us write these functions explicitly for D = 4, 5, 7 (for D = 6 the hypergeometric function

does not simplify):

• D = 4 :

f(X) =
1

2

(
1−X5

)
, (6.3.30)

g(X) =
(1−X)2

10X3

[
84(1−X) log(1−X) + 84X − 42X2 − 14X3 − 7X4 − 4X5 − 2X6

]
;

(6.3.31)

These are equations (42–44) in [139], with appropriate redefinitions.
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• D = 5 :

f(X) =
16

9π2

(
1−X3

)
, (6.3.32)

g(X) = −80(1−X)2

81π2X2

[
4 log(1−X) + 4X + 2X2 +X3

]
; (6.3.33)

• D = 7 :

f(X) =
128

(
1−X2

)
25π4

, (6.3.34)

g(X) =
28

125π4
√

(1−X)X3

[
− 30

√
(1−X)X + 40

√
(1−X)X3 − 16

√
(1−X)X7

+ 3πX2 + 6
(
5− 10X + 4X2

)
arcsin

√
X
]
. (6.3.35)

Analysing these expressions, we can anticipate the convergence properties of the numerical

solutions obtained in terms of pseudo-spectral methods. For instance, analyticity of f and g

suggests exponential convergence. As will become clear in the next section, we are interested

in the convergence properties in a coordinate A behaving as A ∼ 1− 1
r , for large r. We thus

introduce a coordinate A that satisfies

X =
(
1 + (A−1 − 1)D−3

)−1
. (6.3.36)

In terms of the A coordinate, we find that the functions f are analytical. For the function g

in the vicinity of A = 1, the leading terms behave as follows:

• D = 5

g(A) ∼ − 80

81π2
(1−A)4 [8 log(1−A) + 7] , (6.3.37)

• D = 6

g(A) ∼ 19683

6272π2
(1−A)5 , (6.3.38)

• D = 7

g(A) ∼ 84

25π3
(1−A)6 . (6.3.39)

From the behaviour of the functions f and g and equation (6.3.25) we conclude that the

first term in the expansion (6.3.23) has a leading-order behaviour u1 ∼ 1/rD−3 as r → ∞.

Iteratively solving equation (6.3.22) for higher powers of v is complicated by the presence of

the source terms on the right hand side, but under simplifying assumptions indicates that

higher-order terms uj ≥ 2 acquire additional factors of 1/r and therefore the leading-order

fall off behaviour is given correctly by that of u1. This result is confirmed by our numerical

investigation using finite boost parameters as we shall discuss in the next section.
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With regard to the analyticity of the solutions and the resulting expectations for the con-

vergence properties of a spectral algorithm, we summarise the results of our analytical study

of a single puncture as follows. In D = 6, 7, the leading terms are analytic functions in the

vicinity of A = 1. Actually, for D = 7, g(A) is analytic in the vicinity of any point. Therefore,

we expect exponential convergence of the pseudo-spectral code. For D = 5, one observes the

presence of a logarithmic term. This type of term is known to arise in D = 4, when punctures

have non-vanishing momenta [187, 188] and in that case their presence makes the convergence

algebraic in the single puncture case. In the next section we shall investigate the impact of

the logarithmic terms on the convergence properties of our spectral solver.

6.3.4 Two punctures with linear momentum

6.3.4.1 Code changes

We first explicitly list the modifications applied to the spectral solver of reference [139] and

demonstrate how these modifications enable us to generate initial data for boosted black

hole binaries with convergence properties and levels of constraint violation similar to the

D = 4 case. For this purpose we start by recalling that the spectral solver of [139] employs

coordinates

A ∈ [0, 1] , B ∈ [−1, 1] , φ ∈ [0, 2π] , (6.3.40)

which are defined by equation (62) of [139],

x = b
2A

1−A2

1−B2

1 +B2
sinφ ,

y = b
2A

1−A2

1−B2

1 +B2
cosφ ,

z = b
A2 + 1

A2 − 1

2B

1 +B2
,

(6.3.41)

where b is half of the coordinate distance between the punctures. In particular, the coordinate

A satisfies

r →∞⇔ A→ 1 . (6.3.42)

The first modification consist in adapting the source term and Laplace operator according

to (6.3.17).

Next, we note that the type of high-energy collisions which form the main motivation for

this work often start from relatively large initial separations of the holes, |z1 − z2| � rS . In

order to obtain high-precision solutions for such binary configurations, we found it crucial to

introduce a coordinate A′ defined as

A =
sinh [κ(A′ + 1)/2]

sinhκ
, (6.3.43)

where κ is an adjustable free parameter. Note that for κ = 0 we obtain A = 1
2(A′ + 1) For

κ > 0, however, the new coordinate A′ provides the spectral method with enhanced resolution

near A ∼ 0.
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Table 6.1: ADM mass obtained with equation (6.3.47) in units of the “bare” Schwarzschild radius

rD−3
S = rD−3

S(+)
+ rD−3

S(−)
. The variation of the ADM mass with resolution is of the order of

10−10 for all D and n ≥ 100 grid points indicating that the accuracy in the ADM mass

is limited by round-off errors.

D b/rS P/rD−3
S rD−3

Sglobal
/rD−3
S MADM/r

D−3
S

4 30.185 0.8 3.555 1.78

5 30.185 0.8 1.931 2.27

6 30.185 0.8 1.415 2.96

7 30.185 0.8 1.236 3.81

A further modification is related to the asymptotic fall off of the function u as obtained in

the previous section,

u ∼ 1

rD−3
. (6.3.44)

To naturally accommodate this behaviour with the spectral coordinates used in the code, we

have changed the variable U of equation (5) in [139] to

u = (A′ − 1)D−3U . (6.3.45)

Note that this U variable is the variable that the code actually solves for.

Finally, we adjust the calculation of the ADM mass from the numerical solution. For this

purpose, we note that, asymptotically

ψ = 1 +
µ+

4rD−3
+

+
µ−

4rD−3
−

+ u ∼ 1 +
µ

4rD−3
, (6.3.46)

with µ ≡ rD−3
Sglobal

≡ 16πMADM
AD−2(D−2) and µ± ≡ rD−3

S(±)
. The ADM mass is then obtained from

rD−3
Sglobal

= rD−3
S(+)

+ rD−3
S(−)

+ 4 lim
r→∞

rD−3u

= rD−3
S(+)

+ rD−3
S(−)

+ 4

(
−2b

tanhκ

κ

)D−3

U(A′ = 1) , (6.3.47)

where we have used equation (62) of [139], and equation (6.3.43) and (6.3.45). We show in

table 6.1 the values obtained for the ADM mass of some cases we considered.

6.3.4.2 Results

We now study the numerical results as obtained for D = 4, 5, 6, 7 with these adaptations of

the spectral solver of [139]. Throughout the remainder of this section we will graphically

present results in units of the “bare” Schwarzschild radius defined as rD−3
S = rD−3

S(+)
+ rD−3

S(−)
.

We first address the convergence properties of the numerical algorithm by evaluating the

quantity

δn,m(u) = max |1− un/um| , (6.3.48)
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where the maximum is obtained along the collision axis, i.e. z-axis in our case. Here, the

index m refers to a reference solution obtained using a large number m of grid points

while n denotes test solutions using a coarser resolution, n < m. The result obtained

for black hole binaries with initial separation b/rS = 30.185 and boost P z/rD−3
S = 0.8 in

D = 4, 5, 6 and 7 dimensions is displayed in figure 6.2. We note from this figure, that

achieving a given target accuracy δn,m requires a larger number of points n as D increases.

We emphasise in this context, however, that this increase in computational cost in higher

dimensions is unlikely to significantly affect the total computational cost of the simulations

which typically are dominated by the time evolution rather than the initial data calculation.

Most importantly, we observe exponential convergence up to a level of δn,m(u) ≈ 10−6 for

all values of the spacetime dimensionality D. Below that level, the two leftmost curves in

figure 6.2, corresponding to D = 4 and D = 5, respectively, show that the rate of convergence

decreases indicating that the logarithmic terms become significant and reduce the convergence

to algebraic level similar to the observation in figure 4 of reference [139]. For D = 6, the

convergence remains exponential, in agreement with the absence of logarithmic terms in

the analysis of section 6.3.3. Irrespective of a change to algebraic convergence, however, our

algorithm is capable of reducing the quantity δm,n(u) for all values of D to a level comparable

to the case D = 4 and, thus, producing initial data of similar quality as in 3+1 dimensions,

provided we use a sufficiently high resolution n.

0 50 100 150 200 250 300
n

10-10

10-8

10-6

10-4

10-2

100

102

104

�n,300(u)

D=4
D=5
D=6
D=7

Figure 6.2: Convergence plot for the b/rS = 30.185, P/rD−3
S = ±0.80 cases.

For illustration, we plot in figure 6.3 the function u obtained for the case of b/rS = 30.185,

P z/rD−3
S = 0.8. The behaviour is qualitatively similar for all values of D, but the figure

demonstrates the faster fall off for larger D as predicted by (6.3.44). For this plot we have

used nA = 300, nB = 300 and nφ = 4 grid points. The inset in the figure shows the function

u in the immediate vicinity of the puncture. While the profile develops multiple extrema for
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D > 4, the profile remains smooth for all values of D.

101 102

z/rS

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

u
P/rD�3S =0.8, b/rS =30.185, n=300

D=4

D=5

D=6

D=7
30.1850.1

0.4

Figure 6.3: u function for D = 4, . . . , 7 plotted along the z-axis, in units of rS . We used nA = nB =

n = 300, nφ = 4. We also show a zoom around the puncture.

Finally, we show in figure 6.4, the Hamiltonian constraint corresponding to the solutions

presented in figure 6.3 as measured by a fourth-order finite differencing scheme of the Lean

evolution code (section 4.3 and reference [149]). We emphasise that the violation of equa-

tion (6.3.1) inside the spectral initial data solver is < 10−12 by construction. The independent

evaluation of the constraint violation in the evolution code serves two purposes. First, it

checks that the differential equation (6.3.1) solved by the spectral method corresponds to the

Hamiltonian constraint formulated in ADM variables; an error in coding up the differential

equation (6.3.1) could still result in a solution for u of the spectral solver, but would manifest

itself in significantly larger violations in figure 6.4. Second, it demonstrates that the remaining

numerical error is dominated by the time evolution instead of the initial solver. Note in

this context that the relatively large violations of order unity near the puncture location in

figure 6.4 are an artifact of the fourth-order discretisation in the diagnostics of the evolution

code and are typical for evolutions of the moving-puncture type; see e.g. the right panel in

figure 8 in Brown et al. [189].

The solid (blue) curve obtained for the “standard” D = 4 case serves as reference. For all

values of D the constraint violations are maximal at the puncture location z1/rS ≈ 15 and

rapidly decrease away from the puncture. As expected from the higher fall off rate of the

grid functions for larger D, the constraints also drop faster for higher dimensionality of the

spacetime.
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Figure 6.4: Violation of the Hamiltonian constraint along the z-axis, evaluated with a fourth order

finite difference scheme. The growth of the constraint violation near the puncture is an

artifact of finite-differencing across the puncture; see text for details.

6.4 Numerical evolutions

Having established that our initial data code is working, we will now show some numerical

results, obtained by adapting the Lean code introduced in section 4.3. In this section we

will begin by briefly commenting on numerical issues generated by the quasi-matter terms

arising from the dimensional reduction. We then present some code tests and results.

From the initial data construction of section 6.3, we see that the quasi-matter field λ has a

y2 fall off as y → 0, that is, on the xz plane (cf. (6.3.14)). From (6.2.23), we see that this

leads to divisions by zero on the right-hand side of the BSSN evolution equations; thus, we

need to isolate such irregular terms and re-write the equations in terms of variables which

are explicitly regular at y = 0. In this spirit, we introduce the following evolution variable

ζ ≡ χ

y2
λ , (6.4.1)

and corresponding auxiliary variable

Kζ ≡ −
1

2αy2
(∂t − Lβ)(ζy2) = − 1

2α

(
∂tζ − βm∂mζ +

2

3
ζ∂mβ

m − 2ζ
βy

y

)
. (6.4.2)

The full quasi-matter terms and evolution equations in terms of these regular variables can

be found in Appendices A and B of [175]. Here we note only that, with the above definition,

we have the relation

Kλ =
y2

χ
Kζ +

1

3

y2ζ

χ
K . (6.4.3)
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Finally, for long term evolutions, we employed the following gauge conditions, which are

generalisations of conditions (4.2.3), (4.2.6)

(
∂t − βk∂k

)
α = −2α(ηKK + ηKζKζ) , (6.4.4)(

∂t − βk∂k
)
βi =

3

4
Γ̃i − ηβi . (6.4.5)

Note the extra term involving Kζ in the slicing condition compared with standard moving

puncture gauge in 3 + 1 dimensions and the additional freedom we have introduced in the

form of the parameters ηK and ηKζ .

6.4.1 Code tests

6.4.1.1 Geodesic slicing

As a first test of our numerical implementation, we have numerically evolved a single D = 5

Tangherlini black hole in the so-called geodesic slicing, which corresponds to fixing the gauge

parameters to (4.2.1) throughout the evolution. Such a gauge choice is not adequate to

perform long term numerical evolutions. The advantage of this choice, though, is that one

can easily write the Tangherlini metric element in this coordinate system, which we can

then match against the numerically obtained solutions [97]. This coordinate system may

be achieved by setting a congruence of in-falling radial time-like geodesics, each geodesic

starting from rest at radial coordinate r0, with r0 spanning the interval [µ,+∞[, and using

their proper time τ and r0 as coordinates (instead of the standard t, r Schwarzschild-like

coordinates). The line element becomes

ds2 = −dτ2 +

(
r0(R)2 +

(
µ

r0(R)

)2
τ2

)2

r0(R)2 −
(

µ
r0(R)

)2
τ2

dR2

R2
+

(
r0(R)2 −

(
µ

r0(R)

)2

τ2

)
dΩ3 , (6.4.6)

where r0(R) is given by

r0(R) = R

(
1 +

µ2

4R2

)
. (6.4.7)

Before the breaking down of the numerical evolution, we can compare our numerical results

with the above metric element. This is shown in figure 6.5, where we have plotted one metric

component γ̃xx along the x axis (left) and ζ/χ (right), for various values of τ using both the

analytical solution and numerical data. The agreement is excellent for γ̃xx and good for ζ/χ.

