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String frame

A string frame lagrangian naturally results from string
perturbative calculations, given in terms of the string
coupling constant eφ:

e−2φ (· · · ) + 1 (· · · ) + e2φ (· · · ) + . . .

At tree level, in d dimensions, with arbitrary terms
Ii(R,M) :

1

16πG

√
−g e−2φ

(
R+ 4 (∂µφ) ∂µφ+

∑

i

Ii(R,M)
)
.

Each Ii(R,M) is a function, with conformal weight wi,
of any given order in α′, of the Riemann tensor Rµνρσ

and any other fields generically designated by M.
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From string to Einstein frame

Metric redefined through a conformal transformation
involving the dilaton:

gµν → exp

(
4

d− 2
φ

)
gµν ,

Rµν
ρσ → exp

(
− 4

d− 2
φ

)
R̃ ρσ

µν ,

R̃ = R+ 4
d− 1

d− 2
∇2φ− 4

d− 1

d− 2
(∂µφ) ∂µφ.

The same term in the conventional Einstein frame :

1

16πG

√
−g

(
R− 4

d− 2
(∂µφ) ∂µφ+

∑

i

e
4

d−2
(1+wi)φIi(R̃,M)

)
.

Temperature dependence of the absorption cross section for charged black holes – p. 3



Gravitational α′ corrections

Effective action in the Einstein frame

1

16πG

∫ √
−g
[

R− 4

d− 2
(∂µφ) ∂µφ+ λ e

4

d−2
(1+w)φ

Y (R)

]

ddx,

Y (R) : scalar polynomial in the Riemann tensor with
conformal weight w.
λ : suitable power of α′, up to a numerical factor.

Field equations

Rµν + λ e
4

d−2
(1+w)φ

(

δY (R)

δgµν
+

1

d− 2
Y (R)gµν − 1

d− 2
gµνg

ρσ δY (R)

δgρσ

)

= 0;

∇2φ − λ

2
e

4

d−2
(1+w)φ

Y (R) = 0.
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Background nonextremal black hole

Asymptotically flat, spherically symmetric metric in the
Einstein frame of the type

d s2 = −f(r) d t2 + g−1(r) d r2 + r2 dΩ2
d−2;

General assumption for the α′ corrected solution:
f(r) = f0(r) (1 + λfc(r)) , g(r) = f0(r) (1 + λgc(r)) .

Tangherlini solution: f0(r) =: fT0 (r) = 1−
(
RH

r

)d−3
;

Encoding charges and string effects:

f0(r) = c(r)

(

1−
(

RH

r

)d−3
)

.

Horizon radius – string frame: RS
H ; Einstein frame: RE

H .
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The absorption cross–section

In classical EH gravity, for any spherically symmetric
black hole in arbitrary d, the absorption cross–section of
minimally–coupled massless scalars in the
low–frequency limit is (Das, Gibbons, Mathur, 1997)

σ = AH = 4GS.

AH : horizon area with respect to the induced metric.

In the presence of leading α′ corrections, for the generic
metrics considered (Moura, 2013),

σ = AH

(
1− λ

fc(RH) + gc(RH)

2

)
.

We should obtain a covariant, frame–independent
formula for σ, in terms of physical quantities .
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Black hole temperature

Wick–rotate to Euclidean time t = iτ ; the resulting
manifold has no conical singularities as long as τ is a
periodic variable, with a period β = 1

T .

Smoothness condition:
2π = limr→RH

β

g
−

1

2 (r)

df
1

2 (r)
dr

,

or
T = lim

r→RH

√
g

2π

d
√
f

d r
.

In our case,

T =
f ′0(RH)

4π

(

1 + λ
fc(RH) + gc(RH)

2

)

or concretely

T =
d− 3

4πRH
(1 + λδT ) , δT = −δσ.
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Black hole mass

The mass can be written with a perturbative
multiplicative λ–correction to the classical Tangherlini
mass. In the Einstein frame:

M = (1 + λ δME)
(d− 2)Ωd−2

16πG

(
RE
H

)d−3
.

