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Review of double copy

Gravity vs gauge theory

Free fields

looks like hµν ∼ Aµ Ãν

E.g. d = 4

massless vector: 2 helicities ±

massless 2-tensor: 2 gravitons (±⊗±)
dilaton + axion (±⊗∓)

Interactions

n-particle gluon amplitude: An ({kµ
i , ε

µ
i ,ai})

n-particle graviton amplitude: Mn ({kµ
i , ε

µν
i })

Einstein-Hilbert action: infinite number of horrible vertices!

relations between scattering amplitudes: double copy
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Review of double copy

Colour-Kinematics Duality [Bern, Carrasco, Johansson ’08]

Gauge theory amplitude depends on kinematics (ki , εi ) and colour (ai ):

An =
∑

α∈cubic

nαcα
Dα

colour factors - cα = f ···f ··· · · · f ··· f abc = tr([T a,T b]T c)

propagators - Dα(ki )

kinematic numerators - nα(ki , εi )

Ambiguity: Jacobi identity cα ± cβ ± cγ = 0

Statement: it is possible to write gauge theory amplitudes such that
numerators nα(ki , εi ) have symmetries of colour factors cα(ai )

cα ± cβ ± cγ = 0 ←→ nα ± nβ ± nγ = 0

Kinematic algebra for numerators?
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Review of double copy

Double Copy to Gravity [Bern, Carrasco, Johansson ’08]

Statement: gravity amplitudes are obtained from gauge theory as

Mn =
∑

α∈cubic

nαñα

Dα

if nα(ki , εi ) are BCJ numerators. Scattered states: εµν = εµ ε̃ν

Tree level: Similar relations connect many theories of massless particles.
[Cachazo, He, Yuan ’14] [Kawai, Lewellen, Tye ’86]

Loop level conjecture: Allows study of supergravity divergences. [Bern et al ’08-’14]

Prescription A ↔M
same diagrams and propagators

kin. numerator↔ colour factor
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Self-dual sectors

Self-dual Sectors of Gauge Theory and Gravity
Scalar equations of motion with cubic vertex.

Use light-cone coords: ds2 = −du dv + dw dw̄
Use light-cone coords: u = t − z, v = t + z, w = x + iy , w̄ = x − iy

Use light-cone coords: define k̂µ = (0, ∂w ,0, ∂u)

Self-dual gauge theory
[Bruschi, Levi, Ragnisco ’82]

Fµν =
i
2
εµναβ Fαβ

Aµ = k̂µΦ, Φ = φaT a

�Φ + [∂w Φ, ∂uΦ] = 0

Self-dual gravity
[Plebanski ’75]

Rµνλρ =
i
2
εµναβ Rαβ

λρ

gµν = ηµν + k̂µk̂νφ

�φ+ {∂wφ, ∂uφ} = 0

where {f ,g} = ∂w f ∂ug − ∂uf ∂w g

Colour-kinematics duality and double copy manifest. [RM, O’Connell ’11]

[·, ·]{·, ·} → {·, ·}2
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Kerr-Schild spacetimes

Kerr-Schild Spacetimes

Consider Kerr-Schild metric [Kerr, Schild ’65]

gµν = ηµν + φ kµkν

where kµ is null and geodesic wrt ηµν (ηµνkµkν = 0, ηµνkµ∂νkλ = 0),
therefore also wrt gµν .

Leads to linearisation of the Einstein equations:

gµν = ηµν − φ kµkν

Rµ
ν = 1

2∂α [∂µ (φkαkν) + ∂ν (φkαkµ)− ∂α (φkµkν)] ∂µ ≡ ηµν∂ν

Stationary Einstein equations give (k0 = 1):

R0
0 = 1

2∇
2φ = 0 R i

0 = 1
2∂j
[
∂ i
(
φk j
)
− ∂ j

(
φk i
)]

= 0
t
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Kerr-Schild spacetimes

“Square Root” Gauge Theory [RM, O’Connell, White ’14]

gµν = ηµν + φ kµkν −→ Aa
µ = φ kµ ca (ca const)

keep spatial propagator φ
keep one copy of kµ
colour? Linearisation in gravity→ Abelianisation in gauge theory

0 = ∂µF aµν = ca
{
−∇2φ ν = 0
−∂j

[
∂ i
(
φk j
)
− ∂ j

(
φk i
)]

ν = i

Schwarzschild ∼ (Coulomb)2: φ(r) =
2GM

r
, kµ =

(
1,
~x
r

)
Aµ = φ kµ, φ(r) =

Q
r

after gauge transformation, A′µ =
Q
r

(1, ~0)

Also for Kerr, black branes. Similar for plane waves.
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Conclusions

Conclusions

New structures connecting perturbative gauge theory and gravity.
Related to unexpected UV cancellations in supergravity.

Simple manifestation in self-dual theories.

Perturbative relations extend to exact solutions in examples.
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