The latter shows some deviations very close to the puncture, but we believe that it is not a

problem for two reasons: (i) the agreement improves for higher resolution; (ii) the mismatch

does not propagate outside of the horizon.
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Figure 6.5: Numerical values versus analytical plot of γ̃xx along the x-axis (left panel) and of ζ/χ =

λ/y2 along the y axis (right panel), for various values of τ , for the single Tangherlini

black hole in five dimensions. The horizontal axis are in units of µ.

6.4.1.2 Single black hole evolution

To further test our numerical framework, we have performed long term simulations of a single

black hole in D = 5 using the gauge conditions in (6.4.4) and (6.4.5), the initial data from

equations (6.3.14) (with P+ = 0 = P−) and grid setup (cf. section 4.3)

{(512, 256, 128, 64, 32, 16, 8, 4, 2)× (), h} ,

in units of µ with resolutions hc = 1/32 and hf = 1/48. In figure 6.6 we show the Hamiltonian

constraint and the y component of the momentum constraint at evolution time t = 28µ.

For the Hamiltonian constraint the convergence is essentially 4th order; for the momentum

constraint it decreases towards 2nd or 3rd order in patches.
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Figure 6.6: Hamiltonian constraint (left panel) and y-component of the momentum constraint (right

panel) at time t = 28µ, for the evolution of a single Tangherlini black hole in five

dimensions.
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6.4.1.3 Head-on collision

Finally, we tested the code capability to evolve a head-on collision from rest. Using again the

initial conditions (6.3.14) with P+ = 0 = P−, we let two black holes with parameters

µ2
A = µ2

B ≡
µ2

2
, (6.4.8)

zA = −zB = 3.185 µ , (6.4.9)

collide from rest, using the grid setup

{(512, 256, 128, 64, 32, 16, 8)× (2, 1), h = 1/32} ,
in units of µ. The gauge variables α and βi were evolved according to equations (6.4.4) and

(6.4.5) with parameters ηK = ηKζ = 1.5 and η = 0.75.

-6 -4 -2 0 2 4 6

z / µ

0

0.2

0.4

0.6

0.8

1

χ

t = 0 µ

t = 5 µ

t = 20 µ

t = 40 µ

t = 256 µ

-6 -4 -2 0 2 4 6

z / µ

0

0.5

1

1.5

2

K
ζ

t = 0 µ
t = 5 µ
t = 20 µ
t = 40 µ
t = 256 µ

Figure 6.7: The BSSN variable χ (left panel) and the quasi-matter momentum Kζ (right panel)

shown along the axis of collision for a head-on collision at times t = 0, 5, 20, 40 and

256 µ. Note that Kζ = 0 at t = 0.

In figure 6.7 we show the conformal factor χ and the momentum Kζ along the axis of collision

at various times for such an evolution. At early times, the evolution is dominated by the

adjustment of the gauge (cf. the solid and short-dashed curves). The two holes next start

approaching each other (long-dashed and dotted curves) and eventually merge and settle down

into a single stationary hole (dash-dotted curves). No signs of instabilities were observed.

6.4.2 Head-on collisions

Having established, in the previous section, that our numerical implementation does work

(for the five dimensional case) we will now present some results.

Since the final result of a head-on collision of two D dimensional, non-spinning black holes

approaches, at late times, a D dimensional Schwarzschild (i.e. Tangherlini) black hole, we

can make use of the Kodama-Ishibashi formalism, presented in section 5.1.2 to extract the

gravitational wave information. Our remaining task is then to obtain the relevant gauge-

invariant quantities from our numerical data. We will give here the main steps for this

procedure; the full details can be found in reference [176].
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6.4.2.1 Coordinate frames

In the approach developed in section 6.2, we perform a dimensional reduction by isometry on

the (D − 4)-sphere SD−4, in such a way that the D dimensional vacuum Einstein equations

are rewritten as an effective 3 + 1 dimensional time evolution problem with source terms

that involve a scalar field. We focus here on D ≥ 5 dimensional spacetimes with SO(D − 2)

isometry group, which allows us to model head-on collisions of non-spinning black holes; we

dub hereafter these spacetimes as axially symmetric. Although the corresponding symmetry

manifold is the (D−3)-sphere SD−3, the quotient manifold in our dimensional reduction is its

submanifold SD−4. The coordinate frame in which the numerical simulations are performed

is

(xµ, φ1, . . . , φD−4) = (t, x, y, z, φ1, . . . , φD−4) , (6.4.10)

where the angles φ1, . . . , φD−4 describe the quotient manifold SD−4 and do not appear

explicitly in the simulations. Here, z is the symmetry axis, i.e. the collision line.

Recall that in the frame (6.4.10), the spacetime metric has the form (cf. equation (6.2.4))

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) + λ(xµ)dΩD−4 , (6.4.11)

Also recall, from equations (6.2.2) and (6.2.3), that with an appropriate transformation of the

four dimensional coordinates xµ, the residual symmetry left after the dimensional reduction

on SD−4 can be made manifest: xµ → (xµ̄, θ) (µ̄ = 0, 1, 2),

gµν(xα)dxµdxν = gµ̄ν̄(xᾱ)dxµ̄dxν̄ + gθθ(x
ᾱ)dθ2 (6.4.12)

and

λ(xµ) = sin2 θgθθ(x
ᾱ) , (6.4.13)

so that equation (6.4.11) takes the form ds2 = gµ̄ν̄dxµ̄dxν̄ + gθθdΩD−3.

To extract the gravitational waves with the KI formalism, spacetime, away from the black

holes, is required to be approximately spherically symmetric. In D dimensions this means

symmetry with respect to rotations on SD−2, which is manifest in the coordinate frame:

(xa, θ̄, θ, φ1, . . . , φD−4) = (t, r, θ̄, θ, φ1, . . . , φD−4) . (6.4.14)

Note that xa = t, r and that we have introduced polar-like coordinates θ̄, θ ∈ [0, π] to “build

up” the manifold SD−2 in the background, together with a radial spherical coordinate r,

which is the areal coordinate in the background.

The coordinate frame (6.4.14) is defined in such a way that the metric can be expressed as

a stationary background (ds(0))2 (i.e., the Tangherlini metric) plus a perturbation (ds(1))2

which decays faster than 1/rD−3 for large r, and the formalism from section 5.1.2 can thus

be applied [176].
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6.4.2.2 Implementation of axisymmetry

In an axially symmetric spacetime, the metric perturbations are symmetric with respect

to SD−3. Therefore, the harmonics in the expansion of hMN depend only on the angle θ̄

(which does not belong to SD−3). Furthermore, since there are no off-diagonal terms in the

metric, the only non-vanishing gāi components are gaθ̄; the only components gīj̄ are either

proportional to γīj̄ , or all vanishing but gθ̄θ̄. This implies that only scalar spherical harmonics

can appear in the expansion of the metric perturbations. Indeed, if

Vī = (Vθ̄, 0, . . . , 0) , Vī = Vī(θ̄) , (6.4.15)

then equation (5.1.35) gives

Vī:̄i = Vθ̄,θ̄ = 0⇒ Vθ̄ = 0⇒ Vī = 0 . (6.4.16)

Similarly, from equation (5.1.32) we obtain Tīj̄ = 0.

The scalar harmonics, solutions of equation (5.1.38) and which depend only on the coordinate

θ̄, are given by the Gegenbauer polynomials C
(D−3)/2
l , as discussed in references [171, 190,

127]; writing explicitly the index l, they take the form

Sl(θ̄) = (K lD)−1/2C
(D−3)/2
l (cos θ̄) , (6.4.17)

where the normalization K lD is chosen such that∫
dΩD−2SlSl′ = δll′ , (6.4.18)

and k2 = l(l +D − 3).

Metric perturbations, and corresponding gauge-invariant functions, can then be computed in

terms of these functions [176].

6.4.2.3 Extracting gravitational waves

In the KI framework, the emitted gravitational waves are described by the master function

Φ, cf. section 5.1.2. We can compute directly Φ,t with [156, 176]∗

Φ,t = (D − 2)r(D−4)/2 −F rt + 2rF,t

k2 −D + 2 + (D−2)(D−1)
2

rD−3
S

rD−3

, (6.4.19)

where k2 = l(l + D − 3). The energy flux can then be computed from expressions (5.1.45),

(5.1.46).

6.4.3 Head-on collision from rest in D = 5

Having introduced and tested our formalism and numerical code, we now present results

obtained for head-on collisions of five-dimensional black holes. The black holes collide
∗Note that there is a factor r missing in equation (3.15) of reference [156].
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Table 6.2: Grid structure and initial parameters of the head-on collisions starting from rest in D = 5.

The grid setup is given in terms of the “radii” of the individual refinement levels, in units

of rS , as well as the resolution near the punctures h. d is the initial coordinate separation

of the two punctures and L denotes the proper initial separation.

Run Grid Setup d/rS L/rS
HD5a {(256, 128, 64, 32, 16, 8, 4)× (0.5, 0.25), h = rS/84} 1.57 1.42

HD5b {(256, 128, 64, 32, 16, 8, 4)× (0.5, 0.25), h = rS/84} 1.99 1.87

HD5c {(256, 128, 64, 32, 16, 8, 4)× (1, 0.5), h = rS/84} 2.51 2.41

HD5d {(256, 128, 64, 32, 16, 8, 4)× (1, 0.5), h = rS/84} 3.17 3.09

HD5e {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), h = rS/84} 6.37 6.33

HD5f {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), h = rS/84} 10.37 10.35

from rest, with initial coordinate separation d. Note that in five spacetime dimensions the

Schwarzschild radius is related to the ADM mass M via

r2
S =

8M

3π
. (6.4.20)

We therefore define the “total” Schwarzschild radius rS such that r2
S = r2

S,1 + r2
S,2. By using

this definition, rS has physical dimension of length and provides a suitable unit for measuring

both results and grid setup.

As summarised in table 6.2, we consider a sequence of binaries with initial coordinate

separation ranging from d = 3.17rS to d = 10.37rS . The table further lists the proper

separation L along the line of sight between the holes and the grid configurations used for

the individual simulations.

6.4.3.1 Newtonian collision time

An estimate of the time at which the black holes “collide” can be obtained by considering

a Newtonian approximation of two point particles in D = 5. The Newtonian time it takes

for two point-masses (with Schwarzschild parameters rS,1 and rS,2) to collide from rest with

initial distance L in D dimensions is given by

tfree-fall

rS
=

I
D − 3

(
L

rS

)D−1
2

, (6.4.21)

where rD−3
S = rD−3

S,1 + rD−3
S,2 and

I =

∫ 1

0

√
z

5−D
D−3

1− zdz =
√
π

Γ(1
2 + 1

D−3)

Γ(1 + 1
D−3)

. (6.4.22)

For D = 4, one recovers the standard result tfree-fall = π
2

√
L3/r3

SrS , whereas for D = 5 we

get

tfree-fall = (L/rS)2 rS . (6.4.23)
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In general relativity, black hole trajectories and merger times are intrinsically observer de-

pendent quantities. For our comparison with Newtonian estimates we have chosen relativistic

trajectories as viewed by observers adapted to the numerical coordinate system. While the

lack of fundamentally gauge invariant analogues in general relativity prevents us from deriving

rigorous conclusions, we believe such a comparison to serve the intuitive interpretation of

results obtained within the “moving puncture” gauge. Bearing in mind these caveats, we

plot in figure 6.8 the analytical estimate of the Newtonian time of collision, together with the

numerically computed time of formation of a common apparent horizon. Also shown in the

figure is the time at which the separation between the individual hole’s puncture trajectory

decreases below the Schwarzschild parameter rS . The remarkable agreement provides yet
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Figure 6.8: Estimates for the time it takes for two equal-mass black holes to collide in D = 5.

The first estimate is given by the time tCAH elapsed until a single common apparent

horizon engulfs both black holes (diamonds), the second estimate is obtained by using the

trajectory of the black holes, i.e., the time ttraj at which their separation has decreased

below the Schwarzschild radius (circles). Finally, these numerical results are compared

against a simple Newtonian estimate, given by equation (6.4.23) (blue solid line).

another example of how well numerically successful gauge conditions appear to be adapted

to the black hole kinematics.

6.4.3.2 Waveforms

Let us now discuss the gravitational wave signal, extracted with the KI formalism, generated

by the head-on collision of two black holes in five dimensions.

In figure 6.9, the l = 2 multipole of the KI function Φ,t for model HD5e obtained at different

extraction radii is plotted. A small spurious wavepulse due to the initial data construction
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Figure 6.9: Left panel: The l = 2 component of the KI waveform for model HD5e extracted at radii

Rex/rS = 20, 40 and 60 and shifted in time by Rex/rS . Right panel: The l = 2 and l = 4

mode of the KI function for the same simulation, extracted at Rex/rS = 60. For clarity,

the l = 4 component has been re-scaled by a factor of 100.

is visible at ∆t ≈ 0, the so-called “junk radiation”. The physical part of the waveform is

dominated by the merger signal around ∆t = 50rS , followed by the (exponentially damped)

ringdown, whereas the infall of the holes before ∆t = 40rS does not produce a significant

amount of gravitational waves. Comparison of the waveforms extracted at different radii

demonstrates excellent agreement, in particular for those extracted at Rex = 40rS and 60rS .

Extrapolation of the radiated energy to infinite extraction radius yield a relative error of 5 %

at Rex = 60rS , indicating that such radii are adequate for the analysis presented in this work.

Due to symmetry, no gravitational waves are emitted in the l = 3 multipole, so that l = 4

represents the second strongest contribution to the wave signal. As demonstrated in the

right panel of figure 6.9, however, its amplitude is two orders of magnitude below that of the

quadrupole.

In order to assess how accurately we are thus able to approximate an infall from infinity, we

have varied the initial separation for models HD5a to HD5f as summarised in table 6.2. As

demonstrated in figure 6.10, for models HD5e and HD5f we can safely neglect the spurious

radiation as well as the impact of a finite initial separation, provided we use a sufficiently large

initial distance d & 6rS of the binary. Here, we compare the radiation emitted during the

head-on collision of black holes starting from rest with initial separations 6.37rS and 10.37rS .

The waveforms have been shifted in time by the extraction radius Rex = 60rS and such that

the formation of a common apparent horizon occurs at ∆t = 0. The merger signal starting

around ∆t = 0 shows excellent agreement for the two configurations and is not affected by

the spurious signal visible for HD5e at ∆t ≈ −50rS .

