Extremal rotating black holes in 5D Einstein-Maxwell-Chern-Simons theory: Radially excited solutions, non-uniqueness and near horizon geometry

Physical Review Letters 112 (2014) 011101

Jose Luis Blázquez Salcedo

In collaboration with Jutta Kunz, Eugen Radu and Francisco Navarro Lérida

VII BLACK HOLES WORKSHOP AVEIRO UNIVERSITY 18-19 DECEMBER 2014

Extremal rotating black holes in 5D Einstein-Maxwell-Chern-Simons theory: Radially excited solutions, non-uniqueness and near horizon geometry

- **1.** Introduction: Ansatz and general properties
- 2. Near-horizon formalism
- 3. Numerical results
- 4. Future work: negative cosmological constant

1. Introduction: Ansatz and general properties We will consider black holes in 5 dimensions in Einstein-Maxwell-Chern-Simons theory

Black holes in higher dimensions have some special properties

- Topologies of stationary black holes can be non-spherical For example black ring solution (Emparan 2002)
- More than one independent plane of rotation In D dimensions there are N = [(D-1)/2] planes of rotation

N independent angular momenta

| 1. Introduction ||

Einstein theory in odd D-dimensions

$$I = \int d^D x \sqrt{-g} \Big[R + \mathcal{L}_M \Big]$$

$$16\pi G_D = 1$$

R = curvature scalar

$$\mathcal{L}_M = -F^2 - \frac{2\lambda}{3\sqrt{3}} \epsilon^{\alpha\beta\mu\nu\rho} A_\alpha F_{\beta\mu} F_{\nu\rho}$$

Einstein-Maxwell-Chern-Simons Gravity coupled to a U(1) electro-magnetic potential A_{μ} and a Chern-Simons term (D=5)

|| 1. Introduction ||

We are interested in the higher dimensional generalization of the Kerr-Newman black holes:

Axisymmetric and stationary, Spherical topology of the horizon, Asymptotically flat Electrically charged

All angular momenta of the same magnitude: $|\mathbf{J}| = |\mathbf{J}_1| = |\mathbf{J}_2| = ... = |\mathbf{J}_N|$

We have enhanced *U*(*N*) symmetry

Not even with these constraints uniqueness is granted

We use numerical methods to obtain global solutions with these properties.

We also make use of the near-horizon formalism.

| 1. Introduction ||

Ansatz for the metric:

$$ds^{2} = -fdt^{2} + \frac{m}{f} \left[dr^{2} + r^{2} \sum_{i=1}^{N-1} \left(\prod_{j=0}^{i-1} \cos^{2} \theta_{j} \right) d\theta_{i}^{2} \right] + \frac{n}{f} r^{2} \sum_{i=1}^{N} \left(\prod_{i=0}^{i-1} \cos^{2} \theta_{j} \right) \sin^{2} \theta_{i} \left(\varepsilon_{i} d\varphi_{i} - \frac{\omega}{r} dt \right)^{2} + \frac{m-n}{f} r^{2} \left\{ \sum_{i=1}^{N} \left(\prod_{j=0}^{i-1} \cos^{2} \theta_{j} \right) \sin^{2} \theta_{i} d\varphi_{i}^{2} - \left[\sum_{i=1}^{N} \left(\prod_{j=0}^{i-1} \cos^{2} \theta_{j} \right) \sin^{2} \theta_{i} \varepsilon_{i} d\varphi_{i} \right]^{2} \right\}$$
$$\theta_{0} \equiv 0, \ \theta_{i} \in [0, \pi/2] \text{ for } i = 1, \dots, N-1$$

Lewis-Papapetrou coordinates. The radial coordinate
$${\bf r}$$
 is isotropic

 $\theta_N \equiv \pi/2, \varphi_k \in [0, 2\pi] \text{ for } k = 1, \dots, N$

 $\varepsilon_k = \pm 1$

Ansatz for the gauge field:

$$A_{\mu}dx^{\mu} = a_{0}dt + a_{\varphi}\sum_{i=1}^{N} \left(\prod_{j=0}^{i-1}\cos^{2}\theta_{j}\right)\sin^{2}\theta_{i}\varepsilon_{i}d\varphi_{i}$$

Extremal black holes present non integer exponents in their horizon expansion.

