Test particle motion in boson star space-times

Betti Hartmann

Jacobs University Bremen - Germany (soon: IFSC, Universiade de São Paulo)

Black Holes VII

Aveiro 19/12/2014

<u>Contents</u>

• <u>Motivation</u>: What are *boson stars*? Why study *boson stars*?

- <u>Results</u>: Typical mass and radius of a boson star Probing the space-time of a *boson star*
- <u>Conclusions & Outlook</u>

Motivation ...

...for studying boson stars

Self-gravitating scalar fields

$$S = \int \sqrt{-g} d^4 x \left(\frac{R}{16 \pi G} + L_{matter} \right)$$

action

Matter Lagrangian

$$\mathbf{L}_{\text{matter}} = -(\partial_{\mu} \Phi) (\partial^{\mu} \Phi) - \mathbf{V} (|\Phi|)$$

Phys. Rev. D 80 (2009)

Properties of boson stars

L_{matter} has global U(1) symmetry $\Phi \rightarrow \Phi \exp(i\chi)$

Globally conserved Noether charge Q

$$\mathbf{Q} = -\mathbf{i} \int \sqrt{-g} \left[\Phi^* \partial^0 \Phi - \Phi \partial^0 \Phi^* \right] \mathrm{d}^3 \mathbf{x}$$

can be interpreted as number of scalar particles

Prevented from collapse by Heisenberg's uncertainty principle

Ansatz for spherically symmetric solutions

 $\Phi = \phi(\mathbf{r}) \exp(\mathbf{i} \, \boldsymbol{\omega} \, \mathbf{t})$

Harmonic time dependence

Boson star vs ordinary star

Boson star has no definite surface (no "hard core")

Boson star vs Black hole

Boson star is globally regular

Supermassive black holes (?!?)

Monitoring O(100) stars around Sagittarius A* since 1992

1) from: Gillessen, Eisenhauer, Trippe, Alexander, Genzel, Martins, Ott *Astrophy. J. 692 (2009)*

Orbit of S2 Period \approx 15.2 years Eccentricity ≈ 0.87 $R_{gA^*} \approx 2.2 \times 10^7 \text{ km}$ SgA* $M_{SgA^*} \approx 4.5 \times 10^6 M_{sun}$

Best "standard" explanation: Supermassive black hole

2) From:

Gillessen, Eisenhauer, Fritz, Bartko, Dodds-Eden, Pfuhl, Ott, Genzel *Astrophy. J. 707 (2009)* Results

Typical mass of a boson star

Diemer, Eilers, BH, Schaffer, Toma, Phys. Rev. D88 (2013)

Typical mass & radius of a boson star

Diemer, Eilers, BH, Schaffer, Toma, Phys. Rev. D88 (2013)

Example: $8 \pi \eta^2 = M_{pl}^2 / 10$

Particle	m	M phys	R ₉₉	_
Higgs	125 GeV/c ²	10 ¹¹ kg	10 ⁻¹⁵ meters	Need very light scalar to model SgA*
Pion	140 MeV/c ²	10 ¹⁴ kg	10 ⁻¹³ meters	
Axion	10 ⁻⁵ eV/c ²	10 ²⁷ kg	1 meter	
Dilaton	10 ⁻¹⁰ eV/c ²	10 ³² kg	100 km	

R₉₉: radius in which 99% of the mass is contained - numerics!

For spherically symmetric, static space-times:

a) test particle motion is planar — restrict to equatorial plane $\theta = \pi/2$

b) constants of motion: energy E and angular momentum L

$$E \sim g_{tt} \frac{dt}{d\tau} \qquad L \sim g_{\phi\phi} \frac{d\phi}{d\tau}$$

Bound orbit of a massive test particle

Diemer, Eilers, BH, Schaffer, Toma, Phys. Rev. D88 (2013)

Escape orbit of a massive test particle

Diemer, Eilers, BH, Schaffer, Toma, Phys. Rev. D88 (2013)

Last stable (nearly) circular orbit

Diemer, Eilers, BH, Schaffer, Toma, Phys. Rev. D88 (2013)

length scales measured in units of 1/(boson mass)

Escape orbit of massless test particle

Massless test particle can enter into & exist from region beyond assumed Schwarzschild radius

Compare to observation of emission of **radio waves** (1.3 mm) from beyond assumed apparent horizon of SgA*

> Doeleman, Weintroub, Rogers, Plambeck, Freund, Tilanus, Friberg, Ziurys et al. *Nature 455 (2008)*

Diemer, Eilers, BH, Schaffer, Toma, Phys. Rev. D88 (2013)

Conclusions...

... & Outlook

Boson stars...

... are a (not yet) excluded alternative to supermassive black holes

Objects with "hard core" ruled out (c.f. Broderick, Narayan, Astrophy. J. 638 (2006))

- ... are well motivated since at least one fundamental scalar field seems to exist in nature (Higgs) – maybe more (Inflation??)
- ... are highly relativistic and could hence be used as toy models for very compact objects, e.g. neutron stars

We have studied the motion of test particles in the space-time of an uncharged, spherically symmetric boson star

Compatible with observational data

Need data of relativistic signature of gravitational field of SgA*

perihelion shift, light deflection ...

... then boson stars can be distinguished from black holes

In the meantime ...

... use test particles to describe formation of accretion discs

(c.f. Tejeda, Taylor, Miller, Mont. Not. R. Astron. Soc. 419 (2012); ibid 429 (2012))

BUT: accretion discs consist of charged particles (plasma)

Charged test particles in charged boson star space-times Brihaye, Diemer, BH, Phys. Rev. D 89 (2014) $U(1) \text{ global} \rightarrow U(1) \text{ local}$

Q: charge of boson star

$$\frac{d^2 x^{\mu}}{d \tau^2} + \Gamma^{\mu}_{\rho\sigma} \frac{d x^{\rho}}{d \tau} \frac{d x^{\sigma}}{d \tau} = q F^{\mu\sigma} \frac{d x^{\rho}}{d \tau} g_{\rho}$$

 $\mathbf{\sigma}$

<u>See next talk by J. Riedel</u>

q: charge of test particle

And also: Boson stars in Anti-de Sitter space-time...

... are important in the study of non-linear instability of Anti-de Sitter

Thanks to my collaborators

Yves Brihaye	Université de Mons, Belgium		
Valeria Diemer	University of Oldenburg, Germany		
Keno Eilers	University of Oldenburg, Germany		
Isabell Schaffer	University of Oldenburg, Germany		
Catalin Toma	Jacobs University Bremen, German		

References

V. Diemer, K. Eilers, BH, I. Schaffer, C. Toma, *Phys. Rev. D* 88 (2013) 044025
Y. Brihaye, V. Diemer, BH, *Phys. Rev. D* 89 (2014) 084048

Thank you for your attention!