We conclude this discussion with an analysis of the ringdown. After formation of a common

horizon, the waveform is dominated by an exponentially damped sinusoid, as the merged

hole rings down into a stationary state. By fitting our results with an exponentially-damped
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Figure 6.10: l = 2 components of the KI function as generated by a head-on collision of black holes

with initial (coordinate) distance d = 6.37rS (black solid line) and d = 10.37rS (red

dashed line). The wave functions have been shifted in time such that the formation of

a common apparent horizon corresponds to ∆t = 0 (and taking into account the time

it takes for the waves to propagate up to the extraction radius Rex = 60rS).

sinusoid, we obtain a characteristic frequency

rS ω = 0.955± 0.005− i(0.255± 0.005) . (6.4.24)

This value is in excellent agreement with perturbative calculations, which predict a lowest

quasinormal frequency rS ω = 0.9477− i0.2561 for l = 2 [191, 127, 192].

6.4.3.3 Radiated energy

We now compute the energy flux from the KI master function via equation (5.1.45). The

fluxes thus obtained for the l = 2 multipole of models HD5e and HD5f in table 6.2, extracted

at Rex = 60rS , are shown in figure 6.11. As in the case of the KI master function in figure 6.10,

we see no significant variation of the flux for the two different initial separations. The flux

reaches a maximum value of dE/dt ∼ 3.4× 10−4rS , and is then dominated by the ringdown

flux. The energy flux from the l = 4 mode is typically four orders of magnitude smaller; this

is consistent with the factor of 100 difference of the corresponding wave multipoles observed

in figure 6.9, and the quadratic dependence of the flux on the wave amplitude. Integrating,

we find that a fraction of Erad/M = (8.9±0.6)×10−4 of the centre of mass energy is emitted

in the form of gravitational radiation. We have verified for these models that the amount of

energy contained in the spurious radiation is about three orders of magnitude smaller than

in the physical merger signal.
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Figure 6.11: Energy flux in the l = 2 component of the KI wave function Φ,t, extracted at Rex =

60rS , for models HD5e (black solid line) and HD5f (red dashed line) in table 6.2. The

fluxes have been shifted in time by the extraction radius Rex = 60rS and the time tCAH

at which the common apparent horizon forms.

6.5 Discussion

In this chapter we have presented a framework that allows the generalisation of the present

generation of 3+1 numerical codes to evolve, with relatively minor modifications, spacetimes

with SO(D − 2) symmetry in 5 dimensions and SO(D − 3) symmetry in D ≥ 6 dimensions.

The key idea is a dimensional reduction of the problem, along the lines of references [179, 184],

that recasts the D-dimensional Einstein vacuum equations in the form of the standard four

dimensional equations plus some source terms. The resulting equations can be transformed

straightforwardly into the BSSN formulation that has proved remarkably successful in nu-

merical evolutions of black hole configurations in 3+1 spacetimes.

The class of problems that may be studied with our framework includes head-on collisions in

D ≥ 5 and a subset of black hole collisions with impact parameter and spin in D ≥ 6.

A procedure to construct initial data and a formalism to extract gravitational radiation

observables from the numerical simulations were also introduced. With these tools, the

numerical implementation was done by adapting the Lean code and, after a number of

tests including the convergence of the Hamiltonian and momentum constraints as well as

comparing numerical results with (semi-)analytic expressions for a single Tangherlini black

hole in geodesic slicing, we reported results obtained for evolutions of black hole collisions in

five-dimensional spacetimes.

As might be expected, stable evolutions of such spacetimes require some modifications of
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the underlying methods of the so-called moving puncture technique, especially with regard

to the gauge conditions used therein. We have successfully modified the slicing condition

in order to obtain long-term stable simulations in D = 5 dimensions. Unfortunately, these

modifications do not appear sufficient to provide long-term stability for arbitrary values of

the dimensionality D. This issue remains under investigation.

Besides obtaining the corresponding waveforms for head-on collision of five-dimensional black

holes, we have further shown that the total energy released in the form of gravitational waves

is approximately (0.089±0.006)% of the initial centre of mass energy of the system, for a head-

on collision of two black holes starting from rest at very large distances. As a comparison,

the analogous process in D = 4 releases a slightly smaller quantity: (0.055± 0.006)%.

As yet another test of our implementation, the ringdown part of the waveform was also shown

to yield a quasinormal mode frequency in excellent agreement with predictions from black

hole perturbation theory.

The numbers reported here for the total energy loss in gravitational waves should increase

significantly in high energy collisions, which are the most relevant scenarios for the applica-

tions described in the Introduction. Indeed, in the four dimensional case, it is known that

ultra-relativistic head-on collisions of equal mass non-rotating black holes release up to 14%

of the initial centre of mass energy into gravitational radiation [40]. The analogous number

in higher dimensions is as yet unknown, and it remains under investigations using the tools

here presented.

Even more energy may be released in high energy collisions with non-vanishing impact

parameter. In [41, 42] it was shown that this number can be as large as 35% in D = 4. The

formalism here developed allows, in principle, the study of analogous processes in D ≥ 6.

6.A Ricci tensor

In this appendix we give the full details about the computation of the Ricci tensor of

section 6.1.1. We start by writing the metric (6.1.1) in block-diagonal form

ds̄2 = ḡABe
A ⊗ eB = gµνdxµ ⊗ dxν + gīj̄Θ

ī ⊗Θj̄ , (6.A.1)

where

eA = (Dµ, ∂ī), Dµ = ∂µ − eκB ī
µ∂ī, (6.A.2)

is now the (non-coordinate) basis. Its dual is

eA = (dxµ,Θī), Θī = dxī + eκB ī
µdxµ. (6.A.3)

This basis satisfies

[eA, eB] = F k̄AB∂k̄, (6.A.4)
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where F k̄AB are given by (6.1.8). In the following we will not explicitly assume the expres-

sions (6.1.8), i.e., we will only assume (unless explicitly mentioned otherwise) that [eA, eB] =

F k̄ABek̄ = F k̄AB∂k̄, ∂īgµν = 0 and F k̄ īj̄ = 0. We will not assume the expression for the eµ
in terms of the coordinate basis (even though we will assume that ek̄ = ∂k̄).

Important remark: From now on we will work with the non-coordinate basis eA to simplify

the calculations. Note that, for an arbitrary tensor TA,

TA|B ≡ ∂eBTA ≡ eB (TA) 6= ∂BTA ≡
∂TA
∂xB

.

In particular, eµ ≡ Dµ ≡ ∂µ − eκBi
µ∂i, and as such,

TA|µ = ∂eµTA = Dµ (TA) = ∂µTA − eκBi
µ∂iTA.

We must keep in mind that TA|µν 6= TA|νµ. On the other hand, ek̄ = ∂k̄ and thus

TA|k̄ = ∂k̄TA.

We recall our definition of the “covariant derivatives” ∇µ and ∇j̄ as ∗

∇σT īαk̄µ ≡ DσT
īα
k̄µ + F īσl̄T l̄αk̄µ −F l̄σk̄T īαl̄µ + ΓαλσT

īλ
k̄µ − ΓλµσT

īα
k̄λ, (6.A.5)

∇j̄T īαk̄µ ≡ ∂j̄T īαk̄µ + Γī l̄j̄T
l̄α
k̄µ − Γl̄ k̄j̄T

īα
l̄µ, (6.A.6)

recall also that both connections are metric,

∇σgµν = ∂σgµν − Γλµσgλν − Γλνσgµλ = 0,

∇k̄gīj̄ ≡ ∂k̄gīj̄ − Γl̄ īk̄gl̄j̄ − Γl̄ j̄k̄gīl̄ = 0,

and that

∇σgīj̄ ≡ Dσgīj̄ −F k̄σīgk̄j̄ −F k̄σj̄gīk̄ 6= 0.

We now recall some expressions from section 1.4, which we re-write here for convenience: on

a non-coordinate basis obeying

[eA, eB] = cAB
DeD (6.A.7)

the torsion-free connection is given by

ΓABC =
1

2
gAD

(
gDB|C + gDC|B − gBC|D + cDBC + cDCB − cBCD

)
, (6.A.8)

where ΓA[BC] = −1
2cBC

A, and the Riemann tensor by

RABCD = ΓABD|C − ΓABC|D + ΓAECΓEBD − ΓAEDΓEBC − ΓABEcCD
E . (6.A.9)

∗Note that now, as we are working on a non-coordinate basis, the order of the indices does matter, i.e.,

Γαλσ 6= Γασλ and Γī j̄k̄ 6= Γī k̄j̄ .
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We use the convention

∇eαeβ = Γλβαeλ.

Applying these formulas to our case,

cAB
ī = F īAB, cAB

µ = 0, eµ = Dµ, ek̄ = ∂k̄ ,

we get from equation (6.A.8)

Γ̄αµν =
1

2
gαλ

(
gλµ|ν + gλν|µ − gµν|λ

)
= Γαµν ,

Γ̄īµν = −1

2
F īµν ,

Γ̄µīν =
1

2
gµλgīk̄F k̄λν = Γ̄µνī,

Γ̄µīj̄ = −1

2
gµλ∇λgīj̄ ,

Γ̄īµj̄ =
1

2
gīk̄∇µgk̄j̄ ,

Γ̄ī j̄µ =
1

2
gīk̄∇µgk̄j̄ + F īµj̄ ,

Γ̄ī j̄k̄ =
1

2
gīl̄
(
gl̄j̄|k̄ + gl̄k̄|j̄ − gj̄k̄|l̄

)
= Γī j̄k̄ .

(6.A.10)

From (6.A.9) we compute the Ricci tensor,

R̄µν = Rµν −
1

2
gαλgīj̄F īλµF j̄αν −

1

2
∇ν
(
gīj̄∇µgīj̄

)
− 1

4
gīj̄gk̄l̄∇µgīk̄∇νgj̄ l̄ −

1

2
∇k̄F k̄µν ,

(6.A.11)

R̄µī =
1

2
gαλ∇α

(
gīk̄F k̄λµ

)
+

1

4
gk̄l̄∇βgk̄l̄gβλFm̄λµgīm̄ +

1

2
∇k̄
(
gk̄l̄∇µgl̄̄i

)
− 1

2
∇ī
(
gk̄l̄∇µgk̄l̄

)
,

(6.A.12)

R̄īµ = R̄µī + F k̄µī|k̄ −F k̄µk̄|̄i, (6.A.13)

R̄īj̄ = Rīj̄ −
1

4
gk̄l̄∇βgk̄l̄∇βgīj̄ +

1

2
gk̄l̄∇βgīk̄∇βgj̄ l̄ +

1

4
gαλgβρgj̄k̄gīl̄F k̄βλF l̄ρα −

1

2
∇β∇βgīj̄ ,

(6.A.14)

where

∇k̄F k̄µν ≡ F k̄µν|k̄ + Γk̄ j̄k̄F j̄µν ,

∇ī
(
gk̄l̄∇µgk̄l̄

)
≡ ∂ī

(
gk̄l̄∇µgk̄l̄

)
,

∇k̄
(
gk̄l̄∇µgl̄̄i

)
≡ ∂k̄

(
gk̄l̄∇µgl̄̄i

)
+ Γk̄ j̄k̄g

j̄ l̄∇µgl̄̄i − Γj̄ īk̄g
k̄l̄∇µgl̄j̄ ,

and we also used Γk̄ [̄ij̄] = −1
2cīj̄

k̄ = −1
2F k̄ īj̄ = 0 and Γα[µβ] = −1

2cµβ
α = −1

2Fαµβ = 0.

The Ricci scalar is given by

R̄ = ḡABR̄AB = gµνR̄µν + gīj̄R̄īj̄ .
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We have

R̄ = R+ R̃− 1

4
gk̄l̄g

αλgµνF l̄λµF k̄αν −∇µ
(
gk̄l̄∇µgk̄l̄

)
− 1

4
gk̄īgj̄ l̄∇µgk̄l̄∇µgīj̄

− 1

4
gk̄l̄gīj̄∇µgk̄l̄∇µgīj̄ , (6.A.15)

where R̃ = gīj̄Rīj̄ .

We still need to write the components of the Ricci tensor in the coordinate basis (∂µ, ∂ī), so

from here on we need to use the specific form of eµ and, thus, also the algebra in (6.1.8). We

perform the basis transformation the usual way,

R = R̄ABe
A ⊗ eB

=
(
R̄µν + eκR̄īνB

ī
µ + eκR̄µīB

ī
ν + e2κ2R̄īj̄B

ī
µB

j̄
ν

)
dxµ ⊗ dxν

+
(
R̄īµ + eκR̄īj̄B

j̄
µ

)
dxī ⊗ dxµ +

(
R̄µī + eκR̄j̄īB

j̄
µ

)
dxµ ⊗ dxī + R̄īj̄dx

ī ⊗ dxj̄ ,

and thus, in the basis (∂µ, ∂ī) where the metric takes the form (6.1.1), we have

R̄īj̄ = Rīj̄ −
1

4
gk̄l̄∇βgk̄l̄∇βgīj̄ +

1

2
gk̄l̄∇βgīk̄∇βgj̄ l̄ +

1

4
gαλgβρgj̄k̄gīl̄F k̄βλF l̄ρα −

1

2
∇β∇βgīj̄ ,

(6.A.16)

R̄µī = eκR̄īj̄B
j̄
µ +

1

2
gαλ∇α

(
gīk̄F k̄λµ

)
+

1

4
gk̄l̄∇βgk̄l̄gβλFm̄λµgīm̄ +

1

2
∇k̄
(
gk̄l̄∇µgl̄̄i

)
− 1

2
∇ī
(
gk̄l̄∇µgk̄l̄

)
= R̄īµ, (6.A.17)

R̄µν = Rµν + 2eκB ī
(µR̄ν )̄i − e2κ2R̄īj̄B

ī
µB

j̄
ν −

1

2
gαλgīj̄F īλµF j̄αν −

1

2
∇ν
(
gīj̄∇µgīj̄

)
− 1

4
gīj̄gk̄l̄∇µgīk̄∇νgj̄ l̄ −

1

2
∇k̄F k̄µν , (6.A.18)

and

R̄ = R+ R̃− 1

4
gk̄l̄g

αλgµνF l̄λµF k̄αν −∇µ
(
gk̄l̄∇µgk̄l̄

)
− 1

4
gk̄īgj̄ l̄∇µgk̄l̄∇µgīj̄

− 1

4
gk̄l̄gīj̄∇µgk̄l̄∇µgīj̄ . (6.A.19)

Note: We have used the same indices to label components in both the coordinate and non-

coordinate basis. No confusion shall arise, however, since the non-coordinate basis was

used merely to simplify the previous computations. In the main text we deal exclusively

with the coordinate basis, to which all components refer.

