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Relativistic elasticity

e A continuous medium in General Relativity is described by:
— A spacetime (M, g);
— A Riemannian 3-manifold (X,9) (relaxed configuration);

— A projection map « : M — 2 whose level sets are timelike
curves (the worldlines of the medium particles).



R L



e If we choose local coordinates (z1,z2,%3) on ~ then we can
think of m as a set of three scalar fields.

e We can complete (z1,z2,%3) into coordinates (7, z!,7z2,z3)
for (M, g) yielding the rest frame of any given worldline:

= —di* + %;jdfidfj (at that worldline).

e Note that
Y = ’yzjdfzdf]

is a (time-dependent) Riemannian metric on X, describing
the local deformations of the medium along each worldline.



e We can compute the (inverse) metric v from
ozt 0’
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e \We must choose a Lagrangian density £ for the action

Szfﬁwffu
M g v

e Assume £ = L(Z',~Y). The energy-momentum tensor is then
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T herefore

IS the rest energy density.

The choice of p = p(Z%,~%Y) is called the elastic law.

Isotropic materials: p depends only on (s12,s52,s32), the
eigenvalues of ~;; with respect to ¢;;. Note that (s1,s2,s3)
are the stretch factors along the principal directions.

Assume that 9;; is the Kronecker delta. I particular, we are
assuming that the Riemannian 3-manifold (¥, 6) is flat.



e More convenient variables:
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e Examples:
: L dp
— Perfect fluid: p = p(Ag), vielding p = QAOK — p.
0

— Dust: p = ppov/Ag, Yielding p = 0.



Rigid fluid: p = %(AO + 1), vielding p = p — po.
Stiff fluid: p = A)g, vielding p = p.

John materials: p = f(A\g) + g(Ao) 1.
Quasi-Hookean: p = f(Ag) + g(Ag) A1 )o.

Stiff ultra-rigid equation of state: p = Ay + B.

Brotas rigid solid: p = %O(AO + X+ X+ 1).



Rigid rods and strings

For one-dimensional elastic bodies in a two-dimensional space-
time (M, g) there is no difference between solids and fluids.

Caution: these are not the strings of string theory — they
have internal structure.

The Lagrangian depends only on \g = ~11 = 9,70°%.

For a rigid elastic body (speed of sound = speed of light)
we have p = %O(Ao + 1), vyielding
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e This is (essentially) just the energy-momentum tensor for a
massless scalar field. So the equation of motion is just the
wave equation:

e \We can always find a conjugated harmonic coordinate ¢t such
that

g =2 (—d# + d:EQ).

This provides an an interesting interpretation for conformal
coordinates in two-dimensional spacetimes.



e Static spacetimes:
g = —e2?@ a2 4 422 = 2@ (—dt? + dz?)

(e.g. hanging strings in the Schwarzschild spacetime).

e Cosmological spacetimes:
g = —dt® + a?(t)dz? = a? (D) (—di® + dz?)

(stretch factor equals the cosmological radius a).



Fishing in black holes

e Kruskal-Szekeres coordinates (2M = 1):

g = 4r—Lle™T (—dt2 -+ d:cz), 2 — 12 = (r —1e".

e If the string is being held at » = rg then we must solve the
following initial-boundary value problem:

(07 =0 (t>0,1<r<rg)

< EEO,QU) = /5 QT_%G_%diB (0 < x < x0)
%(O,az)zo (0 <z < xp)

| Z(zg sinhu, zg coshu) = fgo 2T_%€_%d513 (u > 0)






e General solution (coordinates are conformal):

r(t,x) = f(z —t) + gz + t).
We find that:

— Eventually the whole string will cross the horizon.

— The force necessary to hold the string increases indefi-
nitely.

— More generally, the tension of the string increases along
any future-pointing causal direction, and indeed approaches

~+ o0.

e Although our mathematical model does not contemplate the
string breaking, any physical string will certainly do so.



Conclusion and outlook

e Elastic models are useful tools to model extended bodies in
general relativity.

e Many questions to explore:

— Motion of strings and other extended bodies in black hole
backgrounds, and relation with cosmic censorship.

— Oscillations, stability and collapse of elastic (neutron)
stars.

— Modeling supernovas through collapse of two-phase mod-
els: fluid atmosphere surrounding an elastic core.