Both temperature and mass do not depend either on
systems of coordinates or on field redefinitions
(frames/schemes). In the string frame:

M = (1 + λ δMS)
(d− 2)Ωd−2

16πG

(
RS
H

)d−3
.
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Black hole mass

The mass can be written with a perturbative
multiplicative λ–correction to the classical Tangherlini
mass. In the Einstein frame:

M = (1 + λ δME)
(d− 2)Ωd−2

16πG

(
RE
H

)d−3
.

Both temperature and mass do not depend either on
systems of coordinates or on field redefinitions
(frames/schemes). In the string frame:

M = (1 + λ δMS)
(d− 2)Ωd−2

16πG

(
RS
H

)d−3
.
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Relation between string/Einstein frame

Equating expressions for the mass, one obtains a
relation between the horizon locations in the two
different frames:

RE
H = RS

H

(
1 + λ

δMS − δME

d− 3

)
.

Proceeding analogously with the temperature:

RE
H = RS

H (1 + λ (δTE − δTS)) .

There must be a relation between the mass and
temperature λ corrections such that the two
expressions above are the same.
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Black hole entropy

Wald entropy: S = −2πG
∫
Σ

∂L
∂Rµνρσ

εµνερσ
√
h dΩd−2;

For spherically symmetric metrics, the only nonzero

component of the binormal is εtr =
√

f
g ;

S = 1
4G

∫
H

(
1− 2λ′ ∂Y (R)

∂Rtrtr

) √
h dΩd−2 =

AH

4G − λ′

2G

∫
H

∂Y (R)
∂Rtrtr

√
h dΩd−2.

In general S = AH

4G (1 + λ δS) .
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The Callan-Myers-Perry black hole I

For Y (R) = RµνρσRµνρσ;

The only free parameter is the horizon radius RH

(secondary hair), which is not changed;

f0(r) =: fT0 (r) = 1−
(

RH

r

)d−3
;

Einstein frame (CMP,1989):

fc(r) = gc(r) = fCMP
c (r) := − (d−3)(d−4)

2

(

RH

r

)d−3 1−
(

RH
r

)d−1

1−
(

RH
r

)d−3
.

Temperature:
T = d−3

4πRE
H

(

1 + δTCMP
E

α′

4(RE
H)2

)

, δTCMP
E = − (d−1)(d−4)

2
.

Mass:
M =

(

1 + δMCMP
E

α′

4(RE
H)2

)

(d−2)Ωd−2

16πG

(

RE
H

)d−3
, δMCMP

E =
(d−3)(d−4)

2
.
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Leading α′-corrected dilaton

ϕ(r) =
φ(r)

λ
=

(d− 2)2

4R2
H

ln

(

1−
(

RH

r

)d−3
)

− (d− 3)(d− 2)2

8(d− 1)r2
[(d− 1)

+ +2

(

RH

r

)d−3

− 2
d− 1

d− 3

(

r

RH

)2

B

(

(

RH

r

)d−3

;
2

d− 3
, 0

)]

< 0,

ϕ′ (r) =
(d− 3)(d− 2)2

4

Rd−3
H

rd−2

1−
(

RH

r

)d−1

1−
(

RH

r

)d−3
> 0

with B(x; a, b) =
∫ x
0 ta−1 (1− t)b−1 dt (Moura, 2010).

At the horizon,

φ (RH) = − λ

R2
H

(d− 2)2

8(d− 1)

(

d2 − 2d+ 2(d− 1)

(

ψ(0)

(

2

d− 3

)

+ γ

)

− 3

)

,

with

ψ(z) =
Γ′(z)

Γ(z)
, ψ(n)(z) =

dn ψ(z)

d zn
, γ = lim

n→∞

(

n
∑

k=1

1

k
− lnn

)

.
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The Callan-Myers-Perry black hole II

String frame:
fCMP
S (r) = fT0

(

1 + α′

2(RS
H)2

µ(r)

)

, gCMP
S (r) = fT0

(

1− α′

2(RS
H)2

ǫ(r)

)

ǫ(r) =
(d− 3)Rd−5

H

4
(

rd−3 −Rd−3
H

)

[

(d− 2)(d− 3)

2
− 2(2d− 3)

d− 1

+ (d− 2)

(

ψ(0)

(

2

d− 3

)

+ γ

)

+ d

(

RH

r

)d−1

+
4R2

H

d− 2
ϕ(r)

]

µ(r) = −ǫ(r) + 2

d− 2

(

ϕ(r)− r ϕ′(r)
)

.
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The Callan-Myers-Perry black hole III

Temperature (string frame):

T =
d− 3

4πRS
H

(

1 + δTCMP
S

α′

4
(

RS
H

)2

)

,

δTCMP
S = −

3d(d− 3)
(

d− 5
3

)

− 2(d− 1)2 + 2(d− 2)(d− 1)
(

ψ(0)
(

2
d−3

)

+ γ
)

4(d− 1)
.