6.B Equations of motion: Einstein frame

We here write the equations of motion obtained when we write the action (6.1.26) in the

Einstein frame. To do so, we perform the usual conformal transformation

gµν = ψ−
2
d−2 g̃µν (6.B.1)
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where in our case ψ ≡ enφ. The action then takes the form

S =
1

16πGd

∫
ddx
√
−g̃
[
R̃+ k∂µφ̃∂

µφ̃+ n(n− 1)e−2φ̃
]

(6.B.2)

where k ≡ nd(d−4)(n−1)−2(n+2)
(d−2+n)2 and φ̃ = d−2+n

d−2 φ. From action (6.B.2) we obtain the equations

of motion
k∇̃α∂αφ̃+ n(n− 1)e−2φ̃ = 0

R̃µν = −k∂µφ̃∂ν φ̃−
n(n− 1)

d− 2
e−2φ̃g̃µν

. (6.B.3)



Chapter 7

Non-asymptotically flat spacetimes

7.1 de Sitter

Nonlinear dynamics in cosmological backgrounds has the potential to teach us immensely

about our universe, and also to serve as prototype for nonlinear processes in generic curved

spacetimes. de Sitter spacetime, as already mentioned in the Introduction, is the simplest

accelerating universe—a maximally symmetric solution of Einstein’s equations with a positive

cosmological constant—which seems to model quite well the present cosmological accelera-

tion [100].

Key questions concerning the evolution towards a de Sitter, spatially homogeneous universe

are how inhomogeneities develop in time and, in particular, if they are washed away by

the cosmological expansion [193]. Answering them requires controlling the imprint of the

gravitational interaction between localised objects on the large-scale expansion. Conversely,

the cosmological dynamics should leave imprints in strong gravitational phenomena like

primordial black hole formation [194] or the gravitational radiation emitted in a black hole

binary coalescence, which carry signatures of the cosmological acceleration as it travels

across the universe. Identifying these signatures is not only of conceptual interest but also

phenomenologically relevant, in view of the ongoing efforts to directly detect gravitational

radiation.

Finally, dynamics in asymptotically de Sitter spacetimes could also teach us about more

fundamental questions such as cosmic censorship: two black holes of sufficiently large mass

in de Sitter spacetime would, upon merger, give rise to too large a black hole to fit in its

cosmological horizon. In this case the end state would be a naked singularity. This possibility

begs for a time evolution of such a configuration. Does the time evolution of non-singular

data containing two black holes result in a naked singularity, or are potentially offending

black holes simply driven away from each other by the cosmological expansion?

In this section, following [195], we report on numerical evolutions of black hole binaries

in an asymptotically de Sitter geometry. Even though we consider a range of values for the

97



CHAPTER 7. NON-ASYMPTOTICALLY FLAT SPACETIMES 98

cosmological constant far larger than those which are phenomenologically viable, these results

provide useful insight on the general features of dynamical black hole processes in spacetimes

with a cosmological constant, which can improve our understanding of our universe.

7.1.1 Evolution equations

The Einstein equations with cosmological constant Λ are

Rµν −
1

2
gµνR = −Λgµν , (7.1.1)

and we will always consider Λ > 0. We perform the 3+1 decomposition by introducing

the projection operator γµν and the normal to the three dimensional hyper-surface Σ, nµ

(nµnµ = −1), as outlined in section 2.5 and write the evolution equations in the BSSN

form (4.1.14).

From (7.1.1), we straightforwardly compute the source terms

8πE = Λ , 8πji = 0 ,

8πSij = −Λχ−1γ̃ij , 8πS = −3Λ .
(7.1.2)

A new evolution variable χ̄ = exp(2
√

Λ/3t)χ has been introduced instead of the usual BSSN

variable χ [193]. The reason is that for black hole evolutions it is crucial to impose a floor

value on χ, typically 10−4 or 10−6, which is inconsistent with the natural behaviour of this

variable in a de Sitter spacetime (as we will see below): χ−1 ∼ exp(2
√

Λ/3t). In contrast

χ̄→ 1 when r →∞ for all times. The evolution equations are thus

∂tγ̃ij = [· · · ] , (7.1.3a)

∂tχ̄ = 2χ̄(αK − ∂iβi)/3 + βi∂iχ̄+ 2

√
Λ

3
χ̄ , (7.1.3b)

∂tK = [· · · ]− αΛ , (7.1.3c)

∂tÃij = [· · · ] , (7.1.3d)

∂tΓ̃
i = [· · · ] . (7.1.3e)

where [· · · ] denotes the right-hand side of the BSSN equations (4.1.14) in the absence of

source terms.

7.1.2 Schwarzschild-de Sitter

The Schwarzschild-de Sitter spacetime, solution of (7.1.1), written in static coordinates reads

ds2 = −f(R)dT 2 + f(R)−1dR2 +R2dΩ2 . (7.1.4)

The solution is characterised by two parameters: the black hole mass m and the Hubble

parameter H,

f(R) = 1− 2m/R−H2R2 , H ≡
√

Λ/3 . (7.1.5)



CHAPTER 7. NON-ASYMPTOTICALLY FLAT SPACETIMES 99

f(R) has two zeros, at R = R±, R− < R+, if

0 < mH < mHcrit , mHcrit ≡
√

1/27 . (7.1.6)

These zeros are the location of the black hole event horizon (R−) and of a cosmological

horizon (R+). If H = 0, then R− = 2m; if m = 0, then R+ = 1/H. If H,m 6= 0, then

R− > 2m and R+ < 1/H. Since R is the areal radius, the area of the spatial sections of the

cosmological horizon decreases in the presence of a black hole; and the area of the spatial

sections of the black hole horizon increases in the presence of a cosmological constant, as one

would intuitively anticipate.

The basic dynamics in this spacetime may be inferred by looking at radial timelike geodesics.

They obey the equation (dR/dτ)2 = E2 − f(R), where τ is the proper time and E is the

conserved quantity associated to the Killing vector field ∂/∂T . In the static patch (R− <

R < R+), E can be regarded as energy. From this equation we see that f(R) is an effective

potential. This potential has a maximum at

Rmax = (m/H2)1/3 . (7.1.7)

Geodesics starting from rest (i.e. dR/dτ(τ = τ0) = 0) will fall into the black hole if R− <

R < Rmax or move away from the black hole if Rmax < R < R+.

As we will discuss in the next section, the initial data for an evolution in the de Sitter universe

can be computed in a similar manner as has been done in asymptotically flat space as long

as one chooses a foliation with extrinsic curvature Kij having only a trace part. Such a

coordinate system is known for Schwarzschild-de Sitter: McVittie coordinates [196]. These

are obtained from static coordinates by the transformation (T,R)→ (t, r) given by

R = (1 + ξ)2a(t)r , T = t+H

∫
R dR

f(R)
√

1− 2m/R
, (7.1.8)

where a(t) = exp(Ht) and ξ ≡ m
2a(t)r . One obtains McVittie’s form for Schwarzschild-de

Sitter:

ds2 = −
(

1− ξ
1 + ξ

)2

dt2 + a(t)2(1 + ξ)4(dr2 + r2dΩ2) . (7.1.9)

For t = constant, one can show that indeed Ki
j = −Hδij .

By setting m = 0 in McVittie coordinates one recovers an FRW cosmological model with

k = 0 (flat spatial curvature) and an exponentially growing scale factor. The cosmological

horizon HC discussed above, located at R = 1/H, stands at rHC = 1/(HeHt). The spatial

sections of HC seem to be shrinking down in this coordinate system. What happens, in

fact, is that the exponentially fast expansion is taking any observer to the outside of HC .

This is a well known phenomenon in studies of inflation and, as we shall see, has important

consequences for the numerical evolution.
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7.1.3 Numerical Setup

The cosmological constant introduces a new term (when compared with the vacuum case) in

the Hamiltonian constraint obtained after the canonical 3+1 decomposition (2.6.3c),

R−KijK
ij +K2 = 2Λ (7.1.10)

In references [197, 198] it was observed that imposing a spacetime slicing obeying Ki
j =

−Hδij , and a spatial metric of the form dl2 = ψ4γ̃ijdx
idxj , the equations to be solved in

order to obtain initial data are equivalent to those in vacuum. In particular, for a system of

N black holes momentarily at rest (with respect to the given spatial coordinate patch), the

conformal factor ψ takes the form

ψ = 1 +
N∑
i=1

mi

2|r − r(i)|
. (7.1.11)

There are N + 1 asymptotically de Sitter regions, as |r − r(i)| → 0,+∞; the total mass for

observers in the common asymptotic region (|r − r(i)| → +∞) is
∑

imi [198].

Boundary conditions for all quantities are imposed by looking at the behaviour of massless

perturbing fields in a pure de Sitter background. Accordingly, we impose the following

asymptotic behaviour for all BSSN variables

∂tf − ∂tf0 +
1

a(t)
∂rf +

f − f0

a(t)r
−H (f − f0) = 0 . (7.1.12)

We should note that we also performed evolutions using different sets of boundary conditions,

to test the independence of the results on boundary conditions imposed in a region with no

causal contact with the interaction region. As far as the behaviour and location of the

horizons and all quantities discussed in this paper are concerned, no noticeable difference

could be found.

Our numerical simulations use the Lean code [149], see section 4.3. The calculation of Black

hole Apparent Horizons (BAHs) and Cosmological Apparent Horizons (CAHs) is performed

with AHFinderDirect [153, 154]. We remark that BAHs, found as marginally trapped

surfaces, indicate in de Sitter space (with the same legitimacy as in asymptotically flat space)

the existence of an event horizon [199]. CAHs are surfaces of zero expansion for ingoing null

geodesics. In a single black hole case, in McVittie coordinates, the black hole event horizon

and cosmological horizon are indeed foliated by apparent horizons.

The “expanding” behaviour of the coordinate system led us to add a new innermost refinement

level at periodic time intervals so as to keep the number of points inside the cosmological

horizon approximately unchanged. The necessity for adding extra refinement levels effectively

limits our ability to follow the evolution on very long timescales, as the number of time steps

to cover a fixed portion of physical time grows exponentially. This feature resembles in many

ways the recently reported work by Pretorius and Lehner on the follow-up of the black string

instability [45].
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7.1.4 Numerical Results

As a first test of the numerical implementation, we performed evolutions of a single black

hole imposing the McVittie slicing condition; that is, we use (7.1.9) as initial data and impose

∂tα = 4mrHeHt/(m+ 2reHt)2 , ∂tβ
i = 0 , (7.1.13)

throughout the evolution. The analytical solution (7.1.9) can be compared with the numerical

results. For a single black hole evolution with m = 1 and H = 0.8Hcrit, the results are

displayed in figure 7.1. Using this slicing, the runs eventually crash (at t ∼ 12m). By
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z/m
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0.00
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Figure 7.1: Conformal factor χ for a single black hole evolution with H = 0.8Hcrit using the McVittie

slicing condition, equation (7.1.13). The obtained numerical results are plotted, along

the z coordinate (symmetry χ(−z) = χ(z) imposed at z = 0), against the expected

analytical solutions (solid lines).

contrast, the standard “1+log” slicing condition (4.2.3)

∂tα = βi∂iα− 2α (K −K0) , (7.1.14)

where K0 = −3H = −
√

3Λ, enables us to have long term stable evolutions. As consistency

checks, the areal radii at the apparent horizons (both black hole horizon and cosmological

horizon) are constants in time and have the value expected from the analytical solution in

a single black hole spacetime. Moreover, the areal radius at fixed coordinate radius evolves

with time in the way expected from the exact solution.

For binary black hole initial data, we start by reproducing the results of Nakao et. al [198],

where the critical distance between two black holes for the existence of a common BAH
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already at t = 0 was studied. We thus prepare initial data (7.1.11) with m1 = m2 and take

all quantities in units of the total mass m = m1 + m2. The two punctures are set initially

at symmetric positions along the z axis. The critical value for the cosmological constant, for

which the black hole and cosmological horizon coincide is now mHcrit = 1/
√

27. We call small

(large) mass binaries those, for which H < Hcrit (H > Hcrit). Our results for the critical

separation in small mass binaries, at t = 0, as function of the Hubble parameter are shown in

figure 7.2. The line (diamond symbols) agrees, after a necessary normalisation, with figure 14

of [198].
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Figure 7.2: Critical coordinate distance for small mass binaries, from both initial data and dynamical

evolutions, as well as a point particle estimate, as a function of H/Hcrit. We obtain this

estimate from the coordinate distance to the horizon, equation (7.1.7), for a particular

value of m. The t = 0 line refers to the critical separation between having or not having

a common BAH in the initial data. The inset shows details of the approach to the

critical line for H = 0.6Hcrit, where a is an acceleration parameter.

We now consider head-on collisions of two black holes with no initial momentum, i.e. the time

evolution of these data. We have monitored the Hamiltonian constraint violation level for

cases with and without cosmological constant. We observe that the constraint violations are

comparable in the two cases and plot in figure 7.3 a snapshot of the Hamiltonian constraint

violation at t = 48m for parameters H = 0.9Hcrit and d = 0.8m, a typical case with non-zero

cosmological constant. We have used two resolutions, m/160 and m/192 (on the innermost

refinement level) and have rescaled the dashed curve by Q2 = (192/160)2 as expected for

second-order convergence.

For subcritical Hubble constant H < Hcrit = 1/(
√

27m), we monitor the evolution of the
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Figure 7.3: Hamiltonian constraint violation along the z-axis at time t = 48m for a simulation with

H = 0.9Hcrit and initial distance d = 0.8m.

areal radius of the BAHs and that of the CAH of an observer at z = 0. For instance, for

H = 0.9Hcrit and proper (initial) separation 3.69m we find that the areal radii of the BAH

and CAH are approximately constant and equal to RBAH ' 2.36m and RCAH ' 4.16m,

respectively. As expected the two initial BAHs, as well as the final horizon, are inside the

CAH. As a comparison, a Schwarzschild-de Sitter spacetime with the same H has RBAH '
2.43m and RCAH ' 4.16m. This suggests that the interaction effects (binding energy and

emission of gravitational radiation) are of the order of a few per cent for this configuration.

