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Agenda

Describe the model to construct non-rotating
Gauss-Bonnet boson stars in AdS in D = 5 dimensions

Investigate effect of Gauss-Bonnet term to boson star
solutions

Outlook
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Why study Q-balls and boson stars?

Boson stars
Simple toy models for a wide range of objects such as
particles, compact stars, e.g. neutron stars and even
centres of galaxies
We are interested in the effect of Gauss-Bonnet gravity
and will study these objects in the minimal number of
dimensions in which the term does not become a total
derivative.
Toy models for studying properties of AdS space-time
Toy models for AdS/CFT correspondence. Planar boson
stars in AdS have been interpreted as Bose-Einstein
condensates of glueballs
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Model for Gauss–Bonnet Boson Stars

Action

S =
1

16πG5

∫
d5x
√
−g (R − 2Λ + αLGB + 16πG5Lmatter)

LGB =
(

RMNKLRMNKL − 4RMNRMN + R2
)

(1)

Matter Lagrangian Lmatter = − (∂µΦ)∗ ∂µΦ− U(Φ)

Gauge mediated potential

USUSY(|Φ|) = m2η2
susy

(
1− exp

(
− |Φ|

2

η2
susy

))
(2)

USUSY(|Φ|) = m2|Φ|2 − m2|Φ|4

2η2
susy

+
m2|Φ|6

6η4
susy

+ O
(
|Φ|8

)
(3)

A. Kusenko, Phys. Lett. B 404 (1997), 285; Phys. Lett. B 405 (1997), 108, L. Campanelli and M. Ruggieri,

Phys. Rev. D 77 (2008), 043504
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Model for Gauss–Bonnet Boson Stars

Einstein Equations are derived from the variation of the
action with respect to the metric fields

GMN + ΛgMN +
α

2
HMN = 8πG5TMN (4)

where HMN is given by

HMN = 2
(

RMABCRABC
N − 2RMANBRAB − 2RMARA

N + RRMN

)
− 1

2
gMN

(
R2 − 4RABRAB + RABCDRABCD

)
(5)

Energy-momentum tensor

TMN = −gMN

[
1
2

gKL (∂K Φ∗∂LΦ + ∂LΦ∗∂K Φ) + U(Φ)

]
+ ∂MΦ∗∂NΦ + ∂NΦ∗∂MΦ (6)
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Model continued

The Klein-Gordon equation is given by:(
�− ∂U

∂|Φ|2

)
Φ = 0 (7)

Lmatter is invariant under the global U(1) transformation

Φ→ Φeiχ . (8)

Locally conserved Noether current jM

jM = − i
2

(
Φ∗∂MΦ− Φ∂MΦ∗

)
; jM;M = 0 (9)

The globally conserved Noether charge Q reads

Q = −
∫

d4x
√
−gj0 . (10)
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Ansatz non-rotating

Metric Ansatz

ds2 = −N(r)A2(r)dt2 +
1

N(r)
dr2

+ r2
(

dθ2 + sin2 θdϕ2 + sin2 θ sin2 ϕdχ2
)

(11)

where
N(r) = 1− 2n(r)

r2 (12)

Stationary Ansatz for complex scalar field

Φ(r , t) = φ(r)eiωt (13)
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Boundary Conditions for asymptotic AdS space time

If Λ < 0 the scalar field function falls of with

φ(r >> 1) =
φ∆

r∆
, ∆ = 2 +

√
4 + L2

eff . (14)

Where Leff is the effective AdS-radius:

L2
eff =

2α

1−
√

1− 4α
L2

; L2 =
−6
Λ

(15)

The boundary field is dual to an operator of dimension
in the CFT

φ∆ ↔ 〈O〉; r →∞ (16)

Mass for κ > 0 we define the gravitational mass at AdS
boundary

MG ∼ n(r →∞)/κ (17)
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Boundary Conditions for asymptotic AdS space time

α is constrained simultaneously by the positivity of the
energy constraints in conformal field theories and
causality in their dual gravity description.

(D − 3)(3D − 1)

4(D + 1)2 ≤ α ≥ (D − 3)(D − 4)(D2 − 3D + 8)

4(D2 − 5D − 10)2

(18)

Case α > 0: Chern-Simons limit

α =
L2

4
; L2

eff =
2α

1−
√

1− 4α
L2

; L2 =
−6
Λ

(19)
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AdS Gauss–Bonnet Boson Stars with α ≥ 0
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Figure : Charge Q in dependence on the frequency ω for Λ < 0, κ > 0 and different
values of α ≥ 0. ωmax shift: ωmax = ∆

Leff
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AdS Gauss–Bonnet Boson Stars with α ≤ 0
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Figure : Work in progress: Charge Q in dependence on the frequency ω for Λ < 0,
κ > 0 and different values of α ≤ 0. ωmax shift: ωmax = ∆
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AdS Gauss–Bonnet Boson Stars with α ≤ 0
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Summary Effect of Gauss-Bonnet Correction

Boson stars
Small coupling to GB term, i.e. small α, we find similar
spiral like characteristic as for boson stars in pure
Einstein gravity.
When the Gauss-Bonnet parameter α is positive and
large enough the spiral ’unwinds’.
When α > 0 and the coupling to gravity (κ) are of the
same magnitude, only one branch of solutions survives.
When α < 0 and negative enough the spiral ’shrinks’ and
pulls back to larger frequencies to becomes one branch.
For α > 0 condensation is harder at the AdS boundary
and for α < 0 it enhances the condensation.
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Outlook

Analysis the effect of the Gauss-Bonnet term on
stability of boson stars.
To do a stabiliy analysis similar to the one done for
non-rotating minimal boson stars by Bucher et al 2013
([arXiv:1304.4166 [gr-qc])
See whether our arguments related to the classical
stability of our solutions agrees with a full perturbation
analysis
Further study of Gauss-Bonnet Boson Stars and AdS/CFT
correspondance
Boson Stars in general Lovelock theory
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Thank You

Thank You!
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Finding solutions: fixing ω
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Figure : Effective potential V (f ) = ω2f 2 − U(f ).
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Excited AdS Gauss–Bonnet Boson Stars α ≥ 0
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Figure : Charge Q in dependence on the frequency ω for Λ = −0.01, κ = 0.02, and
different values of α. ωmax shift: ωmax = ∆+2k
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AdS Space-time

(4)

Figure : (a) Penrose diagram of AdS space-time, (b) massive (solid) and massless
(dotted) geodesic.

(4)J. Maldacena, The gauge/gravity duality, arXiv:1106.6073v1
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