Can a particle detector cross a Cauchy horizon?

Benito A Juárez-Aubry†

School of Mathematical Sciences University of Nottingham

Work in collaboration with Jorma Louko

19 Dec 2014 VII Black Holes Workshop, Aveiro

Outline

Introduction

The 1+1 Reissner-Nordstström black hole

Future directions

Motivation

- ▶ Issues of causality (Strong cosmic censorship, Penrose [1979]).
- ► PDE stability problem in Reissner-Nordström (Dafermos et. al. [gr-qc/0307013, gr-qc/0309115]).
- ► Considerations from QFT: Direct experience of observers (Louko & Satz [arXiv:0710.5671 [gr-qc]).

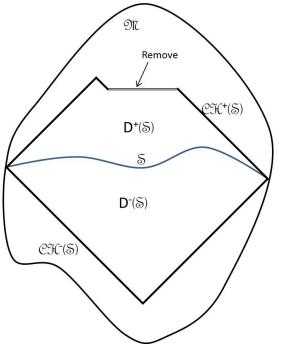
Cauchy horizons

Definition

The future/past Cauchy development of a closed, achronal set $\mathscr{S} \subset \mathscr{M}$ is $D^{\pm}(\mathscr{S}) = \{p \in \mathscr{M} : \text{every past/future inextendible}$ causal curve through p intersects $\mathscr{S}\}$. The Cauchy development is $D(\mathscr{S}) = D^{+}(\mathscr{S}) \cup D^{-}(\mathscr{S})$.

Definition

The future/past Cauchy horizon of $\mathscr{S}\subset \mathscr{M}$ is $\mathscr{CH}^{\pm}(\mathscr{S})=\overline{D^{\pm}(\mathscr{S})}-I^{\mp}(D^{\pm}(\mathscr{S}))$. The Cauchy horizon is $\mathscr{CH}(\mathscr{S})=\mathscr{CH}^{+}(\mathscr{S})\cup\mathscr{CH}^{-}(\mathscr{S})$.



QFT and observers

What is a particle detector?

Physical intuition:

Two-level system coupled to a quantum field. Heuristically, can think of an atom interacting with the field by absorbing or emitting field quanta.

Mathematically:

We can characterise the transition probability at proper time au by

$$\mathcal{F}_{ au}(E) = \int d au' \, d au'' \, \chi(au') \chi(au'') \mathrm{e}^{\mathrm{i} E(au' - au'')} \mathcal{W}(\mathsf{x}(au'), \mathsf{x}(au''))$$

- W is the Wightman function.
- $\triangleright \chi$ is a smooth switching function of compact support that controls physical interaction.

1+1 dimensional considerations

- ► Massless fields enjoy conformal symmetry ⇒ Two-point functions in closed form!
- ▶ Infrared problems for the Wightman function.
- Definition of the detector must be modified:

$$\mathcal{F}_{\tau}(E) = \int d\tau' \, d\tau'' \, \chi(\tau') \chi(\tau'') e^{iE(\tau' - \tau'')} \frac{\partial_{\tau} \partial_{\tau'} \mathcal{W}(x(\tau'), x(\tau''))}{\partial_{\tau} \partial_{\tau'} \mathcal{W}(x(\tau'), x(\tau''))}$$

In the sharp-switching limit $\chi(\tau') \to \Theta(\tau' - \tau_0)\Theta(\tau - \tau')$, the transition rate $\dot{\mathcal{F}}_{\tau}(E) \doteq \partial_{\tau} \mathcal{F}_{\tau}(E)$ is finite.

Further comments on 1+1 dimensionality

- Crossing Cauchy horizons in flat spacetime.
- ▶ Prototype: Rindler spacetime.