As the initial separation grows, so does the total time for merger. For separations larger than

a critical value, the two black holes do not merge, but scatter to infinity. For such scattering

configurations, the simulations eventually exhibit a regime of exponentially increasing proper

distance between the BAH. Just as in scatters of high energy black holes [42], here we find

that the immediate merger/scatter regimes are separated by a blurred region, where the holes

sit at an almost fixed proper distance for some time; cf. figure 7.4. By performing a large set

of simulations for various cosmological parameters H and initial distance d, we have bracketed

the critical distance for the merger/scatter region as a function of the Hubble parameter H

for the “dynamical” case, i.e., the initial coordinate distance between the black holes such

that no common BAH forms. The results are displayed in figure 7.2 (circles and × symbols).

As expected the critical distance becomes larger as compared to the initial data value (“t = 0”

line): there are configurations for which a common BAH is absent in the initial data but

appears during the evolution (just as in asymptotically flat spacetime). The numerical results

can be qualitatively well approximated by a point particle prediction—from equation (7.1.7).
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Figure 7.4: Proper distance between the black hole horizons as a function of time for the H =

0.9Hcrit, and initial (coordinate) distance d ' 0.9m. The two holes stay at approximately

constant distance up to t ≈ 8m after which cosmological expansion starts dominating.

To do such comparison a transformation to McVittie coordinates needs to be done; we have

performed such transformation at McVittie time t = 0. Intriguingly, for a particular value

of m ' 0.7, the point particle approximation matches quantitatively very well the numerical

result; the curve obtained from the geodesic prediction in figure 7.2 is barely distinguishable

from the numerical results.

A further interesting feature concerns the approach to the critical line. For an initially static

binary close to the critical initial separation, the coordinate distance d scales as d = d0 +at2.

In general the acceleration parameter scales as log a = C + Γ log(d − d0), where Γ = 1 in

the geodesic approximation. A fit to our numerical results for H = 0.6Hcrit (dashed curve in

the inset of figure 7.2) for example yields C = −3.1, Γ = 0.9 in rough agreement with this

expectation. Details of this regime are given in the inset of figure 7.2.

Finally, we have performed evolutions with H > Hcrit. On the assumption of weak grav-

itational wave release, such evolutions can test the cosmic censorship conjecture since the

observation of a merger in such case would reveal a violation of the conjecture [200]. From

general arguments and from the simulations with H < Hcrit, we know the cosmological

repulsion will dominate for sufficiently large initial distance and in that case we can even

expect that a CAH for the observer at z = 0 will not encompass the BAHs. This indicates

the black holes are no longer in causal contact and therefore can never merge. Our numerical

results confirm this overall picture. To test the potentially dangerous configurations, we focus
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on the regime in which the black holes are initially very close. A typical example is depicted

in figure 7.5, for a supercritical cosmological constant H = 1.05Hcrit, and an initial coordinate

distance d/m = 1.5002. Even though the initial separation is very small, we find that the

holes move away from each other, with a proper separation increasing as the simulation

progresses. In fact, further into the evolution, a distorted CAH appears, and remains for as

long as the simulation lasts. At late times, this CAH is spherically symmetric, and has an

areal radius which agrees, to within 10−5, with that of an empty de Sitter spacetime with the

same cosmological constant. The evolution therefore indicates that the spacetime becomes,

to an excellent approximation, empty de Sitter space for the observer at z = 0 and that the

black holes are not in causal contact. Observe that qualitatively similar evolutions can be

found in small mass binaries when the initial distance is larger than the critical value

�0.6 0.0 0.6
z/m

�0.5

0.0

0.5

x
/
m

�0.6 0.0 0.6
z/m

�0.6 0.0 0.6
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Figure 7.5: Snapshots at different times (from left to right t/m = 0.0, 8.0156, 20.016) of a simulation

with H = 1.05Hcrit, and an initial coordinate distance d/m = 1.5002. The dotted blue

line denotes the CAH (for an observer at z = 0) which is first seen in this simulation

at t/m = 8.0156, highly distorted. At late times, the CAH has an areal radius of

R = 4.94876, while the “theoretical value” for pure dS is R = 1/H = 4.94872, a

remarkable agreement showing that the spacetime is accurately empty dS for the observer

at z = 0 and the black holes are not in causal contact.

7.1.5 Final Remarks

We have presented evidence that the numerical evolution of black hole spacetimes in de

Sitter universes is under control. Our results open the door to new studies of strong field

gravity in cosmologically interesting scenarios. In closing, we would like to mention that

our results are compatible with cosmic censorship in cosmological backgrounds. However,

an analytic solution with multiple (charged and extremal) black holes in asymptotically de

Sitter spacetime is known, and has been used to study cosmic censorship violations [201]. In

collapsing universes a potential violation of the conjecture has been reported, although the

conclusion relied on singular initial data. To clarify this issue, it would be of great interest to

perform numerical evolution of large mass black hole binaries, analogous to those performed

herein, but in collapsing universes. This will require adaptations of our setup, since the

“expanding” behaviour discussed of the coordinate system will turn into a “collapsing” one,
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which raises new numerical challenges.

7.2 Black holes in a box

Anti-de Sitter (AdS) is a non-globally hyperbolic spacetime, which essentially means that

it is not enough to prescribe a set of evolution equations and some initial configuration in

order to predict what will happen in the future. On such spacetimes, the boundary plays

an active role, and in order to have a well-defined Cauchy problem the initial data (and

evolution equations) must be supplemented by appropriate boundary conditions at the time-

like conformal boundary.

In this section, we will give a brief overview of the work presented in [104] where a “toy

model” for Anti-de Sitter was considered by imprisoning a black hole binary in a box with

mirror-like boundary conditions and thus exploring the active role that boundary conditions

play in the evolution of a bulk black hole system.

7.2.1 Numerical setup

The vacuum Einstein equation are written in the BSSN scheme (4.1.14), introduced in

section 4.1, with the gauge conditions (4.2.3), (4.2.6). We evolve these equations with the

Lean code [149], see section 4.3.

The work here presented differs from previous implementations of the Lean code (and most

other codes) in the treatment of the outer boundary conditions, which is herein considered

to be a reflecting sphere or, rather, an approximation of it by using so-called Lego spheres;

cf. section 3 in [202]. The numerical implementation of such boundary conditions is schemat-

ically illustrated in figure 7.6.

Points outside the outer circle of radius RB+∆R are not required for updating regular points

and are simply ignored in the numerical evolution. In practice, we ensure that the boundary

shell is always of sufficient thickness to accommodate discretization stencils required for the

update of regular gridpoints. The specific boundary condition is then determined by the

manner in which we update grid functions on the boundary points marked as × in the figure.

To mimic the global structure of an AdS spacetime we thus enclose the black hole binary

inside the spherical mirror and set
∂

∂t
f = 0, (7.2.1)

at each boundary point with f denoting any of the BSSN variables listed in equations (4.1.14).

The final ingredient needed for our numerical implementation is related with the spurious

radiation present when evolving black hole binaries—often called junk radiation—which can

be traced back to the methods used to compute the initial data. To avoid contamination of

our simulations by such spurious radiation being trapped inside our reflective boundary we

employ standard outgoing radiation boundary conditions at early times and only switch on
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Figure 7.6: Illustration of a (Lego-)spherical outer boundary.

our reflective condition at

tref = RB + ∆tpulse, (7.2.2)

where we estimate the duration of the spurious wave pulse ∆tpulse from previous simulations

of similar setups in asymptotically flat spacetimes as for example presented in [203, 149, 204].

The spurious radiation is thus given sufficient time to leave the computational domain.

Wave extraction is employed in the fashion outlined in section 5.1.1, where we will herein

also measure the Ψ0 Weyl scalar, which encodes the incoming gravitational wave signal.

The results we will report in the following sections all refer to an inspiral simulation with

total mass M = M1 +M2, where the black hole punctures were set with an initial coordinate

distance of d = 6.517M and with Bowen-York momentum parameter Pi = ±0.133M . The

grid structure used was

{(48, 24, 12, 6)× (1.5, 0.75), h = 1/56} , (7.2.3)

and the Weyl scalars have been extracted at rex = 35M .
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7.2.2 Gravitational wave signal

The nature of our specific configuration is ideal to study both the outgoing (Ψ4) as well as

the ingoing (Ψ0) gravitational wave pulses.

The gravitational wave signal is dominated by the quadrupole contributions which is shown

in figure 7.7. The ingoing signal ψ0
22 has been shifted in time by ∆t = 10 M to compensate

for the additional propagation time from the extraction radius rex = 35 M to the boundary

RB = 40 M and back after reflection. The reflection introduces an additional phase shift of

∆φ = π which has also been taken into account in the figure. Within numerical errors, we

find the resulting outgoing and subsequent ingoing pulses to overlap.
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Figure 7.7: Real part of the l = m = 2 mode of rMΨ0 and rMΨ4. The ingoing signal rMΨ0 has

been shifted in time by ∆t = 10M and in phase by π (thus equivalent to an extra minus

sign) to account for the additional propagation time and the reflection.

7.2.3 Interaction of the wave pulse with the remnant black hole

We define black hole mass in terms of the equatorial radius of the horizon Ce by [205]

M =
Ce
4π

. (7.2.4)

In figure 7.8 it is shown the fractional deviation (M −M0)/M0 of the mass of the final black

hole from its value immediately after merger together with the irreducible mass and the black

hole spin J . The mass remains approximately constant until the pulse returns after its first

reflection, then increases, remains constant during the second passage of the pulse and so on.
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In contrast, the spin only shows a significant increase during the first scattering of the pulse

off the black hole.
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Figure 7.8: Time evolution of the (relative) mass of the black hole (solid) computed by M = Ce/4π,

the irreducible mass (long dashed) and the total spin J = jM2 (dashed curve).

Comparing the increase in the horizon mass with the amount of gravitational wave energy

radiated during the last stages of the inspiral, plunge and merger of a corresponding binary

system in an asymptotically flat spacetime—which is about 3.5% of the total energy of the

system [204, 149]—we estimate that about 15% of the energy emitted during the merger is

absorbed by the central spinning black hole per interaction.

7.2.4 Final remarks

In this section, we have given just a brief overview of the work presented in [104] where the

global structure of an AdS background was mimicked by introducing a reflecting wall at a

finite radius. Inside this cavity a black hole inspiral was evolved.

The results presented are consistent with the intuitive expectations for a wavepacket of

radiation (generated during inspiral plus merger) travelling back and forth between the

mirror-like wall and the black hole: part of this radiation is absorbed when interacting with

the black hole (especially high-frequencies). We estimate that about 15% of the wavepacket’s

energy is absorbed by the black hole per interaction, at least during the first cycles.

It would be extremely interesting to extend this work to implement the evolution of black

holes in real AdS backgrounds, following the recent works in [61, 62, 63].
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7.3 Black holes in cylinders

From the gauge/gravity duality to braneworld scenarios, black holes in compactified space-

times play an important role in fundamental physics. Our current understanding of black

hole solutions and their dynamics in such spacetimes is rather poor because analytical tools

are capable of handling a limited class of idealised scenarios, only.

In this section, following [206], we wish to study how the compactness of extra dimensions

changes the dynamics of such higher-dimensional gravity scenarios. There is considerable

literature on Kaluza-Klein black holes and black holes on cylinders [106, 107, 105, 108];

the full non-linear dynamics of black holes on such spacetimes, however, seems to remain

unexplored.

7.3.1 Setup

We are interested in describing the evolution of black holes in a five dimensional spacetime

with one periodic direction. For a five dimensional cylindrical Minkowski spacetime, M1,3×S1,

the metric can be written as

ds2 = −dt2 + dx2 + dy2 + y2dφ2︸ ︷︷ ︸
M1,3

+ dz2︸︷︷︸
S1

. (7.3.1)

The S1 direction is parameterised by z, which takes values in the interval [−L,L], with the

two endpoints identified and L ∈ R+. The coordinate φ also parameterises a circle, this circle

is, however, homotopic to a point, since it shrinks down to zero size at y = 0, where y is a

radial coordinate in the y − φ plane which is part of M1,3—figure 7.9.

φ

z

y

Figure 7.9: Illustration of the coordinate system for the Minkowski spacetime M1,3 × S1. A slice

with t = constant and x = constant is shown. y, φ parameterise a plane, wherein y is

a radial direction and φ an azimuthal coordinate. At each point in this plane there is

a non-contractible circle parameterised by z. This is illustrated by exhibiting this circle

on various points along an orbit of ∂/∂φ and also at y = 0. Space-time is a (trivial) S1

bundle over M1,3.

Following the approach outlined in section 6.2, we take our five dimensional metric ansatz to

be

ds2 = gµνdxµdxν + λ(xµ)dφ2 , (7.3.2)
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where xµ = (t, x, y, z). We perform a dimensional reduction by isometry on ∂φ and end up

with a four dimensional model of gravity coupled to a scalar field. Performing the standard

3 + 1 decomposition and writing the equations in the BSSN scheme, the evolution equations

of the resulting system are those of (4.1.14) with matter terms given by (6.2.23). We here

use periodic boundary conditions along the z direction and Sommerfeld radiative boundary

conditions along x and y.

7.3.2 Initial data

Following the approach of section 6.3, the four-dimensional Brill-Lindquist initial data ap-

propriate to describe non-spinning, non-rotating black holes momentarily at rest, take the

form

γijdx
idxj = ψ2[dx2 + dy2 + dz2] , λ = y2ψ2 , Kij = 0 = Kλ .

In a spacetime with standard topology (wherein z parameterises a line), the initial data for

two black holes with horizon radius r1,2
S and punctures placed at (x, y, z) = (0, 0,±a), takes

the form

ψ = 1 +
(r1
S)2

4[x2 + y2 + (z − a)2]
+

(r2
S)2

4[x2 + y2 + (z + a)2]
. (7.3.3)
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Figure 7.10: Illustration of the correspondence between real space and covering space for a single

black hole (left panel) and a situation of head on collision (right panel). The dashed

boxes drawn in the covering space contain a single copy of the real space setup and

correspond also to what is contained in the numerical grid.

