Black ringoids: new higher dimensional black objects with non-spherical horizon topology

Eugen Radu

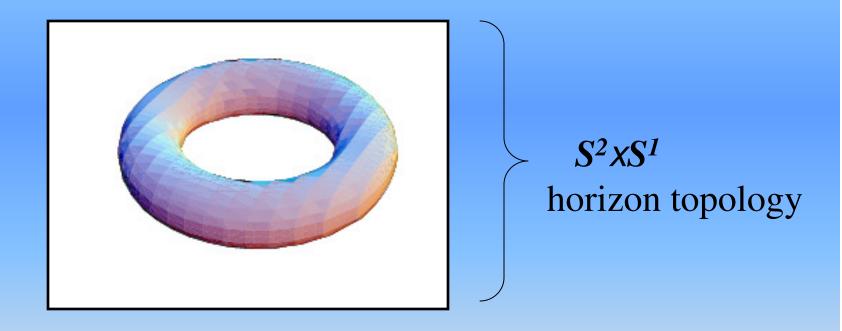
Physics Department, Aveiro University

based on arXiv:1410.0581 -- work done together with B. Kleihaus and J. Kunz (Oldenburg University, Germany)

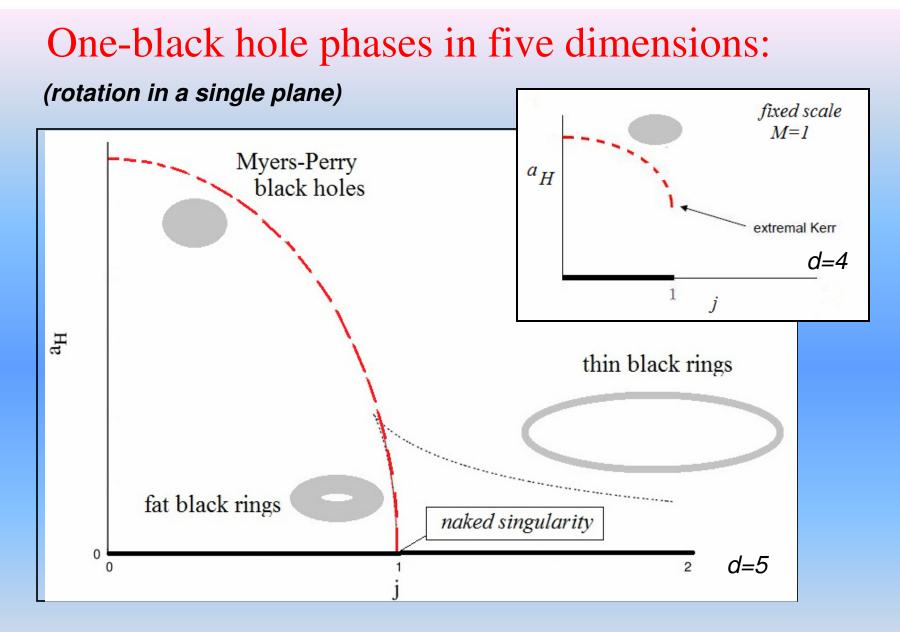
Black Holes in higher dimensions *d>4:*

(asymptotically flat +vacuum+ single black objects)

- important field of research
- rapid progress following the discovery of the *d=5 Black Ring*

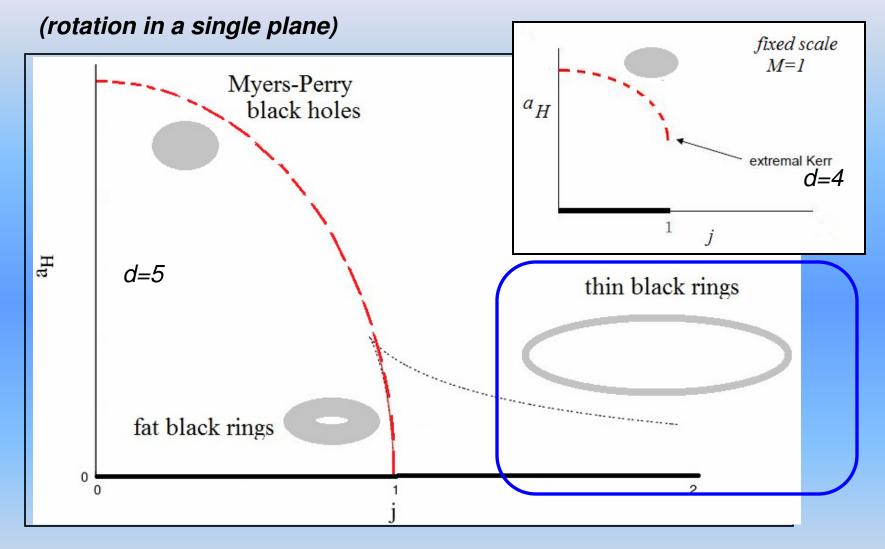


- <u>exact solution</u>!
- has led to a reconsideration of a number of basic results in black hole physics



three different black holes with the same value of (M,J)
non uniqueness!

