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0. Introduction

Aim. To compute 〈Φ2(x)〉 for a massive scalar field Φ in a given quantum state on the
background of a rotating black hole spacetime.

Main difficulties:

(i) Technical complexity, due to the lack of spherical symmetry;

(ii) Non-existence of generalizations of the (globally defined, regular and
isometry-invariant) Hartle-Hawking state defined in static black hole spacetimes;

Kay, Wald (1991)

(iii) Unavailability of Euclidean methods used for static spacetimes.

Approach:

(i) Focus on a rotating black hole in 2+1 dimensions;

(ii) Introduce a mirror at fixed radial coordinate such that quantum state can be defined;

(iii) Use a ‘quasi-Euclidean’ method to obtain the complex Riemannian section of the
black hole spacetime.
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1. Quantisation of the scalar field

1.1. Klein-Gordon equation. A scalar field Φ of squared mass m2 in the exterior
region satisfies (

∇2 −m2
)

Φ(t̃, r, θ̃) = 0 . (1.1)

1.2. Hadamard renormalisation. The Feynman propagator GF, evaluated for
Hadamard states, is a bidistribution of Hadamard type

GF(x, x′) =
i

4
√

2π

(
U(x, x′)√
σ(x, x′) + iε

+W (x, x′)

)
, ε→ 0+ . (1.2)

σ is the Synge’s world function: σ(x, x′) := 1
2∆s2(x, x′);

U and W are symmetric and regular biscalars.

It can be shown that

U(x, x′) only depends on the geometry along the geodesic joining x and x′;

W (x, x′) contains the quantum state dependence.
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1. Quantisation of the scalar field

Hadamard singular part. The singular, state-independent part of GF is

GHad(x, x′) :=
i

4
√

2π

U(x, x′)√
σ(x, x′) + iε

. (1.3)

Vacuum polarisation. The renormalised vacuum polarisation is

〈Φ2(x)〉 := −i lim
x′→x

[
GF(x, x′)−GHad(x, x′)

]
. (1.4)

Remarks:

(1) Can GF(x, x′) be obtained as a sum over mode solutions, using some type of
‘Euclidean methods’?

(2) GHad(x, x′) is given in closed form (1.3). How to do the subtraction?
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2. Quasi-Euclidean method

2.1. Euclidean methods. For a static (analytic) spacetime (M, g), if t is a global
timelike coordinate, one can obtain the real Riemannian (MR, gR) by a Wick rotation

g = gtt dt⊗ dt+ hij dx
i ⊗ dxj t→−iτ−−−−−−→ gR = gττ dτ ⊗ dτ + hij dx

i ⊗ dxj , (2.1)

where τ ∈ R, gtt < 0, gττ > 0 and h is a Riemannian metric.

Gibbons, Hawking (1977), Wald (1979), ...

2.2. Quasi-Euclidean method. Consider a (compact) stationary spacetime (M, g)
with coordinates (t, xi), such that gtt < 0. Perform a Wick rotation:

g = gtt dt⊗ dt+ hij
(
dxi +N idt

)
⊗
(
dxj +N jdt

)
t→−iτ−−−−−−→ gC = gττ dτ ⊗ dτ + hij

(
dxi − iN idτ

)
⊗
(
dxj − iN jdτ

)
. (2.2)

This is the complex Riemannian section (MC, gC) of a complex manifold for which (M, g)
is a real Lorentzian section.

Gibbons, Hawking (1977), Frolov (1982), Brown, Martinez, York (1991), Moretti (2000)
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2. Quasi-Euclidean method

2.3. Green’s function. The Green’s function G associated with the Klein-Gordon
equation satisfies the distributional equation

(
∇2 −m2

)
G(x, x′) = −δ

3(x, x′)√
g(x)

, (2.3)

where g(x) := |det(gCµν)| and ∇2 := (gC)µν∇µ∇ν is the covariant d’Alembertian operator.

The unique solution is given by

G(x, x′) =

∞∑
n=−∞

∞∑
k=−∞

(BH modes) , (2.4)
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3. Hadamard renormalisation

3.1. Hadamard singular part. The Hadamard singular part of the Green’s function G
is given by

GHad(x, x′) =
1

4
√

2π

1√
σ(x, x′)

+O(σ1/2) . (3.1)

The renormalised vacuum polarisation is

〈Φ2(x)〉 = lim
x′→x

[
G(x, x′)−GHad(x, x′)

]
. (3.2)

3.2. Minkowski modes. In order to subtract the divergences of G(x, x′) in the
coincidence limit, GHad(x, x′) is rewritten as a sum over Minkowski modes.

GHad(x, x′) =

∞∑
n=−∞

∞∑
k=−∞

(Minkowski modes) + (finite term) . (3.3)
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3. Hadamard renormalisation

We can write

G(x, x′)−GHad(x, x′) =

∞∑
k=−∞

∞∑
n=−∞

[
(BH modes)− (Minkowski modes)

]
+ (finite term) .

(3.4)

Minkowski’s parameters. The Minkowski Green’s function has free parameters:

TM , ΩM , m2
M . (3.5)

They are chosen such that the double sum is finite in the coincidence limit.

They are obtained by comparing the leading terms in the asymptotic expansions of the
summands for large values of n and k.

Theorem: If the parameters TM and ΩM are chosen as

TM =
κ+
2π

, ΩM = N θ(r) + ΩH , (3.6)

then the double sum is finite.
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4. Numerical results
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Figure 1: Vacuum polarisation for the scalar field in a warped AdS3 black hole as a function of
z/zM for ν = 1.2, r+ = 15, r− = 1, rM = 62 and m = 1. z/zM = 0 corresponds to the horizon,
whereas z/zM = 1 corresponds to the mirror.
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Conclusions

We have computed 〈Φ2(x)〉 for a massive scalar field Φ in the Hartle-Hawking state
on a rotating black hole. To our knowledge, this is the first general computation of a
renormalised vacuum polarisation in the exterior of a rotating black hole spacetime.

We have employed a ‘quasi-Euclidean’ method to obtain a complex Riemannian
section of the original spacetime, at the level of which the Hadamard renormalisation
procedure was applied.

The divergences of the Green’s function in the coincidence limit were subtracted by
a sum over Minkowski modes with the same singularity structure.

The implementation of our method in Kerr seems feasible in principle, given that
only the asymptotic properties of the solutions in the limit of large quantum
numbers are needed to perform the renormalisation.
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