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Adolfo René Cisterna Roa

Physics and Mathematics Department, Universidad Austral de Chile

December 17, 2014
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Introduction

Horndeski theory

Is the most general scalar-tensor theory in four dimensions, on a
Lorentzian manifold and constructed out with a Levi-Civita
connection, which gives second order equations of motion for both
fields, the metric and the scalar degree of freedom.

A particular case

Kinetic terms with non-minimal couplings given by the Einstein tensor

H(φ, ρ)Gµν∇µ∇νφ→ Gµν∇µφ∇νφ (1)

with H(φ, ρ) an arbitrary function of the scalar field and its kinetic
term ρ = ∇µφ∇µφ.
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The action

Consider the following action

I[g, φ] =

∫ √
−g

[
κ (R− 2Λ)− 1

2
(αgµν − ηGµν)∇µφ∇νφ− 1

4
F 2

]
d4x (2)

α and η are two parameters and κ = 1
16πG .

From the scalar field equation we can see

∇µ [(αgµν − ηGµν)∇νφ] = 0 →
√
−g (αgµν − ηGµν)∇νφ = C0 (3)

In order to look for solutions we use the ansatz

ds2 = −F (r)dt2 +G(r)dr2 + r2dΣ2
K , (4)

dΣ2
K → 2-dimensional Euclidean space with K = 0,±1 and φ = φ (r).
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Uncharged AdS solution

Setting C0 = 0 we obtain the following spherically symmetric solution
(K=1)

F (r) =
r2

l2
+

1

α

√
αη

(
α+ Λη

α− Λη

)2 arctan
(√

αη
η r
)

r
− µ

r
+

3α+ Λη

α− Λη
, (5)

G(r) =
α2((α− ηΛ) r2 + 2η)2

(α− ηΛ)2(αr2 + η)2F (r)
(6)

ψ2(r) = −2r2κα2(α+ ηΛ)((α− ηΛ) r2 + 2η)2

η(α− ηΛ)2(αr2 + η)3F (r)
(7)

where l−2 = α
3η and µ is the only integration constant.
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Features

α and η must possess the same sign → the space-time is
asymptotically AdS.

A real salar field for r > rH implies (α+ ηΛ) < 0.

Under this conditions and for µ > 0 the solution describe a black
hole with a single non-degenerate horizon.

It is not possible to switch off the scalar field.

The scalar field vanishes at r = rH but it is not analytic there.

µ = 0 represents an AdS gravitational soliton. In fact

ds
2
soliton ∼

r→0
−

(
1 −

Λ

3
r
2

+ O(r
4
)

)
dt

2
+

(
1 −

3α + 2Λη

3η
r
2

+ O(r
4
)

)
dr

2
+ r

2
dΩ

2
(8)
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Thermodynamic

Using the Hawking and Page approach we need to compute

Ireg = IE [gµν , φ]− IE
[
g(0)µν , φ

(0)
]

(9)

To do so we use the redshift condition

β2F (r = rc, µ) = β20F (r = rc, µ = 0) (10)

where the euclidean period is

β = 4π

√
G′

F ′

∣∣∣∣∣
r=r+

=
4πη (α− ηΛ) r+

α
(
2η + (α− Λη) r2

+

) =

[√
3x+

4πl
+

√
3l20

2πl (l20 + l2)x+

]−1

.

(11)

Here l0 :=
√
− 3

Λ and x+ :=
√

α
η r+.
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Thermodynamic

Then

Ireg =
8π2κ

9

l2x+

l20
(
2l20 +

(
l2 + l20

)
x2+
) [3 (l2 − l20)2 arctan (x+)

+
(
l2 − 2l20

) (
l2 + l20

)
x3+ + 3

(
l40 − l4 + 2l2l20

)
x+
]
. (12)

Using the thermodynamical relations coming from the canonical
ensemble

Ireg = βF (13)

M =
∂Ireg
∂β

and S = β
∂Ireg
∂β

− Ireg (14)

the entropy reads

S =
8π2l2κx2

+

3l20

[(
l2 + l20

) (
l2 − 2l20

)
x4

+ + l20
(
l2 − l20

)
x2

+ + 2l40(
1 + x2

+

) (
2l20 − (l20 + l2)x2

+

) ]
. (15)
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Entropy analysis

S < 0

S > 0
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Region for positive entropy

Figure: The grey region corresponds to the region with positive entropy

in the plane ξ := l2

l20
− 1 vs x+, while the white regions stands for

negative entropy. For ξ > 1, requiring S > 0 implies an upper bound on
the black holes radius while for 0 < ξ < 1 there is a gap on the possible
radius of black holes with positive entropy.
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Phase transition analysis

Figure: The free energy for large (continuous) and small (dashed) black
holes in terms of T

T0
, for ξ = 0 (2.a), ξ = 0.5 (2.b), ξ = 0.9 (2.c) and

ξ = 1.1 (2.d). The x-axis do not start at T = 0.
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Charged Af solution

Considering α and Λ vanishing

I[g, φ] =

∫ √
−g
[
κR+

η

2
Gµν∇µφ∇νφ−

1

4
FµνF

µν

]
d4x (16)

The solution take the form

ds2 = −F (r)dt2 +
3(8κr2 − q2)2

r4
dr2

F (r)
+ r2dΩ2 (17)

with

F (r) = 192κ2 − µ

r
+ 48κ

q2

r2
− q4

r4

ψ(r)2 = −15

2

(8κr2 − q2)2

r6η

q2

F (r)

A0(r) =
√

15

(
q3

3r3
− 8κ

q

r

)
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The solution is asymptotically flat

ds2 = −
(

1− µ

r
+O(r−2)

)
dt2 +

(
1 +

µ

r
+O(r−2)

)
dr2 + r2dΩ2

For a non degenerated horizon r = rH the scalar field vanish at the
horizon, as in the previous cases, is not analytic there.

A real scalar field outside of the horizon implies

η < 0

For any value of the integration constant µ we have the curvature
singularities

r0 = 0 ,

r1 =

√
1

8κ
|q| .

The electric field goes to zero at infinity.

Taking the limit when q → 0 we obtain a trivial scalar field and then we
recover the Schwarzschild solution.
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Further remarks

Asymptotically AdS and asymptotically flat solutions were
described for a particular action contained in the Horndeski
theory.

The spherically symmetric uncharged AdS solution exhibits a
phase transition between thermal AdS and large black holes.

The entropy in this later case does not agree with Wald formula,
S = A

4 .

For static configurations the scalar field is regular at the horizon
but not analytic.
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