

AdS and Af Horndeski black hole solutions in four dimensions

Adolfo René Cisterna Roa

Physics and Mathematics Department, Universidad Austral de Chile

December 17, 2014

Outline

- Introduction
- AdS solution
- Af solution
- Further remarks

Introduction

Horndeski theory

Is the most general scalar-tensor theory in four dimensions, on a Lorentzian manifold and constructed out with a Levi-Civita connection, which gives second order equations of motion for both fields, the metric and the scalar degree of freedom.

A particular case

Kinetic terms with non-minimal couplings given by the Einstein tensor

$$H(\phi, \rho)G_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\phi \to G_{\mu\nu}\nabla^{\mu}\phi\nabla^{\nu}\phi \tag{1}$$

with $H(\phi, \rho)$ an arbitrary function of the scalar field and its kinetic term $\rho = \nabla_{\mu}\phi\nabla^{\mu}\phi$.

- Massimiliano Rinaldi: Black holes with non minimal derivative coupling, arXiv:1208.0103 $/\Lambda=0$
- Eugeny Babichev, Christos Charmousis: Dressing a black hole with a time-dependent Galileon, arXiv:1312.3204.
- Andres Anabalón, Adolfo Cisterna, Julio Oliva: Asymptotically locally AdS and flat black holes in Horndeski theory, arXiv:1312.3597.
- Masato Minamitsuji: Solutions in the scalar-tensor theory with non minimal derivative coupling, arXiv:1312.3759.
- Moises Bravo-Gaete, Mokhtar Hassaine: Lifshitz black holes with arbitrary dynamical exponent in Horndeski theory, arXiv:1312.7736.
- Adolfo Cisterna, Cristián Erices: Asymptotically locally AdS and flat black holes in the presence of an electric field in the Horndeski scenario, arXiv:1401.4479.
- Tsutomu Kobayashi (et al.), Sergey V. Sushkov (et al.), Thomas P. Sotiriou (et al.), Kaixi Feng (et al.).

The action

Consider the following action

$$I[g,\phi] = \int \sqrt{-g} \left[\kappa \left(R - 2\Lambda \right) - \frac{1}{2} \left(\alpha g_{\mu\nu} - \eta G_{\mu\nu} \right) \nabla^{\mu} \phi \nabla^{\nu} \phi - \frac{1}{4} F^2 \right] d^4 x \quad (2)$$

 α and η are two parameters and $\kappa = \frac{1}{16\pi G}$.

From the scalar field equation we can see

$$\nabla_{\mu} \left[\left(\alpha g^{\mu\nu} - \eta G^{\mu\nu} \right) \nabla_{\nu} \phi \right] = 0 \quad \to \sqrt{-g} \left(\alpha g^{\mu\nu} - \eta G^{\mu\nu} \right) \nabla_{\nu} \phi = C_0 \tag{3}$$

In order to look for solutions we use the ansatz

$$ds^{2} = -F(r)dt^{2} + G(r)dr^{2} + r^{2}d\Sigma_{K}^{2}, \qquad (4)$$

 $d\Sigma_{K}^{2} \rightarrow 2$ -dimensional Euclidean space with $K=0,\pm 1$ and $\phi=\phi\left(r\right)$.

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶ ■ めの@

Uncharged AdS solution

Setting $C_0 = 0$ we obtain the following spherically symmetric solution (K=1)

$$F(r) = \frac{r^2}{l^2} + \frac{1}{\alpha} \sqrt{\alpha \eta} \left(\frac{\alpha + \Lambda \eta}{\alpha - \Lambda \eta} \right)^2 \frac{\arctan\left(\frac{\sqrt{\alpha \eta}}{\eta}r\right)}{r} - \frac{\mu}{r} + \frac{3\alpha + \Lambda \eta}{\alpha - \Lambda \eta} , \quad (5)$$

$$G(r) = \frac{\alpha^2((\alpha - \eta \Lambda) r^2 + 2\eta)^2}{(\alpha - \eta \Lambda)^2(\alpha r^2 + \eta)^2 F(r)}$$
(6)

$$\psi^{2}(r) = -\frac{2r^{2}\kappa\alpha^{2}(\alpha + \eta\Lambda)((\alpha - \eta\Lambda)r^{2} + 2\eta)^{2}}{\eta(\alpha - \eta\Lambda)^{2}(\alpha r^{2} + \eta)^{3}F(r)}$$
(7)

where $l^{-2} = \frac{\alpha}{3\eta}$ and μ is the only integration constant.

Features

- α and η must possess the same sign \rightarrow the space-time is asymptotically AdS.
- A real salar field for $r > r_H$ implies $(\alpha + \eta \Lambda) < 0$.
- Under this conditions and for $\mu > 0$ the solution describe a black hole with a single non-degenerate horizon.
- It is not possible to switch off the scalar field.
- The scalar field vanishes at $r = r_H$ but it is not analytic there.
- $\mu = 0$ represents an AdS gravitational soliton. In fact

$$ds^2_{soliton} \underset{r \to 0}{\sim} - \left(1 - \frac{\Lambda}{3} r^2 + O(r^4)\right) dt^2 + \left(1 - \frac{3\alpha + 2\Lambda\eta}{3\eta} r^2 + O(r^4)\right) dr^2 + r^2 d\Omega^2 \eqno(8)$$