Static trajectory in 1+1 dimensions: $g_2=-\exp(2a\xi)(d\eta^2-d\xi^2)$,

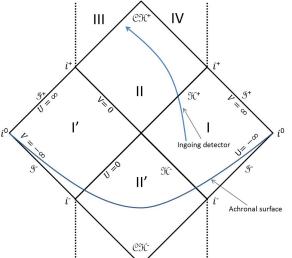
$$\dot{\mathcal{F}}(\omega,\tau,\tau_0) = -\frac{1}{4\pi} \frac{1}{\tau_h - \tau} + \mathcal{O}\left((\tau_h - \tau) \log[a(\tau_h - \tau)]\right)^{-1}. \quad (1)$$

Static trajectory in 3+1 dimensions: $g=g_2+dy^2+dz^2$, (Louko & Satz [arXiv:0710.5671])

$$\dot{\mathcal{F}}(\omega, \tau, \tau_0) = \frac{1}{8\pi^2 \tau_h} \log\left(1 - \frac{\tau}{\tau_h}\right) + \mathcal{O}\left(\log\left[-\log\left(1 - \frac{\tau}{\tau_h}\right)\right]\right). \tag{2}$$

1+1 Reissner-Nordstström, M > |Q|

Exterior: g = -F(r)du dv, $F(r) = (r - r_{+})(r - r_{-})/r^{2}$ (3)



Can a particle detector cross a Cauchy horizon?

9

B A Juárez-Aubry

1+1 Reissner-Nordstström HHI

Crossing \mathscr{CH}^+ in the **Hartle-Hawking-Israel** state,

$$W_{H}(x, x') = -\frac{1}{4\pi} \log \left[\left(\varepsilon + i\Delta U \right) \left(\varepsilon + i\Delta V \right) \right], \tag{4}$$

along the integral curves of $\dot{\gamma}(\tau)$:

$$\dot{t} = \frac{E}{F(r)}, \qquad \dot{r} = -\sqrt{E^2 - F(r)}, \qquad (5)$$

one finds that the transition rate diverges as $au o au_h$ like

$$\dot{\mathcal{F}}_{H}(\omega, \tau, \tau_{0}) = \frac{1}{4\pi} \left[-1 + \frac{\kappa_{+}}{\kappa_{-}} \left[\frac{3}{2} - \cos(\omega \Delta \tau) \right] \right] \frac{1}{\tau_{h} - \tau} + o(\tau_{h} - \tau)^{-1}. \tag{6}$$

▶ This result is in fact independent of the details of F(r)!

1+1 Reissner-Nordstström Unruh

This result holds for the **Unruh state**,

$$W_{U}(x, x') = -\frac{1}{4\pi} \log \left[\left(\varepsilon + i\Delta U \right) \left(\varepsilon + i\Delta v \right) \right], \tag{7}$$

since in 1+1 dimensions, the left-moving and right-moving modes decouple. The right-moving modes along $\xi=\partial_{\nu}$ contribute as $\mathcal{O}(1)$ and the left-moving modes diverge as in the HHI state.

Future directions

Stress-energy tensor:

- ▶ Infrared convergent in 1 + 1 dimensions!
- ▶ In 1+1 dimensions HHI state is conformal vacuum $\Rightarrow \langle \mathcal{T} \rangle_{\mathsf{H}}^{\mathsf{ren}}$ in closed form.
- ▶ Right and left moving decoupling $\Rightarrow \langle \mathcal{T} \rangle_{\mathsf{U}}^{\mathsf{ren}}$ in closed form.
- One can compute the experience of stress-energy along the trajectory (à la QEI, see e.g. Fewster [gr-qc/9910060]).

$$\mathcal{I}_{\mathsf{H}/\mathsf{U}} = \int d\tau' \, \chi(\tau') \dot{\gamma}(\tau')^{a} \dot{\gamma}(\tau')^{b} \langle \mathcal{T}(\tau')_{ab} \rangle_{\mathsf{H}/\mathsf{U}}^{\mathsf{ren}}. \tag{8}$$

Calculation in progress!!

Thanks for your attention!

Bibliography

M. Dafermos, "The Interior of charged black holes and the problem of uniqueness in general relativity," Commun. Pure Appl. Math. 58 (2005) 0445 [gr-qc/0307013].

M. Dafermos and I. Rodnianski. "A Proof of Price's law for the collapse of a selfgravitating scalar field," Invent. Math. 162 (2005) 381 [gr-qc/0309115].

C. J. Fewster, "A General worldline quantum inequality," Class. Quant. Grav. **17** (2000) 1897 [gr-qc/9910060].

J. Louko and A. Satz, "Transition rate of the Unruh-DeWitt detector in curved spacetime," Class. Quant. Grav. 25 (2008) 055012 [arXiv:0710.5671 [gr-qc]].

R. Penrose, 'Singularities and time-asymmetry, 581-638