Mass (string frame):

M =

(

1 + δMCMP
S

α′

4
(

RS
H

)2

)

(d− 2)Ωd−2

16πG

(

RS
H

)d−3
,

δMCMP
S = (d− 3)

(

−δTCMP
S − (d− 2)(d− 4)

2

)

.
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The Callan-Myers-Perry black hole IV

For Y (R) = RµνρσRµνρσ,
∂Y (R)
∂Rtrtr = Rtrtr, Rtrtr =

1
2f

′′;

8πG ∂L
∂Rµνρσ εµνερσ =

(
−f

g + e
4

d−2
φα′

4 f
′′
)

g
f ;

One gets for the black hole entropy δSE 6= δSS (effect of
the dilaton!):

S =
AE

H

4G

(

1 + (d− 3)(d− 2)
α′

4
(

RE
H

)2

)

=
AS

H

4G

(

1 + (d− 2)

(

δTCMP
S − (d− 2)(d− 5)

2

)

α′

4
(

RS
H

)2

)

.

In both frames δS 6= −δT and therefore σ 6= 4GS.
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Frame-independent entropy formulae

One can invert mass/temperature relations in order to
obtain RH(M), RH(T ) :

RH(M) =
1√
π





8GMΓ
(

d−1
2

)

d− 2





1

d−3
[

1− λ

(d− 3)
δM

]

,

RH(T ) =
d− 3

4πT
(1 + λδT ) .

Replacing these results in the entropy, we get

S(M) = 2
2d−3

d−3

√
π

(

GΓ

(

d− 1

2

)) 1

d−3

(

M

d− 2

)
d−2

d−3

[

1 + λ

(

δS − d− 2

d− 3
δM

)]

,

S(T ) =
Ωd−2

4G

(

d− 3

4πT

)d−2

(1 + λ (δS + (d− 2)δT )) .
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The CMP black hole entropy

One can check that indeed
δSCMP

E − d− 2

d− 3
δMCMP

E = δSCMP
S − d− 2

d− 3
δMCMP

S

,

δSCMP
E + (d− 2)δTCMP

E = δSCMP
S + (d− 2)δTCMP

S .

This allows us to obtain

S(M) = 2
2d−3

d−3

√
π

(

GΓ

(

d− 1

2

)) 1

d−3

(

M

d− 2

)
d−2

d−3






1 + α′

(d− 2)2

8
π





d− 2

8GMΓ
(

d−1
2

)





2

d−3






,

S(T ) =
Ωd−2

4G

(

d− 3

4πT

)d−2
(

1− α′
(d− 2)2(d− 5)

8

(

4πT

d− 3

)2
)

These are frame-independent formulas !
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The CMP absorption cross section

Proceeding analogously

σ(M) = 2
4d−9

d−3

√
π

(

Γ

(

d− 1

2

)) 1

d−3

(

GM

d− 2

)
d−2

d−3

(

1− λ

(

δT +
d− 2

d− 3
δM

))

,

σ(T ) =

(

d− 3

4πT

)d−2

Ωd−2 (1 + (d− 3)λδT ) .

One can check that for the CMP solution
δTCMP

E +
d− 2

d− 3
δMCMP

E 6= δTCMP
S +

d− 2

d− 3
δMCMP

S

,

δTCMP
E 6= δTCMP

S .

The string-corrected absorption cross section cannot be
expressed exclusively as a function of the black hole
mass (or temperature) in a way which is independent of
metric redefinitions!
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Covariant frame-indep cross section

Only possibility:

σ =
d− 3

4πT
Ω

1
d−2

d−2A
d−3
d−2

H .

This formula is valid for Tangherlini–like d-dimensional
solutions with leading α′ corrections.