The appropriate initial data to describe a black hole in S1 can be viewed as having an infinite

array of black holes, all with the same mass, separated by coordinate distance ∆z = 2L—

figure 7.10. Since the superposition of various black holes in a line is described by adding up

the corresponding initial data, for the infinite array of two black holes in the circle located
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at z = ±a (0 < a < L) with horizon radii riS , i = 1, 2 (or, equivalently, for two black holes in

S1) the initial data is given by

ψ = 1 +

+∞∑
n=−∞

(r1
S)2

4[x2 + y2 + (z − a− 2Ln)2]
+

+∞∑
n=−∞

(r2
S)2

4[x2 + y2 + (z + a− 2Ln)2]

= 1 +
π(r1

S)2

8Lρ

sinh πρ
L

cosh πρ
L − cos π(z−a)

L

+
π(r2

S)2

8Lρ

sinh πρ
L

cosh πρ
L − cos π(z+a)

L

. (7.3.4)

where ρ2 ≡ x2 + y2 and in the last equality we have used the result in [105].

7.3.3 Results

Again, we use the Lean code, introduced in section 4.3, for the numerical evolutions.

The main difference to standard implementations of Lean is the use of periodic boundary

conditions, which is also non-trivial to implement in a parallel code.

We will now show some results obtained for a head-on collision (from rest) of black holes with

an initial separation of 10.37 rS , i.e., a = 5.185 rS . The z (z ∈ [−L,L]) coordinate has been

compactified with L/rS = 64, 32, 16. For comparison purposes, we have also performed

a simulation with “standard” outgoing boundary conditions (L → ∞), which will be here

referred to as “outgoing”.

All results will be presented in units of the Schwarzschild radius rS = rS,1 + rS,2.

7.3.3.1 Hamiltonian constraint

Figure 7.11 shows the Hamiltonian constraint along the x and z axis, respectively, for several

time steps for the L/rS = 32 case. As we can see, the constraint is indeed being satisfied

with high accuracy.

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0  20  40  60  80  100  120

lo
g

1
0
|H

|

x

t=0
t=150
t=300
t=500

-12

-10

-8

-6

-4

-2

 0

 2

 0  5  10  15  20  25  30

lo
g

1
0
|H

|

z

t=0
t=150
t=300
t=500

Figure 7.11: Hamiltonian constraint along the x and z axis, for the L/rS = 32 case.
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7.3.3.2 Collision time

Next, we study the changes in collision time for different compactification radii. Whereas

we do not observe any (noticable) difference for L/rS = 64 and L/rS = 32 as compared to

the outgoing case, the case L/rS = 16 shows already a noticable difference. The puncture

trajectories for these cases are plotted in figure 7.12.
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Figure 7.12: Puncture z coordinate as function of time for the outgoing and L/rS = 16 cases.

Recall that one can think of a black hole in a cylindrical space as an array of infinite black

holes. Therefore, for a head-on collision on such a cylindrical space, each black hole will also

feel the gravitational pull of all the other black holes. Näıvely, one thus expects that for this

cylindrical case it will take longer for the black holes to collide, which is what we observe in

figure 7.12.

7.3.4 Final remarks

Using the formalism introduced in section 6.1, we were able to reduce the head-on collision of

(non-spinning) black holes on cylindrical spacetimes (in any dimension) to an effective 3 + 1

system with a scalar field, and used this procedure to successfully evolve a head-on collision

of two black holes on a five-dimensional cylindrical spacetime.

Further issues that we wish to investigate include monitoring the deformation of the black

holes’ apparent horizon and computing the energy radiated, along the lines of section 6.4.2.3.

We also further plan to perform simulations with smaller compactification radii and study

the equivalent six-dimensional system.



Chapter 8

Einstein-Maxwell

In this last chapter we go back to four dimensions once again, this time in Einstein-Maxwell

theory, to perform fully non-linear numerical simulations of charged black hole collisions [207].

As mentioned in the Introduction, the dynamics of binary systems of charged, i.e. Reissner-

Nordström (RN), black holes have remained rather unexplored territory. Perhaps this is due

to the expectation that astrophysical black holes carry zero or very small charge; in particular,

black holes with mass M , charge Q and angular momentum aM2 are expected to discharge

very quickly if Q/M & 10−13(a/M)−1/2(M/M�)1/2 [208, 112]. There is, nevertheless, a good

deal of motivation for detailed investigations of the dynamics of charged black holes.

In the context of astrophysics, charged black holes may actually be of interest in realistic

systems. First, a rotating black hole in an external magnetic field will accrete charged particles

up to a given value, Q = 2B0J [111]. Thus it is conceivable that astrophysical black holes

could have some (albeit rather small) amount of electrical charge. Then it is of interest

to understand the role of this charge in the Blandford-Znajek mechanism [112], which has

been suggested for extracting spin energy from the hole, or in a related mechanism capable

of extracting energy from a moving black hole [110, 113] to power outflows from accretion

disk-fed black holes. Numerical simulations of charged black holes interacting with matter

and surrounding plasma will enable us to study such effects.

Motivation for the numerical modelling of charged black holes also arises in the context

of high energy collisions. It is expected that trans-Planckian particle collisions form black

holes; moreover, well above the fundamental Planck scale such processes should be well

described by general relativity and other interactions should become negligible [64], an idea

poetically stated as matter does not matter for ultra high energy collisions [66]. But is this

expectation really correct? Calculations of shock wave collisions suggest that even though

other interactions—say charge—may become irrelevant in the ultra-relativistic limit, the

properties of the final black hole (and of the associated emission of gravitational radiation)

do depend on the amount of charge carried by the colliding particles [114, 115]. This issue

can be clarified by the simulation of high-energy collisions of charged black holes and the

subsequent comparison of the results to those obtained for electrically neutral systems.

114
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Finally we note a variety of conceptual aspects that merit a more detailed investigation of

charged black hole systems. In head-on collisions with small velocity, the intuition borrowed

from Larmor’s formula in Minkowski space suggests a steady growth of the emitted power with

the acceleration. However, it is by now well established that for uncharged black holes the

gravitational radiation strongly peaks near around time of formation of a common apparent

horizon. Does the electromagnetic radiation emission follow a similar pattern? And what is

the relative fraction of electromagnetic to gravitational wave emissions? Moreover, a non-

head on collision of charged non-spinning black holes will allow us to study, as the end

state, a (perturbed) Kerr-Newman geometry, which would be extremely interesting: linearised

perturbations around Kerr-Newman black holes do not decouple [209, 192] and so far close

to nothing is known about their properties. Among others, the stability of the Kerr-Newman

metric is an outstanding open issue. Furthermore, it has been observed that the inspiral

phase of an orbiting black-hole-binary system can be well understood via post-Newtonian

methods [210] (see also e.g. [23, 211]). The additional radiative channel opened by the

presence of electric charge provides additional scope to probe this observation.

With the above motivations in mind we here initiate the numerical study of non-linear

dynamics of binary systems of charged black holes, building on previous numerical evolutions

of the Einstein-Maxwell system [116, 109, 117, 118]. For reasons of simplicity, we focus in

this study on binary systems for which initial data can be constructed by purely analytic

means [133, 212]: head-on collisions, starting from rest, of non-spinning black holes with

equal charge-to-mass ratio. This implies in particular that the black holes carry a charge

of the same sign, so the electromagnetic force will always be repulsive. We extract both

gravitational and electromagnetic radiation and monitor their behaviour as the charge-to-

mass-ratio parameter of the system is varied.

8.1 Evolution equations

We will adopt the approach outlined in [213, 117] to evolve the electro-vacuum Einstein-

Maxwell equations which incorporates suitably added additional fields to ensure the evolution

will preserve the constraints. This amounts to considering an enlarged system of the form

Rµν −
R

2
gµν = 8πTµν ,

∇µ (Fµν + gµνΨ) = −κnνΨ ,

∇µ (?Fµν + gµνΦ) = −κnνΦ ,

(8.1.1)

where ?Fµν denotes the Hodge dual of the Maxwell-Faraday tensor Fµν , κ is a constant

and nµ the four-velocity of the Eulerian observer. We recover the standard Einstein-Maxwell

system of equations when Ψ = 0 = Φ. With the scalar field Ψ and pseudo-scalar Φ introduced

in this way, the natural evolution of this system drives Ψ and Φ to zero (for positive κ), thus

ensuring the magnetic and electric constraints are controlled [213, 116]. The electromagnetic
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stress-energy tensor takes the usual form

Tµν =
1

4π

[
Fµ

λFνλ −
1

4
gµνF

λσFλσ

]
. (8.1.2)

8.1.1 3+1 decomposition

We employ the 3 + 1 decomposition, as explained in section 2.5, where we introduced the

3-metric

γµν = gµν + nµnν , (8.1.3)

and further decompose the Maxwell-Faraday tensor into the more familiar electric and mag-

netic fields measured by the Eulerian observer moving with four velocity nµ

Fµν = nµEν − nνEµ + εµναβB
αnβ ,

?Fµν = nµBν − nνBµ − εµναβEαnβ ,
(8.1.4)

where we use the convention ε1230 =
√−g, εαβγ = εαβγδn

δ, ε123 =
√
γ.

We write the evolution equations in the BSSN form (4.1.14) where, for the case of the

electromagnetic energy-momentum tensor of equation (8.1.2), the source terms are given

by

E ≡ Tµνnµnν =
1

8π

(
EiEi +BiBi

)
,

ji ≡ −γiµTµνnν =
1

4π
εijkE

jBk ,

Sij ≡ γµiγνjTµν

=
1

4π

[
−EiEj −BiBj +

1

2
γij

(
EkEk +BkBk

)]
,

(8.1.5)

and S ≡ γijSij . The evolution of the electromagnetic fields is determined by equation (8.1.1)

whose 3+1 decomposition becomes [118]

(∂t − Lβ)Ei = αKEi + εijkχ−1
[
γ̃klB

l∂jα+ α
(
Bl∂j γ̃kl + γ̃kl∂jB

l − χ−1γ̃klB
l∂jχ

)]
− αχγ̃ij∂jΨ ,

(∂t − Lβ)Bi = αKBi − εijkχ−1
[
γ̃klE

l∂jα+ α
(
El∂j γ̃kl + γ̃kl∂jE

l − χ−1γ̃klE
l∂jχ

)]
− αχγ̃ij∂jΦ ,

(∂t − Lβ) Ψ = −α∇iEi − ακΨ ,

(∂t − Lβ) Φ = −α∇iBi − ακΦ .

(8.1.6)

Here, Lβ denotes the Lie derivative along the shift vector βi. The Hamiltonian and momen-

tum constraint are

H ≡ R+K2 −KijKij − 16πE = 0 ,

Mi ≡ DjAi
j − 3

2
Ai

jχ−1∂jχ−
2

3
∂iK − 8πji = 0 ,

(8.1.7)

where Di is the covariant derivative associated with the three-metric γij .
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8.1.2 Initial data

We focus here on black hole binaries with equal charge and mass colliding from rest. For

these configurations, it is possible to construct initial using the Brill-Lindquist construction

(outlined in section 3.2.1 for the vacuum spacetimes; see [133, 212] for the charged case). The

main ingredients of this procedure are as follows.

For a vanishing shift βi, time symmetry implies Kij = 0. Combined with the condition of

an initially vanishing magnetic field, the magnetic constraint DiB
i = 0 and momentum con-

straint are automatically satisfied. By further assuming the spatial metric to be conformally

flat

γijdx
idxj = ψ4

(
dx2 + dy2 + dz2

)
, (8.1.8)

the Hamiltonian constraint reduces to

4ψ = −1

4
E2ψ5 , (8.1.9)

where 4 is the flat space Laplace operator. The electric constraint, Gauss’s law, has the

usual form

DiE
i = 0 . (8.1.10)

Quite remarkably, for systems of black holes with equal charge-to-mass ratio, these equations

have known analytical solutions [212]. For the special case of two black holes momentarily at

rest with “bare masses” m1, m2 and “bare charges” q1, q2 = q1m2/m1 this analytic solution

is given by

ψ2 =

(
1 +

m1

2|~x− ~x1|
+

m2

2|~x− ~x2|

)2

− 1

4

(
q1

|~x− ~x1|
+

q2

|~x− ~x2|

)2

,

Ei = ψ−6

(
q1

(~x− ~x1)i

|~x− ~x1|3
+ q2

(~x− ~x2)i

|~x− ~x2|3
)
,

(8.1.11)

where ~xi is the coordinate location of the ith “puncture”.∗

The initial data is thus completely specified in terms of the independent mass and charge

parameters m1, m2, q1 and the initial coordinate separation d of the holes. These uniquely

determine the remaining charge parameter q2 via the condition of equal charge-to-mass ratio.

In this study we always choose m1 = m2 and, without loss of generality, position the two holes

symetrically around the origin such that z1 = d/2 = −z2. The resulting initial three metric

γij follows from equations. (8.1.8), (8.1.11) while the extrinsic curvature Kij and magnetic

field Bi vanish on the initial slice.

We use the same gauge conditions and outer boundary conditions for the BSSN variables as

used in vacuum simulations, cf. equations (4.2.3) and (4.2.6). As outer boundary condition

for the electric and magnetic fields we have imposed a falloff as 1/r2—from (8.1.11). For

the additional scalar fields a satisfactory behaviour is observed by imposing a falloff as 1/r3

(which is the expected falloff rate from dimensional grounds).

∗We note that this foliation, in isotropic coordinates, only covers the outside of the external horizon.
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8.2 Wave Extraction

For a given set of initial parameters m1 = m2, q1 = q2, d, the time evolution provides us

with the spatial metric γij , the extrinsic curvature Kij as well as the electric and magnetic

fields Ei, Bi as functions of time. These fields enable us to extract the gravitational and

electromagnetic radiation as explained in section 5.1.1. Details concerning the numerical

implementation can be found in [149].

We recall that the radiated flux and energy are given by the expressions (5.1.21) and (5.1.28):

FGW =
dEGW

dt
= lim

r→∞

r2

16π

∑
l,m

∣∣∣∣∫ t

−∞
dt′ψlm(t′)

∣∣∣∣2 , (8.2.1)

FEM =
dEEM

dt
= lim

r→∞

r2

4π

∑
l,m

∣∣∣φlm2 (t)
∣∣∣2 . (8.2.2)

As is well known from simulations of uncharged black-hole binaries, initial data obtained

from the Brill-Lindquist construction contains “spurious” radiation, which is an artifact of

the conformal-flatness assumption. In calculating properties of the radiation, we account

for this effect by starting the integration of the radiated flux in equations (8.2.1), (8.2.2) at

some finite time ∆t after the start of the simulation, thus allowing the spurious pulse to first

radiate off the computational domain. In practice, we obtain satisfactory results by choosing

∆t = Rex + 50 M . Because the physical radiation is very weak for both the gravitational

and electromagnetic channel in this early infall stage, the error incurred by this truncation

is negligible compared with the uncertainties due to discretization; cf. section 8.4.4.