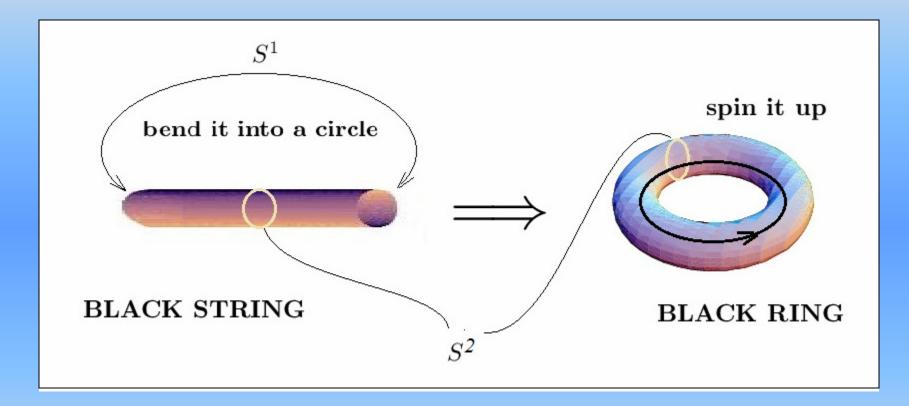
One-black hole phases in five dimensions:



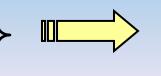
three different black holes with the same value of (M,J)
non uniqueness!

thin black rings: heuristic construction

<u>Schwarzschild black hole</u> in 4-dimensions \Box <u>black string</u> in 5-dimensions



- there is an <u>explicit</u> realisation
- the same construction holds for d>5: $S^{d-3}xS^1$
- predicts also other horizon topologies



also other arguments: <u>a large spectrum of d>5 exotic BHs</u>

however, <u>no exact solutions</u>:

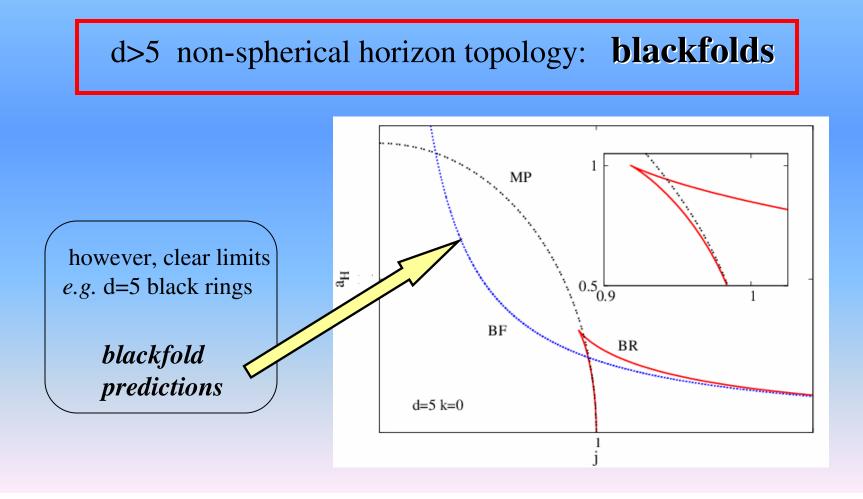
- only the Myers-Perry BHs are known in closed form
- the d=4,5 formalism+generation techniques do not work for d>5

d>5 non-spherical horizon topology
 all knowledge: from blackfolds

also other arguments: <u>a large spectrum of d>5 exotic BHs</u>

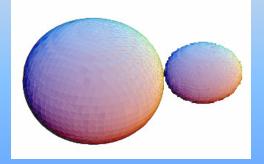
however, <u>no exact solutions</u>:

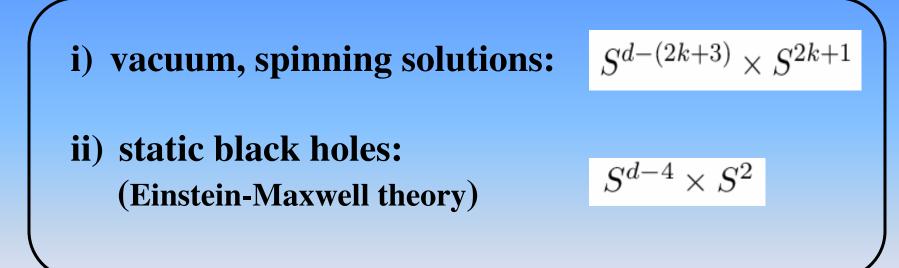
- only the Myers-Perry BHs are known in closed form
- the d=4,5 formalism+generation techniques do not work for d>5



our proposal: NON-PERTURBATIVE NUMERICAL APPROACH

general framework for black holes with S^p xS^q horizon topology





what one can study: $S^{d-(2k+3)} \times S^{2k+1}$

	spherical horizon	black rings	black ringoids		
	MP/'pinched'	k = 0	k = 1	k = 2	k = 3
d = 5	S^3	$\mathbf{S}^2 imes \mathbf{S}^1$			
d = 6	S^4	$S^3 imes S^1$			
d = 7	S^5	$S^4 imes S^1$	${f S}^2 imes {f S}^3$		
d = 8	S^6	$S^5 imes S^1$	$S^3 \times S^3$		
d = 9	S^7	$S^6 imes S^1$	$S^4 \times S^3$	${f S}^2 imes {f S}^5$	
d = 10	S^8	$S^7 imes S^1$	$S^5 imes S^3$	$S^3 imes S^5$	
d = 11	S^9	$S^8 \times S^1$	$S^6 imes S^3$	$S^4 \times S^5$	${f S}^2 imes {f S}^7$

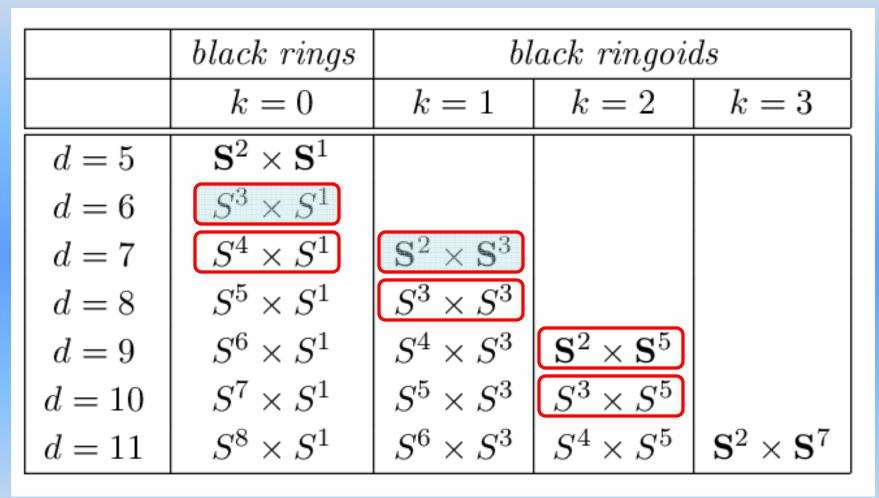
what one can study: $S^{d-(2k+3)} \times (S^{2k+1})$

	spherical horizon	black rings	black ringoids		
	MP/'pinched'	k = 0	k = 1	k = 2	k = 3
d = 5	S^3	$\mathbf{S}^2 imes \mathbf{S}^1$			
d = 6	S^4	$S^3 imes S^1$			
d = 7	S^5	$S^4 imes S^1$	${f S}^2 imes {f S}^3$		
d = 8	S^6	$S^5 imes S^1$	$S^3 \times S^3$		
d = 9	S^7	$S^6 imes S^1$	$S^4 \times S^3$	${f S}^2 imes {f S}^5$	
d = 10	S^8	$S^7 imes S^1$	$S^5 \times S^3$	$S^3 \times S^5$	
d = 11	S^9	$S^8 imes S^1$	$S^6 \times S^3$	$S^4 \times S^5$	${f S}^2 imes {f S}^7$

regular solutions! (no (conical) singularities etc)

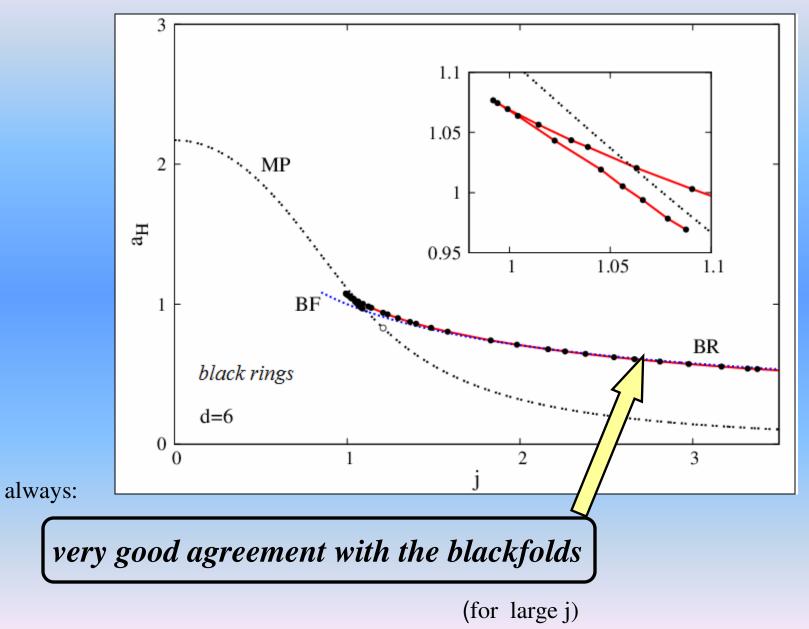
our results (i):