Could it be valid for non-spherically symmetric
solutions?

Could it be valid to all orders in α′?

How about charged solutions?
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d−dimensional Reissner-Nordström

f(r) =

(

1−
(

RQ

r

)d−3
)(

1−
(

RH

r

)d−3
)

;

Rd−3
H = µ+

√

µ2 − q2, Rd−3
Q = µ−

√

µ2 − q2,

µ =
8π

Ωd−2(d− 2)
M, q2 =

2

(d− 2)(d− 3)
Q2;

Temperature TH = d−3
4πRH

(
1−

(
RQ

RH

)d−3
)
, from which

RH(TH) = RQ +
4πR2

Q

(d−3)2TH +O
(
T 2
H

)
(well defined

extremal limit);

c(RH) = 1−
(

RQ

RH

)d−3
=

2
√

µ2
−q2

µ+
√

µ2
−q2

(frame-independent ).
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Generalization for charged black holes

Charged solutions: f(r) = c(r)
(
1−

(
RH

r

)d−3
)
;

Temperature: T = (d−3)c(RH)
4πRH

;

Extremal limit: c(RH) ≡ 0;

Cross section: σ = (d−3)c(RH)
4πT Ω

1
d−2

d−2A
d−3
d−2

H ;

Well defined extremal limit (in principle!);

By defining t̃ = c(RH)t, T̃H = TH

c(RH) , σ reduces to the

noncharged case.
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D-1 D-5 system

Classical action compactified on S1 ⊗ T 4:
1

16πG10

∫ √−ge−2φ
[

R+ 4(∇φ)2 − 1
2
|H3|2

]

d10x

x5 with period 2πR, xi, i = 6, ..., 9, with period 2πV 1/4.

f(r) = 1− r2
0

r2
, h1,5(r) = 1 +

r2
1,5

r2
,





t′

x′5



 =





cosh ς − sinh ς

− sinh ς − cosh ς









t

x5





R-R 2-form field strength: H(3) = 2r25ǫ3 + 2e−2φr21 ⋆6 ǫ3,

ǫ3 = 1
8
dθ ∧ sin θdφ ∧ dψ, ⋆6 is the Hodge dual in x0, .., x5.

ds210 =
1

√

h1(r)h5(r)

(

−f(r)dt′2 + dx′5
2
)

+

√

h1(r)

h5(r)
dxidx

i

+
√

h1(r)h5(r)

(

dr2

f(r)
+ r2dΩ2

S3

)

e2φ =
h5(r)
h1(r)

(Horowitz, Maldacena, Strominger 1996)
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Three charges

Define rn, α, γ:
rn ≡ r0 sinh ς,

r1 ≡ r0 sinhα, r5 ≡ r0 sinh γ.

Four independent parameters: r0, r1, r5, rn, or
r0, α, γ, ς, in terms of which one may write the black
hole mass and three U(1) charges.

Q1 ≡
1

(2π)2 gs

∫

S3

e2φ ⋆6 H(3) =
V

2gs
r20 sinh 2α,

Q5 ≡
1

(2π)2 gs

∫

S3

H(3) =
1

2gs
r20 sinh 2γ,

n ≡ RP =
R2V

2g2s
r20 sinh 2ς.
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D-brane description

Bound state: Q1 fundamental strings wrapping S1 and
Q5 NS5-branes wrapping T 4 ⊗ S1.

Excitations: transverse oscillations, within the
NS5-branes, of a single effective string wrapped Q1Q5

times around the S1. These oscillations carry the
momentum n and are described by a gas of left and
right movers on the string .

Solution in the dilute gas limit : interactions between
left and right moving oscillations can be neglected.

Reduction to five dimensions:

ds25 = −h−2/3(r)f(r)dt2 + h1/3(r)

(

dr2

f(r)
+ r2dΩ2

3

)

,

h(r) = h1(r)h5(r)hn(r), hn(r) = 1 +
r2n

r2
.
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Two large charges

r0, rn ≪ r1, r5: large values of α, γ; Q1, Q5 are large
compared to n.

Left and right moving temperatures

TL =
1

2π

r0e
ς

r1r5
, TR =

1

2π

r0e
−ς

r1r5

related to Hawking temperature by T−1
H = 1

2(T
−1
L + T−1

R ) :

TH =
1

2π

r0

r1r5 cosh ς
⇔ eς =

r0 +
√

r20 − 4π2r21r
2
5T

2
H

2πr1r5TH
.