8.3 Analytic predictions

Before discussing in detail the results of our numerical simulations, it is instructive to discuss

the behaviour of the binary system as expected from an analytic approximation. Such an

analysis not only serves an intuitive understanding of the binary’s dynamics, but also provides

predictions to compare with the numerical results presented below.

For this purpose we consider the electrodynamics of a system of two equal point charges in

a Minkowski background spacetime. As in the black hole case, we denote by q1 = q2 ≡ Q/2

and m1 = m2 ≡M/2 the electric charge and mass of the particles which are initially at rest

at position z = ±d/2.

It turns out useful to first consider point charges in Minkowski spacetime in the static limit.

The expected behaviour of the radial component of the resulting electric field is given by [214]

Er̂ = 4π
∑
l,m

l + 1

2l + 1
qlm

Ylm(θ, ϕ)

rl+2
, (8.3.1)
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which for a system of two charges of equal magnitude at z = ±d/2 becomes

Er̂ '
√

4πQ
Y00

r2
+

√
9π

20
Qd2Y20

r4
. (8.3.2)

The dipole vanishes in this case due to the reflection symmetry across z = 0. This symmetry

is naturally preserved during the time evolution of the two-charge system. Furthermore, the

total electric charge Q is conserved so that the leading-order behaviour of the electromag-

netic radiation is given by variation of the electric quadrupole, just as for the gravitational

radiation. Notice that in principle other radiative contributions can arise from the accel-

erated motion of the charged black holes. From experience with gravitational radiation

generated in the collision of electrically neutral black-hole binaries, however, we expect this

“Bremsstrahlung” to be small in comparison with the merger signal and hence ignore its

contributions in this simple approximation. The good agreement with the numerical results

presented in the next section bears out the validity of this quadrupole approximation. In

consequence, it appears legitimate to regard the “strength” of the collision and the excitation

of the black-hole ringdown to be purely kinematic effects.

An estimate for the monopole and quadrupole amplitudes in the limit of two static point

charges is then obtained from inserting the radial component of the electric field (8.3.2) into

the expression (5.1.25) for Φ1 and its multipolar decomposition (5.1.26)

r2φ00
1 =

√
πQ ≈ 1.77Q , (8.3.3)

r4φ20
1 =

√
9π

80
Qd2 ≈ 0.59Qd2 . (8.3.4)

The expectation is that these expressions provide a good approximation for the wave sig-

nal during the early infall stage when the black holes are moving with small velocities.

Equation (8.3.3) should also provide a good approximation for φ00
1 after the merger and

ringdown whereas the quadrupole φ20
1 should eventually approach zero as a single merged

hole corresponds to the case d = 0 in equation (8.3.4).

In order to obtain analytic estimates for the collision time and the emitted radiation, we

need to describe the dynamic behaviour of the two point charges. Our starting point for this

discussion is the combined gravitational and electromagnetic potential energy for two charges

i = 1, 2 in Minkowski spacetime with mass and charge mi, qi at distance r from each other

V = −Gm1m2

r
+

1

4πε0

q1q2

r
. (8.3.5)

For the case of two charges with equal mass and charge mi = M/2, qi = Q/2 and starting

from rest at z0 = ±d/2, conservation of energy implies

Mż2 − M2B
4z

= −M
2B

2d
, (8.3.6)

where we have used units with G = 4πε0 = 1 and

B ≡ 1−Q2/M2 . (8.3.7)
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The resulting equation of motion for z(t) is obtained by differentiating equation (8.3.6) which

results in

Mz̈ = −M
2

8z2
+
Q2

8z2
= −M2 B

8z2
. (8.3.8)

An estimate for the time for collision follows from integrating equation (8.3.6) over z ∈ [d/2, 0](
tcollision

M

)2

=
π2d3

23M3B . (8.3.9)

From the dynamic evolution of the system we can derive an approximate prediction for

the electromagnetic radiation by evaluating the (traceless) electric quadrupole tensor Qij =∫
d3~xρ(~x)(3xixj − r2δij) [214]. In terms of this quadrupole tensor, the total power radiated

is given by [214]

FEM =
∑
ij

1

4πε0

1

360c5

...
Q

2
ij . (8.3.10)

For clarity we have reinstated the factors 4πε0 and c5 here. Using

d3

dt3
(z2) = 6żz̈ + 2z

...
z , (8.3.11)

and the equations of motion (8.3.6), (8.3.8) we find

FEM =
B3M3Q2(1/z − 2/d)

1920z4
. (8.3.12)

Using
∫
dt(. . .) =

∫
dz/ż(. . .), we can evaluate the time integral up to some cutoff separation,

say zmin = αbb, where b is the horizon radius of the initial black hole, b = M(1 +
√
B)/2 and

αb = O(1) is a constant. This gives,

EEM
rad

M
= B5/2M3/2Q2 (d− 2αbb)

3/2(15d2 + 24dαbb+ 32α2
bb

2)

50400(dαbb)7/2
. (8.3.13)

Emission of gravitational radiation follows from the quadrupole formula, which is a numerical

factor 4 times larger, and where the charge is be replaced by the mass,

EGW
rad

M
= B5/2M7/2 (d− 2αbb)

3/2(15d2 + 24dαbb+ 32α2
bb

2)

12600(dαbb)7/2
. (8.3.14)

For Q = 0, αb = 1, d =∞ we thus obtain

EGW
rad

M
=

1

840
∼ 0.0012 , (8.3.15)

in agreement to within a factor of 2 with numerical simulations (see [176] and table 8.1 below;

the agreement could be improved by assuming αb ∼ 1.3). As a general result of this analysis

we find in this approximation,
EEM

rad

EGW
rad

=
Q2

4M2
. (8.3.16)

For non-extremal holes Q < M , our analytic considerations therefore predict that the energy

emitted in electromagnetic radiation is at most 25% of the energy lost in gravitational

radiation. As we shall see below, this turns out to be a remarkably good prediction for

the results obtained from fully numerical simulations.
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8.4 Numerical Results

The numerical integration of the Einstein-Maxwell equations (4.1.14), (8.1.6) has been per-

formed using fourth-order spatial discretisation with the Lean code, originally presented

in [149] for vacuum spacetimes, see section 4.3.

The initial parameters as well as the grid setup and the radiated gravitational and electromag-

netic wave energy for our set of binary configurations is listed in table 8.1. All binaries start

from rest with a coordinate distance d/M ' 8 or d/M ' 16 while the charge-to-mass ratio

has been varied from Q/M = 0 to Q/M = 0.98. Note that identical coordinate separations

of the punctures for different values of the charge Q/M correspond to different horizon-to-

horizon proper distances. This difference is expected and in fact analysis of the RN solution

predicts a divergence of the proper distance in the limit Q/M → 1.

Table 8.1: Grid structure in the notation of section II E of [149], coordinate distance d/M , proper

horizon-to-horizon distance L/M , charge Q/M , gravitational (EGW
rad ) and electromagnetic

(EEM
rad ) radiated energy for our set of simulations. The radiated energy has been computed

using only the l = 2, m = 0 mode; the energy contained in higher-order multipoles such

as l = 4, m = 0 is negligible for all configurations.

Run Grid d/M L/M Q/M EGW
rad EEM

rad

d08q00 {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/80} 8.002 11.56 0 5.1× 10−4 –

d08q03 {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/80} 8.002 11.60 0.3 4.5× 10−4 1.3× 10−5

d08q04 {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/80} 8.002 11.65 0.4 4.0× 10−4 2.1× 10−5

d08q05c {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/64} 8.002 11.67 0.5 3.3× 10−4 2.7× 10−5

d08q05m {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/80} 8.002 11.70 0.5 3.4× 10−4 2.7× 10−5

d08q05f {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/96} 8.002 11.67 0.5 3.4× 10−4 2.7× 10−5

d08q055 {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/80} 8.002 11.70 0.55 3.0× 10−4 2.89× 10−5

d08q06 {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/80} 8.002 11.75 0.6 2.6× 10−4 2.97× 10−5

d08q07 {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/80} 8.002 11.87 0.7 1.8× 10−4 2.7× 10−5

d08q08 {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/80} 8.002 12.0 0.8 9.8× 10−5 1.8× 10−5

d08q09 {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/80} 8.002 12.3 0.9 2.6× 10−5 5.5× 10−6

d08q098cc {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/64} 8.002 12.3 0.98 7.0× 10−7 2.1× 10−7

d08q098c {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/80} 8.002 13.1 0.98 4.3× 10−7 1.4× 10−7

d08q098m {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/96} 8.002 13.1 0.98 3.4× 10−7 1.0× 10−7

d08q098f {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/112} 8.002 13.0 0.98 4.0× 10−7 9.5× 10−8

d08q098ff {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/128} 8.002 13.0 0.98 4.05× 10−7 8.75× 10−8

d08q098fff {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), 1/136} 8.002 13.1 0.98 3.73× 10−7 8.41× 10−8

d16q00 {(256, 128, 64, 32, 16)× (4, 2, 1, 0.5), 1/64} 16.002 20.2 0 5.5× 10−4 –

d16q05 {(256, 128, 64, 32, 16)× (4, 2, 1, 0.5), 1/64} 16.002 20.3 0.5 3.6× 10−4 2.9× 10−5

d16q08 {(256, 128, 64, 32, 16)× (4, 2, 1, 0.5), 1/80} 16.002 20.7 0.8 1.05× 10−4 1.9× 10−5

d16q09 {(256, 128, 64, 32, 16)× (4, 2, 1, 0.5), 1/80} 16.002 21.0 0.9 2.7× 10−5 5.9× 10−6
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8.4.1 Code tests

Before discussing the obtained results in more detail, we present two tests to validate the

performance of our numerical implementation of the evolution equations: (i) single black-

hole evolutions in geodesic slicing which is known to result in numerical instabilities after

relatively short times but facilitates direct comparison with a semi-analytic solution and (ii)

convergence analysis of the radiated quadrupole waveforms for simulation d08q05 of table 8.1.

The geodesic slicing condition is enforced by setting the gauge functions to α = 1, βi = 0

throughout the evolution. The space part of the Reissner-Nordström solution in isotropic

coordinates is given by equation (8.1.8) with a conformal factor [215, 216]

ψ2 =

(
1 +

M

2r

)2

− Q2

4r2
. (8.4.1)

The time evolution of this solution is not known in closed analytic form, but the resulting

metric components can be constructed straightforwardly via a simple integration procedure.

As expected, we find a time evolution in this gauge to become numerically unstable at times

τ of a few M . Before the breaking down of the evolution, however, we can safely compare

the numerical and “analytical” solutions. This comparison is shown in figure 8.1 for the γzz
component of the spatial metric and the Ez component of the electric field and demonstrates

excellent agreement between the semi-analytic and numerical results.
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Figure 8.1: The numerical profiles for γzz and Ez (symbols) obtained in geodesic slicing at various

times τ are compared with the semi-analytic results (lines).

For the second test, we have evolved model d08q05 using three different resolutions as

listed in table 8.1 and extracted the gravitational and electromagnetic quadrupole (l =

2,m = 0) at Rex = 100M . For fourth-order convergence, we expect the differences between

the higher resolution simulations to be a factor 2.78 smaller than their coarser resolution

counterparts. The numerically obtained differences are displayed with the corresponding

rescaling in figure 8.2. Throughout the physically relevant part of the waveform, we observe

the expected fourth-order convergence. Only the spurious initial radiation (cf. the discussion

at the end of section 8.2) at early times ∆t . −20 in the figure exhibits convergence closer to
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second order, presumably a consequence of high-frequency noise contained in this spurious

part of the signal. From Richardson extrapolation of our results we estimate the truncation

error of the radiated waves to be about 1%. The error due to extraction at finite radius, on

the other hand, is estimated to be 2 % at Rex = 100M .
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Figure 8.2: Convergence analysis for simulation d08q05 of table 8.1 with resolutions hc = M/64,

hm = M/80 and hf = M/96. The panels show differences of the (2, 0) multipoles of the

real parts of Ψ4 (left) and Φ2 (right) extracted at Rex = 100 M ; in each case, the high-

resolution differences have been rescaled by a factor 2.78 as expected for fourth-order

convergence.

8.4.2 Collisions of two black holes: the “static” components and infall time

We start the discussion of our results with the behaviour of the gravitational and electro-

magnetic multipoles when the system is in a nearly static configuration, i.e. shortly after the

start of the simulation and at late stages after the ringdown of the post-merger hole. At

these times, we expect our analytic predictions (8.3.3), (8.3.4) for the monopole and dipole

of the electromagnetic field to provide a rather accurate description. Furthermore, the total

spacetime charge Q is conserved throughout the evolution, so that the monopole component

of Φ1 should be described by (8.3.3) at all times. The quadrupole, on the other hand, is

expected to deviate significantly from the static prediction (8.3.4) when the black holes start

moving fast.

As demonstrated in figure 8.3, we find our results to be consistent with this picture. Here

we plot the monopole and quadrupole of Φ1. The monopole part (left panel) captures

the Coulomb field and can thus be compared with the total charge of the system. It is

constant throughout the evolution to within numerical error and shows agreement with the

analytic prediction of equation (8.3.3) within numerical uncertainties; we measure a slightly

smaller value for the monopole field than expected from the total charge of the system, but

the measured value should increase with extraction radii and agree with the total charge

expectation at infinity. This is consistent with the extrapolation of the measured value to

infinity as shown in the figure. The quadrupole part (right panel) starts at a non-zero value in
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Figure 8.3: Monopole φ001 (left) and quadrupole φ201 (right) of the radial part of the electromagnetic

field Φ1 extracted at Rex = 100M for simulation d08q05 of table 8.1. The dashed curves

show the predictions of equations (8.3.3), (8.3.4) at R = ∞ in the static limit. For the

monopole case, we also added the curves obtained by extrapolating the results to infinite

extraction radius; these curves—dotted lines—essentially overlap with the predictions

from equation (8.3.3).

excellent agreement with equation (8.3.4), deviates substantially during the highly dynamic

plunge and merger stage and eventually rings down towards the static limit φ20
1 = 0 as

expected for a spherically symmetric charge distribution.

The analytic approximation of section 8.3 also predicts a value for the time of collision (8.3.9)

for a given set of initial parameters. In particular, we see from this prediction that for fixed

initial separation d and mass M the collision time scales with the charge as tcollision ∼ 1/
√
B.