Thermodynamic

Using the Hawking and Page approach we need to compute

$$I_{reg} = I_E [g_{\mu\nu}, \phi] - I_E \left[g_{\mu\nu}^{(0)}, \phi^{(0)} \right]$$
 (9)

To do so we use the redshift condition

$$\beta^2 F(r = r_c, \mu) = \beta_0^2 F(r = r_c, \mu = 0)$$
(10)

where the euclidean period is

$$\beta = 4\pi \sqrt{\frac{G'}{F'}} \bigg|_{r=r_{+}} = \frac{4\pi \eta (\alpha - \eta \Lambda) r_{+}}{\alpha (2\eta + (\alpha - \Lambda \eta) r_{+}^{2})} = \left[\frac{\sqrt{3}x_{+}}{4\pi l} + \frac{\sqrt{3}l_{0}^{2}}{2\pi l (l_{0}^{2} + l^{2}) x_{+}} \right]^{-1}.$$
(11)

Here $l_0 := \sqrt{-\frac{3}{\Lambda}}$ and $x_+ := \sqrt{\frac{\alpha}{\eta}} r_+$.

4 D > 4 A > 4 B > 4 B > B 9 Q A

Thermodynamic

Then

$$I_{reg} = \frac{8\pi^2 \kappa}{9} \frac{l^2 x_+}{l_0^2 \left(2l_0^2 + \left(l^2 + l_0^2\right) x_+^2\right)} \left[3 \left(l^2 - l_0^2\right)^2 \arctan\left(x_+\right) + \left(l^2 - 2l_0^2\right) \left(l^2 + l_0^2\right) x_+^3 + 3 \left(l_0^4 - l^4 + 2l^2 l_0^2\right) x_+\right] . \tag{12}$$

Using the thermodynamical relations coming from the canonical ensemble

$$I_{reg} = \beta F \tag{13}$$

$$M = \frac{\partial I_{reg}}{\partial \beta} \text{ and } S = \beta \frac{\partial I_{reg}}{\partial \beta} - I_{reg}$$
 (14)

the entropy reads

$$S = \frac{8\pi^2 l^2 \kappa x_+^2}{3l_0^2} \left[\frac{\left(l^2 + l_0^2\right) \left(l^2 - 2l_0^2\right) x_+^4 + l_0^2 \left(l^2 - l_0^2\right) x_+^2 + 2l_0^4}{\left(1 + x_+^2\right) \left(2l_0^2 - \left(l_0^2 + l^2\right) x_+^2\right)} \right]. \tag{15}$$

Entropy analysis

Figure: The grey region corresponds to the region with positive entropy in the plane $\xi := \frac{l^2}{l_0^2} - 1$ vs x_+ , while the white regions stands for negative entropy. For $\xi > 1$, requiring S > 0 implies an upper bound on the black holes radius while for $0 < \xi < 1$ there is a gap on the possible radius of black holes with positive entropy.

Phase transition analysis

Figure: The free energy for large (continuous) and small (dashed) black holes in terms of $\frac{T}{T_0}$, for $\xi = 0$ (2.a), $\xi = 0.5$ (2.b), $\xi = 0.9$ (2.c) and $\xi = 1.1$ (2.d). The x-axis do not start at T = 0.

Charged Af solution

Considering α and Λ vanishing

$$I[g,\phi] = \int \sqrt{-g} \left[\kappa R + \frac{\eta}{2} G_{\mu\nu} \nabla^{\mu} \phi \nabla^{\nu} \phi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right] d^4x \tag{16}$$

The solution take the form

$$ds^{2} = -F(r)dt^{2} + \frac{3(8\kappa r^{2} - q^{2})^{2}}{r^{4}} \frac{dr^{2}}{F(r)} + r^{2}d\Omega^{2}$$
(17)

with

$$F(r) = 192\kappa^2 - \frac{\mu}{r} + 48\kappa \frac{q^2}{r^2} - \frac{q^4}{r^4}$$
$$\psi(r)^2 = -\frac{15}{2} \frac{(8\kappa r^2 - q^2)^2}{r^6 \eta} \frac{q^2}{F(r)}$$
$$A_0(r) = \sqrt{15} \left(\frac{q^3}{3r^3} - 8\kappa \frac{q}{r}\right)$$

• The solution is asymptotically flat

$$ds^2 = -\left(1 - \frac{\mu}{r} + O(r^{-2})\right)dt^2 + \left(1 + \frac{\mu}{r} + O(r^{-2})\right)dr^2 + r^2d\Omega^2$$

- For a non degenerated horizon $r = r_H$ the scalar field vanish at the horizon, as in the previous cases, is not analytic there.
- A real scalar field outside of the horizon implies

$$\eta < 0$$

• For any value of the integration constant μ we have the curvature singularities

$$r_0 = 0 ,$$

$$r_1 = \sqrt{\frac{1}{8\kappa}} |q| .$$

- The electric field goes to zero at infinity.
- Taking the limit when $q \to 0$ we obtain a trivial scalar field and then we recover the Schwarzschild solution.

Further remarks

- Asymptotically AdS and asymptotically flat solutions were described for a particular action contained in the Horndeski theory.
- The spherically symmetric uncharged AdS solution exhibits a phase transition between thermal AdS and large black holes.
- The entropy in this later case does not agree with Wald formula, $S = \frac{A}{4}$.
- For static configurations the scalar field is regular at the horizon but not analytic.

Muito obrigado