Replacing in n and solving for r0:

r20 = 2
gsπr1r5

R

√

n

V
TH+π2r21r

2
5T

2
H+

3π3r31r
3
5R

4gs

√

V

n
T 3
H+

π4r41r
4
5R

2V

2g2sn
T 4
H+O

(

T 5
H

)

.

r20 has a well defined extremal limit, and that limit is 0.
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D-brane spectroscopy

Absorption cross section can be fully computed in the
dilute gas limit (Maldacena, Strominger, 1997):

σabs(ω) = 2π2r21r
2
5
πω

2

e
ω

TH − 1(
e

ω
2TL − 1

)(
e

ω
2TR − 1

) .

Low frequency limit:

σabs ≈
πr20
TH

(1/TH dependence, finite extremal limit).
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One large charge

r0, r1, rn ≪ r5: large value of γ; Q5 is large compared to
Q1, n (Klebanov, Mathur, 1997).

TL =
1

2πr5 cosh(α− ς)
, TR =

1

2πr5 cosh(α+ ς)
, TH =

1

2πr5 coshα cosh ς
.

Expressing eα, eς in terms of Q1, n, we obtain

TH =

√

R

nQ1

V

4πgsr5
r20

(

1− V

2gs

(

1

Q1
+
R

n

)

r20

)

+O
(

r50
)

.

σabs(ω) = π3r25r
2
0(1 + sinh2 α+ sinh2 ς)ω

e
ω

TH − 1
(

e
ω

2TL − 1
)(

e
ω

2TR − 1
) ≈ πr20

TH
.

Low frequency limit: again, σabs exhibits 1/TH
dependence, finite extremal limit.
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Four dimensional dyonic solution

ds24 = −h−1/2(r)f(r)dt2 + h1/2(r)

(

dr2

f(r)
+ r2dΩ2

2

)

,

f(r) = 1− r0

r

h(r) = h1(r)h2(r)h3(r)hn(r), hn(r) = 1 +
rn

r
, hi(r) = 1 +

ri

r
, i = 1, 2, 3.

(Cvetič, Tseytlin, Youm, 1997).

Define r1 ≡ r0 sinh
2 α, rn ≡ r0 sinh

2 ς, with

nw = 4r2r3
πr0
κ24

sinh(2α), np =
πr0
κ24

sinh(2ς).

We work in the range r0, r1, rn ≪ r2, r3, which physically
means the charges associated to r2, r3 are much larger
than those associated to r1, rn.
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D-brane spectroscopy ind = 4

TL =
1

4π
√
r2r3 cosh(α− ς)

, TR =
1

4π
√
r2r3 cosh(α+ ς)

, TH =
1

4π
√
r2r3 coshα cosh ς

.

Expressing eα, eς in terms of nw, np, r0, r2, r3, we obtain

TH = r0
2κ4√npnw

(
1− (nw+4r2r3np)

κ4npnw
πr0

)
+O

(
r30
)
.

σabs(ω) = 2π
√
r2r3r0(cosh 2α+ cosh 2ς)ω

e
ω

TH − 1
(

e
ω

2TL − 1
)(

e
ω

2TR − 1
) ≈ r0

TH
.

Low frequency limit: again, σabs exhibits 1/TH
dependence, finite extremal limit. This is a
characteristic of all the cases we have considered.
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Summary

α′ corrections naturally induce (and require) an explicit
dependence of the low frequency absorption cross
section on the black hole temperature of the form 1/TH .

Assuming fundamental string states to be in 1 to 1
correspondence with black hole states, classically one
obtains a low frequency cross section with the same
explicit dependence of the form 1/TH . We verified this
property for different regimes of the D1-D5 system in
d = 5 and a d = 4 dyonic four-charged black hole.

What seemed just a way to encode α′ corrections to the
cross section may actually be the most natural way to
write it in the context of string theory, since it is valid
classically and with leading α′ corrections.

This cross section is well defined in the extremal limit,
but this result cannot be valid for extremal black holes.Temperature dependence of the absorption cross section for charged black holes – p. 31
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