✓ EM case

✓ EMCS case

Special parametrization of the functions in order to numerically solve the problem.

$$\begin{split} f &= f_4 r^4 + f_\alpha r^\alpha + o(r^6) \\ m &= m_2 r^2 + m_\beta r^\beta + o(r^4) \\ n &= n_2 r^2 + n_\gamma r^\gamma + o(r^4) \\ \omega &= \omega_1 r + \omega_2 r^2 + o(r^3) \\ a_0 &= a_{0,0} + a_{0,\lambda} r^\lambda + o(r^2) \\ a_\phi &= a_{\phi,0} + a_{\phi,\mu} r^\mu + o(r^2) \\ \phi &= \phi_0 + \phi_\nu r^\nu + o(r^2) \end{split}$$

$4 < \alpha < 6$	$2 < \beta < 4$	$2 < \gamma < 4$
$0 < \lambda < 2$	$0 < \mu < 2$	$0 < \nu < 2$

2. Near-horizon formalism

| 2. Near Horizon Formalism ||

The space-time outside the event horizon of extremal black holes can be divided in two different regions:

- Near-horizon geometry
- Bulk geometry

Extracting the NHG from a known analytical solution by a coordinate transformation:

- 1. Move to a frame comoving with the event horizon
- 2. Center the radial coordinate on the event horizon
- 3. Scale parameter Λ in the new radial and temporal coordinates.
- 4. Series expansion for small Λ

$$\begin{aligned} r &= (\Lambda y + a) \\ dt &= \frac{a_0}{\Lambda} dT + (a_2/r^2 + a_1/r) dr \end{aligned}$$

First term is scale independent: near-horizon geometry

Properties of the near-horizon geometry of extremal black holes. H. K. Kunduri and J. Lucietti, Living Reviews in Relativity 16 (2013)

• Extremal black holes with spherical topology: near-horizon geometry is the product of two independent spaces.

$$AdS_2 \times S^{D-2}$$
Isometries: $SO(2,1) \times SO(D-1)$ $SO(2,1) \times U(1)^N$ rotation (squashed sphere)

This factorization is obtained for all the known examples of topologically spherical black holes

| 2. Near Horizon Formalism ||

Hence we can assume such factorization in our black holes (extremal case)

Metric:

$$ds^{2} = v_{1} \left(\frac{dr^{2}}{r^{2}} - r^{2} dt^{2} \right) + v_{2} \sum_{i=1}^{N-1} \left(\prod_{j=0}^{i-1} \cos^{2} \theta_{j} \right) d\theta_{i}^{2}$$
$$+ v_{2} v_{3} \sum_{i=1}^{N} \left(\prod_{j=0}^{i-1} \cos^{2} \theta_{j} \right) \sin^{2} \theta_{i} \left(\varepsilon_{i} d\varphi_{i} - kr dt \right)^{2}$$
$$+ v_{2} (1 - v_{3}) \left\{ \sum_{i=1}^{N} \left(\prod_{j=0}^{i-1} \cos^{2} \theta_{j} \right) \sin^{2} \theta_{i} d\varphi_{i}^{2} \right.$$
$$- \left[\sum_{i=1}^{N} \left(\prod_{j=0}^{i-1} \cos^{2} \theta_{j} \right) \sin^{2} \theta_{i} \varepsilon_{i} d\varphi_{i} \right]^{2} \right\}$$

Gauge potential:

$$A_{\mu}dx^{\mu} = (q_1 - q_2k)rdt + q_2\sum_{i=1}^{N} \left(\prod_{j=0}^{i-1} \cos^2\theta_j\right) \sin^2\theta_i \varepsilon_i d\varphi_i$$

Near-horizon geometry:

- Field equations + Ansatz: algebraic relations for the Ansatz parameters
- Alternatively: Extremal of entropy functional
- Global charges can be calculated: **(J, Q)**
- Horizon charges: area, horizon angular momentum

Parameters related to the asymptotical structure of the global solution cannot be calculated:

Mass, angular velocity

3. Numerical results

Global solutions and branch structure $\lambda > 2$

| 3. Numerical Results ||

Area vs angular momentum (near-horizon and global solutions)

| 3. Numerical Results ||

Branch structure in the mass vs angular momentum plot:

|| 3. Numerical Results ||

Branch structure scheme:

|| 3. Numerical Results ||

J=0 non-static solutions

J=0 non-static solutions

3. Numerical results

Domain of existence

| 3. Numerical Results ||

Domain of existence: Extremal solutions

|| 3. Numerical Results ||

Extremal vs $\Omega_{\rm H}$ =0

4. Future work: Including negative cosmological constant

| 4. Future work ||

Black holes in Einstein-Maxwell-Chern-Simons with negative cosmological constant.

- Black holes no longer asymptotically flat: Anti-de-Sitter
- Same subset of solutions: equal-magnitude angular momenta, spherical topology...
- Non-extremal black holes in EM where previously studied in

Jutta Kunz, Francisco Navarro-Lérida, Eugen Radu, Higher dimensional rotating black holes in Einstein-Maxwell theory with negative cosmological constant, Physics Letters B 649 (2007) 463-471

- Extremal black holes also have non-integer exponents near the horizon
- The near-horizon formalism gives us some interesting analytical results: richer branch structure
- Branch structure in global charges similar to the EMCS flat case for a certain range of the parameters of the theory

Thank you for your attention!

Jose Luis Blazquez-Salcedo, Jutta Kunz, Francisco Navarro Lerida, Eugen Radu, Sequences of Extremal Radially Excited Rotating Black Holes, Physical Review Letters **112** (2014) 011101