Instabilities of extremal black holes in higher dimensions

Akihiro Ishibashi VII BHs Workshop 19 Dec. 2014 at Aveiro Talk based on <u>arXiv:1408.0801</u> w/ S. Hollands

BH Classification problem in Higher Dimensions

• *No uniqueness* in *D*>4 GR

• Classification of them is yet under way

To classify is need to study their stability

Instabilities are signals of bifurcation to something different, implying more variety of solutions.

Phase space of Higher Dimensional BHs

Start with classifying *Extremal* black holes

- Limit of zero Hawking temperature $T_H \rightarrow 0$
 - Play an important role in various contexts
 e.g. Supergravity
 Entropy counting
 Kerr/CFT
 Holographic Superconductors

Classify "boundaries of the solution space" from the stability view point

5D Myers-Perry hole

Stability analysis

 Linear perturbation analyses
 Tractable when master equations available: e.g., Teukolsky equations in 4D

 Unfortunately there is *no* Teukolsky type master equation for higher dimensional (extremal/non-extremal) black holes

To classify extremal black holes ...

- Helpful to study "near-horizon geometries" which
 - * arise as a scaling limit of extremal black hole
 - * satisfy the same dynamics
 - * possess more symmetries
 - * admit Teukolsky type master equations

Near Horizon Geometry (NHG)

$$ds^{2} = 2dud\rho - \rho^{2}\alpha du^{2} - 2\rho du\beta_{A}dx^{A} + \mu_{AB}dx^{A}dx^{B}$$

• Diffeomorphism

$$(u, \rho, x^A) \mapsto \left(\frac{u}{\epsilon}, \epsilon \rho, x^A\right)$$

• Scaling limit
$$\epsilon \to 0$$

 $\alpha, \beta_A, \mu_{AB}$ become functions of x^A
 $ds^2 = L^2 d\hat{s}^2 + g_{IJ}(d\phi^I + k^I \hat{A})(d\phi^J + k^J \hat{A}) + d\sigma_{d-n-2}^2$
 $AdS_2 d\hat{s}^2 = -R^2 dT^2 + \frac{dR^2}{R^2}$
 $\hat{A} = -R dT$

A horizon neighborhood of Extreme black hole

Near-Horizon Geometry

Durkee & Reall conjectured that

When axi-symmetric perturbations on the NHG violate AdS_2 -BF-bound on the NHG, then the original extremal BH is unstable $e^{im_I\phi^I}$ $m_IN^I(x) = 0$.

... supportd by numerical results:

Durkee-Reall 11

Purpose

We show this conjecture by using

- Hertz-potential
- Canonical energy method
- Initial data correction

Strategy for proving DR Conjecture **NHG Original BH geometry Extremal horizon** nfinity **Master Equations**

available

No decoupled Master Equtions Apply Canonical-Energy Method for Initial Data

Matching initial data by scaling

Attempt to construct *negative* energy initial data **on NHG**

Construct *negative* canonical Energy for the BH initial data

(1) Teukolsky type equations for Hertz potential on NHG

$$\left(\nabla_{AdS_2}^2 - q^2 - \mathscr{A}\right)U = 0$$

 \mathscr{A} : Laplace operator on horizon cross-section

(2) Metric perturbations γ_{ab} can be re-constructed as

$$\gamma_{ab} = -l_a l_b (C_{cedf} l^e n^f U^{cd}) + 2l_{(a} b \partial^c U_{b)c} + 2l_{(a} (\tau^c + \tau'^c) b U_{b)c} - b^2 U_{ab}$$

(3)Construct the canonical energy on NHG $E_{NHG}(\gamma)$

(4)Show when BF-bound is valoated $E_{\rm NHG}(\gamma)$ becomes negative $\lambda < -1/4 \implies E_{NHG} < 0$

(5) Show $E_{NHG} < 0 \implies E_{BH} < 0$

Decoupled Master equations on NHG

Thanks to high symmetry of NHG, metric perturbations γ_{ab} can be written in terms of Hertz potential

$$U^{AB} = \boldsymbol{\psi} \cdot Y^{AB} \cdot \exp(i\underline{m} \cdot \underline{\boldsymbol{\phi}})$$

