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Wormholes – bridges between universes

ds2 = −Q2(r)dt2 + dr2 + R2(r)(dϑ2 + sin2 ϑdϕ2),
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Gµν = 8πGTµν ⇒ ρ+ p < 0, p < 0 ⇒ violation of the energy
conditions ⇒ vacuum polarization, phantom fields, higher
derivative gravity, Gauss-Bonnet, branworld gravity, non-minimal
coulings, Horndeski, Galileon ⇒ Massive gravity.



Massive gravity

Non-linear extension of the linear Pauli-Fierz theory of massive
gravitons /1939/.

Non-unique, generaically propagates 6 DoF,

6 = 5 graviton polarizations + 1 Boulware-Deser ghost

The ghost has a negative kinetic energy ⇒ instability /1972/.

There is a unique massive gravity theory which propagates only 5
DoF /de Rahm, Gabadadze, Tolley 2010/. The theory admits

self-accelerating cosmologies

black holes

Gµν = m2Tµν(g , f ) where Tµν(g , f ) does not satisfy the local
energy conditions. This suggests that wormholes could exist.
This risks to invalidate the theory.



Ghost-free bigravity – two dynamical metrics gµν and fµν.
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√
gµαfαν .
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A massive + a massless graviton = 7 DoF.



Reduction to the S-sector

ds2g = −Q2dt2 +
R ′2

N2
dr2 + R2dΩ2

ds2f = −q2dt2 +
U ′2

Y 2
dr2 + U2dΩ2

Q,N,R , q,Y ,U depend on r , one can impose 1 gauge condition.
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Equations

Three coupled ODEs

N ′ = DN(N,Y ,U,R),

Y ′ = DY (N,Y ,U,R), (1)

U ′ = DU(N,Y ,U,R),

where R is subject to gauge-fixing, plus one extra ODE,

Q ′ =
1

2
F (N,Y ,U,R)Q,

plus an algebraic constraint

q = Σ(N,Y ,R ,U)Q.

Eqs.(1) were studied in the black hole context, their boundary
conditions are the same for black holes and for wormholes.



Black holes versus wormholes in Schwarzschild gauge

ds2 = −Q2dt2 +
dR2

N2
+ R2dΩ2

black holes: for R = h > 0 (horizon) both Q2 and N2 vanish,

Q2 ∝ N2 ∝ ε for R = h + ε

wormholes: for R = h > 0 (neck) only N2 vanishes,

Q2 = O(1), N2 ∝ ε for R = h + ε

Passing to r =
∫ R

h
dR/N gives the standard wormhole form

ds2 = −Q2dt2 + dr2 + R2dΩ2

with R = h+O(r2) and Q = Q(0) +O(r2).



Boundary conditions

N ′ = DN(N,Y ,U,R),

Y ′ = DY (N,Y ,U,R), (2)

U ′ = DU(N,Y ,U,R),

where for R = h > 0 one has

N = Y = 0, U = σ (3)

Solutions are labeled by h and by σ. They determine

(Q2)′ = F (N,Y ,U,R)Q2.

For generic h, σ solutions of (2,3) the function F has a pole at
R = h ⇒ Q2 vanishes ⇒ black holes.
For special h, σ there are solutions of (2,3) for which F is finite at
R = h ⇒ Q2 is also finite ⇒ wormholes.



Black holes
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Exist for generic h, σ, approach AdS: N0,Q0,Y0, q0 correspond to
the AdS solution. M.S.V., Phys.Rev. D85 (2012) 124043

For specially fine-tuned h, σ there are asymptotically flat black
holes. R.Brito, V.Cardoso, P.Pani, Phys.Rev. D88 (2013) 064006

A different fine-tunung of h, σ gives wormholes.



Wormholes – local solution

ds2g = −Q2dt2 + dr2 + R2dΩ2

ds2f = −q2dt2 +
U ′2

Y 2
dr2 + U2dΩ2

Y = Y1r + Y3r
3 + . . . Q = Q0 + Q2r

2 + . . . R = h+ R2r
2 + . . .

q = q0 + q2r
2 + . . . U = σh + U2r

2 + . . .

Expanding the field equations gives in the leading order

(

κ1P0 −
1

h2

)

Q0 + κ1P1 q0 = 0,

(

κ2P2 −
1

h2

)

q0 + κ2P1Q0 = 0,

with Pm = bm + 2bm+1σ + bm+2 σ
2 . To have non-zero Q0, q0, the

determinant of this system must vanish. This gives



Master condition
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– an algebraic equation for σ. A real solution exists if h > 1/
√
3

(in 1/m units) so that the wormhole throat is cosmologically large.
One then determines the lowest expansion coefficients
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. The local solution is extended numerically.



Wormholes – global solutions
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Solutions for κ1 = 0.688, κ2 = 0.312, bk = bk(c3, c4), c3 = 3,
c4 = −6, for the neck radius h = 2.2. Here σ = 0.444 and N = R ′.



Asymptotic behavior

For R → ∞ solutions approach the AdS solution, ds2f = λ2ds2g
where

ds2g = −Q2dt2 +
dR2

N2
+ R2dΩ2

with

N2 → N2
0 = 1− Λr2

3

and Q2 → const × N2
0 . One has for large R

N2 = N2
0 ×

(

1 +
C

R3
+

A

R
√
R

cos (ω ln(R) + ϕ)

)

C -term is the Newtonian tail, the A-term is the effect of the
massive mode – scalar polarization of the massive graviton.
Oscillations: the massive graviton becomes a tachyon, with

m2
FP =

(κ2
λ

+ κ1λ
)

(b1 + 2b2λ+ b3λ
2) < 0



Conclusions

The ghost-free bigravity theory admits solutions for which the
f-metric can be singular, but the g-metric describes globally
regular wormholes.

The wormholes interpolate between two AdS spaces.

The wormhole throat is cosmologically large (could we live
inside it ?)

Fields approach the tachyon phase for r → ±∞ but tachyons
belong to unphysical sectors ⇒ wormholes should be
disregarded as unphysical solutions.

However, they may have a holographic interpretation.