In comparing these predictions with our numerical results we face the difficulty of not having

an unambiguous definition of the separation of the black holes in the fully general relativistic

case. From the entries in table 8.1 we see that the proper distance L varies only mildly for

fixed coordinate distance d up to Q/M ≈ 0.8. For nearly extremal values of Q, however, L

starts increasing significantly as expected from our discussion at the start of this section. We

therefore expect the collision time of the numerical simulations rescaled by
√
B/t0, where t0

is the corresponding time for the uncharged case, to be close to unity over a wide range of

Q/M and show some deviation close to Q/M = 1. This expectation is borne out in figure 8.4

where we show this rescaled collision time, determined numerically as the first appearance of

a common apparent horizon, as a function of Q/M .

8.4.3 Waveforms: infall, merger and ringdown

The dynamical behaviour of all our simulations is qualitatively well represented by the

waveforms shown in figure 8.5 for simulations d16q00, d16q05 and d16q09. The panels show

the real part of the gravitational (left) and electromagnetic (right) quadrupole extracted at

Rex = 100 M as a function of time with ∆t = 0 defined as the time of the global maximum of

the waveform. From the classical analysis (8.3.10), we expect the waveforms Ψ4, Φ2 to scale

roughly with B and the mass or charge of the black holes (the scaling with B is non-trivial,
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Figure 8.4: Time for apparent horizon formation, re-scaled by the factor
√
B and the apparent

horizon formation time t0 for an electrically neutral binary. We note that the change in

the quantity we plot is only, at most, of 2%. The coordinate time itself, however, varies

by a factor 5 as one goes from Q = 0 to Q = 0.98M .

but both an analytic estimate and the numerical results indicate the scaling is approximately

linear, which we shall therefore use for re-scaling the plots in the figure).
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Figure 8.5: Real part of the (2, 0) mode of Ψ4 (left) and Φ2 (right panel) extracted at Rex = 100M .

The early stage of the signals are marked by the spurious radiation due to the construction

of initial data which we ignore in our analysis. Following a relatively weak phase of wave

emission during the infall of the holes, the radiation increases strongly during the black-

hole merger around ∆t = 0 in the figure and decays exponentially as the final hole rings

down into a stationary state. This overall structure of the signals is rather similar for
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the electromagnetic and the gravitational part and follows the main pattern observed for

gravitational-wave emission in head-on collisions of uncharged black holes [176, 217].

Table 8.2: Comparison of the ringdown frequencies obtained from (i) perturbative calculations [192]

and (ii) fitting a two-mode profile to the numerically extracted waveforms. For Q/M = 0

the electromagnetic modes are not excited. For values of Q/M ≥ 0.9 the electromagnetic

mode becomes so weak that we can no longer unambiguously identify it in the numerical

data.

Q/M ωQNM
1,2 ωext

1,2

0 0.374− 0.0890i 0.374− 0.088i

0.458− 0.0950i

0.3 0.376− 0.0892i 0.375− 0.092i

0.470− 0.0958i 0.481− 0.100i

0.5 0.382− 0.0896i 0.381− 0.091i

0.494− 0.0972i 0.511− 0.096i

0.9 0.382− 0.0896i 0.381− 0.091i

0.494− 0.0972i ?

The final, exponentially damped ringdown phase is well described by perturbation tech-

niques [192]. In particular, charged black holes are expected to oscillate with two different

types of modes, one of gravitational and one of electromagnetic origin. For the case of

vanishing charge, the electromagnetic modes are not present, but they generally couple

for charged black holes, and we expect both modes to be present in the spectra of our

gravitational and electromagnetic waveforms. For verification we have fitted the late-stages

of the waveforms to a two-mode, exponentially damped sinusoid waveform

f(t) = A1e
−iω1t +A2e

−iω2t, (8.4.2)

where Ai are real-valued amplitudes and ωi complex frequencies. The results are summarised

in table 8.2 for selected values of the charge-to-mass ratio of the post-merger black hole. Real

and imaginary part of the fitted frequencies agree within a few percent or better with the

perturbative predictions. For the large value Q/M , however, the wave signal is very weak

and in such good agreement with a single ringdown mode (the gravitational one) that we

cannot clearly identify a second, electromagnetic component. This feature is explained once

we understand how the total radiated energy is distributed between the gravitational and the

electromagnetic channels. For this purpose, we plot in figure 8.6 the Fourier spectrum of the

relevant wavefunctions or, more precisely, their dominant quadrupole contributions obtained

for simulation d08q03 |φ̄20|2, |ψ̄20|2, where for any function f

f̄(ω) =

∫ ∞
−∞

eiωtf(t)dt . (8.4.3)

It is clear from the figure that most of the energy is carried in the fundamental gravitational-

wave like mode with a peak at approximately ω ∼ 0.37, close to the oscillation frequency of

the fundamental gravitational ringdown mode; see table 8.2.
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Figure 8.6: Power spectrum for the gravitational (long dashed) and electromagnetic (short dashed)

quadrupole extracted from simulation d08q03. Note that the spectrum peaks near the

fundamental ringdown frequency of the gravitational mode; cf. table 8.2.

8.4.4 Radiated energy and fluxes

The electromagnetic and gravitational wave fluxes are given by equations (8.2.1) and (8.2.2).

We have already noticed from the waveforms in figure 8.5 that the electromagnetic signal

follows a pattern quite similar to the gravitational one. The same holds for the energy flux

which is shown in figure 8.7 for a subset of our simulations with Q/M = 0, 0.5 and 0.9.

From the figure, as well as the numbers in table 8.1, we observe that the energy carried by

gravitational radiation decreases with increasing Q/M , as the acceleration becomes smaller

and quadrupole emission is suppressed, in agreement with prediction (8.3.14).

This is further illustrated in figure 8.8, which illustrates the radiated energy carried in

the gravitational quadrupole and the electromagnetic quadrupole as well as their ratio as

functions of the charge-to-mass ratio Q/M . For the case of vanishing charge, the total

radiated energy is already known from the literature; e.g. [176]. The value increases mildly

with the initial separation as a consequence of the slightly larger collision velocity but is

generally found to be close to EGW
rad /M = 0.055%. Our values of 0.051% for d/M ' 8 and

0.055% for d/M ' 16 are in good agreement with the literature. As we increase Q/M ,

however, EGW
rad decreases significantly and for Q/M = 0.9 (0.98) has dropped by a factor

of about 20 (103) relative to the uncharged case. For practical reasons, we have explored

the largest ratio Q/M = 0.98 for the smaller initial separation d/M ' 8 only; the near

cancellation of the gravitational and electromagnetic interaction and the resulting slow-down

of the collision lead to a very long infall stage with essentially zero dynamics.

In contrast to the monotonically decreasing gravitational-wave energy, the electromagnetic
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signal reaches a local maximum around Q/M = 0.6, an expected observation as the elec-

tromagnetic radiation necessarily vanishes for Q/M = 0 (no charge) and Q/M = 1 (no

acceleration) but takes on non-zero values in the regime in between. Closer analysis of our

classical, flat-space calculation (8.3.13) predicts a maximum electromagnetic radiation output

at

Qmax =

√√
329− 13

14
M ≈ 0.605M , (8.4.4)

in excellent agreement with the results of our simulations.

We finally consider the ratio of electromagnetic to gravitational wave energy (dotted curve

in figure 8.8). As predicted by our analytic calculation (8.3.16), this ratio increases mono-

tonically with Q/M for fixed separation d. A fit of our numerical results yields EEM
rad /E

GW
rad =

0.27 Q2/M2 and for our largest value Q/M = 0.98, we obtain a ratio of 0.227 to be compared

with ∼ 0.24 as predicted by equation (8.3.16). Bearing in mind the simplicity of our analytic

model in section 8.3, the quantitative agreement is remarkable.

8.5 Conclusions

In this chapter, we performed a numerical study of collisions of charged black holes with

equal mass and charge in the framework of the fully non-linear Einstein-Maxwell equations.

Our first observation is that the numerical relativity techniques (formulation of the evolution

equations, gauge conditions and initial data construction) developed for electrically neutral

black hole binaries can be straightforwardly extended to successfully model charged binaries

even for nearly extremal charge-to-mass ratios Q/M . 1. In particular, we notice the

contrast with the case of rotating black holes with nearly extremal spin which represents

a more delicate task for state-of-the-art numerical relativity; cf. references [27, 28] for the

latest developments on this front. This absence of difficulties for charged holes is not entirely

unexpected. Considering the construction of initial data, for instance, an important difference

arises in the customary choice of conformally flat Bowen-York initial data [134] which greatly

simplifies the initial data problem. While the Kerr solution for a single rotating black

hole does not admit conformally flat slices [136] and therefore inevitably results in spurious

radiation, especially for large spin parameters, this difficulty does not arise for charged, but

non-rotating black holes; cf. equation (8.4.1) and [215].

The excellent agreement between the classical calculation for the energy emission and the

numerical results reported here, allow for an investigation of cosmic censorship close to

extremality. If we take two black holes with M1 = M2 = M/2, Q1 = Q2 = (M − δ)/2

and we let them fall from infinity, to first order in δ we get

Qtot = M − δ
Mtot = M − Erad

. (8.5.1)

Now, the classical result (8.3.14) implies that the dominant term for the radiated energy is
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Erad ∼ B5/2M ∼ (δ/M)5/2M . Thus we get

Qtot

Mtot
' 1− δ

M
+ k

(
δ

M

)5/2

, (8.5.2)

where k is a constant. We conclude that cosmic censorship is preserved for charged collisions

of nearly extremal holes (δ �M), on account of the much longer collision time, which yields

much lower velocities and therefore much lower energy output. The differences between the

cases of spinning mergers and charged collisions are interesting. In the former case, naked

singularities are avoided by radiation carrying away more angular momentum (via orbital

hangup [34]). In the latter case, our results suggest that naked singularities are avoided by

the smaller radiation emission, due to the smaller accelerations involved in the infall.

We have here evolved a sequence of binaries, with equal charge-to-mass ratio starting from

rest, with Q/M varying from zero to values close to extremality. Starting with the electrically

neutral case, where our gravitational wave emission EGW
rad /M = 0.055% agrees well with the

literature, we observe a monotonic decrease of the emitted gravitational wave energy as

we increase Q/M . For our largest value Q/M = 0.98, EGW
rad is reduced by about three

orders of magnitude, as the near cancellation of the gravitational and electromagnetic forces

substantially slows down the collision. In contrast, the radiated electromagnetic energy

reaches a maximum near Q/M = 0.6 but always remains significantly below its gravitational

counterpart. Indeed, the ratio EEM
rad /E

GW
rad increases monotonically with Q/M and approaches

about 25% in the limit Q/M → 1. We find all these results to be in remarkably good qual-

itative and quantitative agreement with analytic approximations obtained in the framework

of the dynamics of two point charges in a Minkowski background. This approximation also

predicts that the collision time relative to that of the uncharged case scales ∼
√

1−Q2/M2

which is confirmed within a few percent by our numerical simulations.



Chapter 9

Final remarks

This probably just goes to show something,

but I sure don’t know what.

Calvin

Calvin & Hobbes

Numerical relativity is a fantastic tool to study and explore spacetimes whose exact form is

not known.

After decades of efforts, the first stable, long-term evolutions of the orbit and merger of two

black holes were finally accomplished in 2005, and since then considerable progress has been

made. This field has now reached a state of maturity, and several codes and tools exist that

allow one to perform evolutions of black holes—with quite generic initial configurations—in

standard four dimensional vacuum gravity.

In addition to the original (main) motivation coming from the two-body problem, it was

quickly realised that numerical relativity could be helpful for a much broader range of

scenarios, with some motivation coming from fields other than gravity itself.

In this work we have thus worked to extend numerical relativity tools to new frontiers,

opening a range of uncharted territory in black hole physics to be explored with contemporary

numerical relativity. In particular, we have presented the following:

(i) a dimensional reduction procedure that allows the use of existing 3 + 1 numerical

codes to evolve higher-dimensional spacetimes with enough symmetry, including head-

on collisions in D ≥ 5 and black hole collisions with impact parameter and spin in

D ≥ 6;

(ii) a generalisation of the TwoPunctures spectral solver, allowing for the computation of

initial data for a boosted head-on collision of black hole binaries in higher-dimensional

spacetimes;

(iii) a wave extraction procedure that allows the extraction of gravitational radiation observ-
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ables from numerical evolutions of head-on collisions of black holes in D dimensions;

(iv) with the above tools, numerical simulations of black hole collisions from rest in five-

dimensional spacetimes were successfully evolved, the corresponding wave forms were

obtained and total energy released in the form of gravitational waves was computed;

(v) evolutions of black holes in non-asymptotically flat spacetimes, including asymptotically

de Sitter spacetimes, “boxed” spacetimes with mirror-like boundary conditions, and

five-dimensional cylindrical spacetimes;

(vi) numerical evolutions of collisions of charged black holes with equal mass and charge, and

a calculation of the energy released via emission of gravitational and electromagnetic

radiation.

Several open questions and research avenues remain to be explored, and we thus close with

a list of natural sequels for this program:

• A systematic investigation of black hole collisions and dynamics in generic dimension.

Even though the formalism here presented is valid in arbitrary dimension, the long-term

numerical stability of the implementation is a different matter altogether. Currently,

only the five-dimensional case seems to be relatively robust, with numerical instabil-

ities occurring in all D > 5 cases tried so far. It is possible that such instabilities

may be cured with a suitable choice of gauge conditions. These issues remain under

investigation.

• Related to the previous point, it could be of interest to systematically investigate the

merits and disadvantages, from the point of view of the numerical implementation,

of dimensional reduction procedures (such as the one here presented) versus evolution

schemes that make use of the Cartoon method.

• The numbers here reported for the total energy loss for the five-dimensional black hole

head-on collisions refer to collisions from rest. For the applications described in the

Introduction, however, high velocity collisions are the most relevant ones. Such cases

do not seem to be as robust as the analogous four dimensional systems, with numerical

instabilities appearing when large boost parameters are considered. Investigation on

this front is still under way.

• For the Einstein-Maxwell study, a natural step is considering more generic types of

initial data, in order to tackle some of the issues discussed in the Introduction. A

non-zero boost, for instance, will allow us to study both binary black hole systems

that will coalesce into a Kerr-Newman black hole and the impact of electric charge

on the dynamics and wave emission (electromagnetic and gravitational) in high energy

collisions. A further interesting extension is the case of oppositely charged black holes.
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