 $\gamma_{ab} = -l_a l_b (C_{cedf} l^e n^f U^{cd}) + 2l_{(a} b \delta^c U_{b)c} + 2l_{(a} (\tau^c + \tau'^c) b U_{b)c} - b^2 U_{ab}$

Hertz potential obeys AdS₂ Klein-Gordon equation

$$-\frac{1}{R^2}\frac{\partial^2 \psi}{\partial T^2} + \frac{\partial}{\partial R}\left(R^2\frac{\partial \psi}{\partial R}\right) - \frac{2iq}{R}\frac{\partial \psi}{\partial T} - \lambda\psi = 0$$
$$\mathscr{A}Y = \lambda Y, \qquad \pounds_{\partial/\partial\phi^I}Y = 0$$

where *A* is 2nd-order operator on the horizon section

We show the following theorem:

If the minimal eigenvalue of \mathscr{A} violates the effective BF-bound

$$\lambda < -rac{1}{4}$$

then the original extremal black hole is unstable

Canonical energy for initial data Hollands-Wald 13

Symplectic current

$$w^{a} = \frac{1}{16\pi} P^{abcdef}(\gamma_{2bc} \nabla_{d} \gamma_{1ef} - \gamma_{1bc} \nabla_{d} \gamma_{2ef})$$

Symplectic form $W(\Sigma; \gamma_1, \gamma_2) \equiv \int_{\Sigma} \star w(g; \gamma_1, \gamma_2)$

Canonical energy $\mathscr{E}(\Sigma, \gamma) \equiv W(\Sigma; \gamma, \pounds_K \gamma) - B(\mathscr{B}, \gamma) - C(\mathscr{C}, \gamma)$

1) \mathscr{E} is gauge invariant

 $B(\mathscr{B},\gamma)=\frac{1}{32\pi}\int_{\mathscr{B}}\gamma^{ab}\delta\sigma_{ab}$

Br

 \mathscr{H}_{12}

 \mathscr{C}_2

 Σ_2

 Σ_1

 \mathcal{I}_{12} \mathscr{C}_1

2) & is monotonically decreasing for any axi-symmetric perturbation

$$C(\mathscr{C},\gamma) = -\frac{1}{32\pi} \int_{\mathscr{C}} \tilde{\gamma}^{ab} \delta \tilde{N}_{ab}$$

Construction of a perturbation with negative canonical energy

• For initial data: $(f_0, f_1) \equiv \left(\psi \Big|_{T=0}, \frac{\partial}{\partial T} \psi \Big|_{T=0} \right)$

$$f_0(R) = \frac{R^N}{(R+\varepsilon)^{N+1/2}(1+R^N e^{1/(1-R)})}, \qquad f_1(R) = 0$$

for $0 < R < 1$ and $f_0(R) = 0$ for $R \ge 1$.

$$\mathscr{E} = \frac{1}{8\pi} (\underline{\lambda + \frac{1}{4}})(\lambda^2 + 2a^2\lambda + a^4 - 9a^2 + \frac{7}{2}) \log \varepsilon^{-1} + O(1)$$

where $a = \underline{k} \cdot \underline{m}$

If a = 0 & $\mathcal{E} < 0$ for $\lambda < -\frac{1}{4}$ and sufficiently small $\varepsilon > 0$

This energy expression holds only on NHG, *not on the original BH geometry*.

One can *correct it to hold on the original BH geometry* by using Corvino-Schoen's initial data gluing method. Corvino-Schoen 03

Summary

• We have proven Durkee-Reall conjecture that *extremal* black holes are unstable when the eigenvalue λ of the operator \mathscr{A} is less than the effective BF bound -1/4

Our proof uses

- (i) Canonical energy method
- (ii) Symmetry of the NHG and Hertz potential
- (iii) Structure of the constraint equations
- The stability analysis is thus reduced to an *analysis on* the horizon cross-section, which is a much simpler problem than analyzing the perturbed Einstein equations.