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Beyond scalar-tensor theory 

P. Kanti et al., Phys. Rev. D 54, 5049 (1996).

We already know that more general couplings lead to “hairy” 
solutions! Such solutions have been found for couplings of  the 
type

No real hope for a no-hair theorem that would cover every case!

There has been a no-hair proof  claim for a rather general class 
though: shift-symmetric generalised galileons!

L. Hui, A. Nicolis, Phys. Rev. Lett. 110, 241104 (2013).

e�(R2 � 4Rµ⌫Rµ⌫ +Rµ⌫�Rµ⌫�)
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Generalised Galileons 

…or Horndeski’s theory: the most general scalar-tensor action 
that leads to second order field equations

G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974) 
C. Deffayet et al., Phys. Rev. D 80, 064015 (2009)

Shift-symmetric restriction:
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The proof 

The equation for the scalar is a current conservation

rµJ
µ = 0

Step 1: Show that 

Step 2: Argue that this implies 

Assumptions:

Staticity and spherical symmetry 
Asymptotic flatness
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Jµ = 0

@µ� = 0

However, there is actually a loophole!
T.P.S. and S.-Y. Zhou, Phys. Rev. Lett. 112, 251102 (2014); 
arXiv:1408.1698 [gr-qc]



A simple exception 

Consider the action

The corresponding scalar equation is
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The Gauss-Bonnet term vanishes only in flat space!

This theory corresponds to 

K = X, G3 = G4 = 0, G5 = �4↵ ln |X|
T. Kobayashi et al., Prog. Theor. Phys. 126, 511 (2011).
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Uniqueness 

We need a term in the action that

leads to an    -independent contribution to the field 
equations: 

is shift-symmetric:         should be a total divergence 

it should lead to no more than second order 
derivatives in the field equations

There is only one such choice:

�
�A[g]

A[g]

A[g] = G ⌘ R2 � 4Rµ⌫Rµ⌫ +Rµ⌫�Rµ⌫�
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Avoiding the offensive term 

There is no symmetry protecting the action from the 
linear coupling 

It is not technically natural to exclude it! 

The generality of  the no-hair theorem is compromised

One could impose symmetry under 

Most general action:

� ! ��

L = K(X) +G4(X)R+G4X
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Perturbative solution 

To first order in ↵

metric is Schwarzschild 

non-trivial scalar profile:

Regularity on the horizon implies

�0 = ↵
16M2 � Cr3

r4(r � 2M)

C = 2/M

The scalar charge is fixed to be P =
2↵

M

To second order in

metric no longer Schwarzschild 

Scalar profile unchanged

M = m
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Numerical solution 

Main characteristics
Fixed scalar charge, finite area singularity! 
Black holes have a minimum size! 
Perturbative treatments breaks down near singularity
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