- cases we have considered so far:

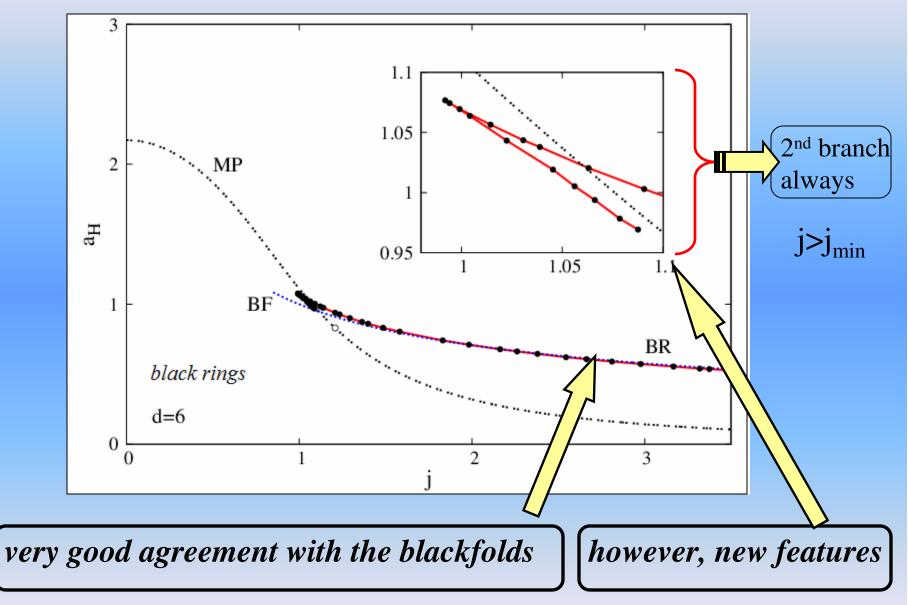


(details in *arXiv:1410.0581*)

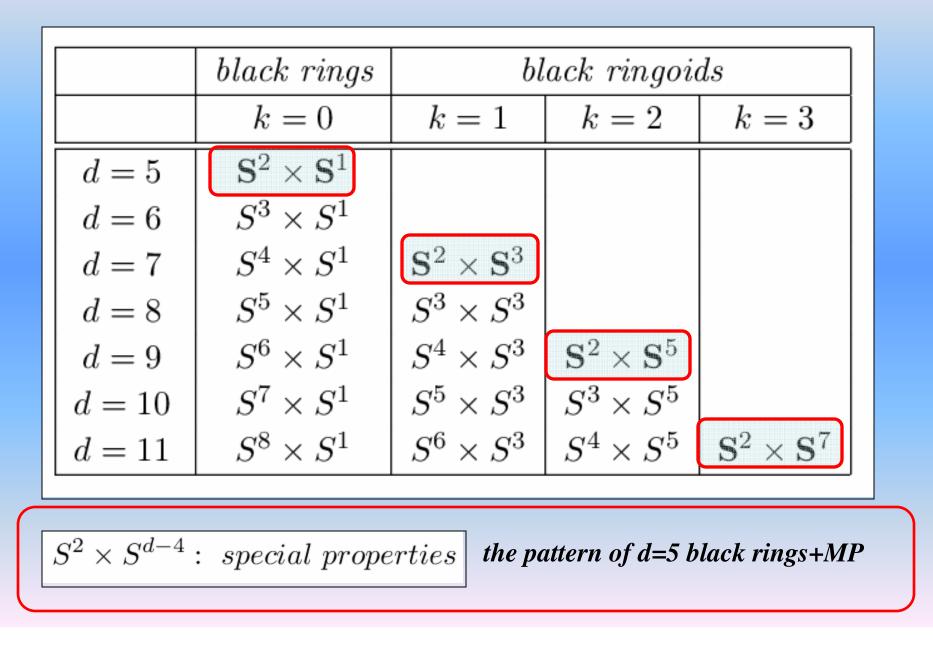
our results (ii):



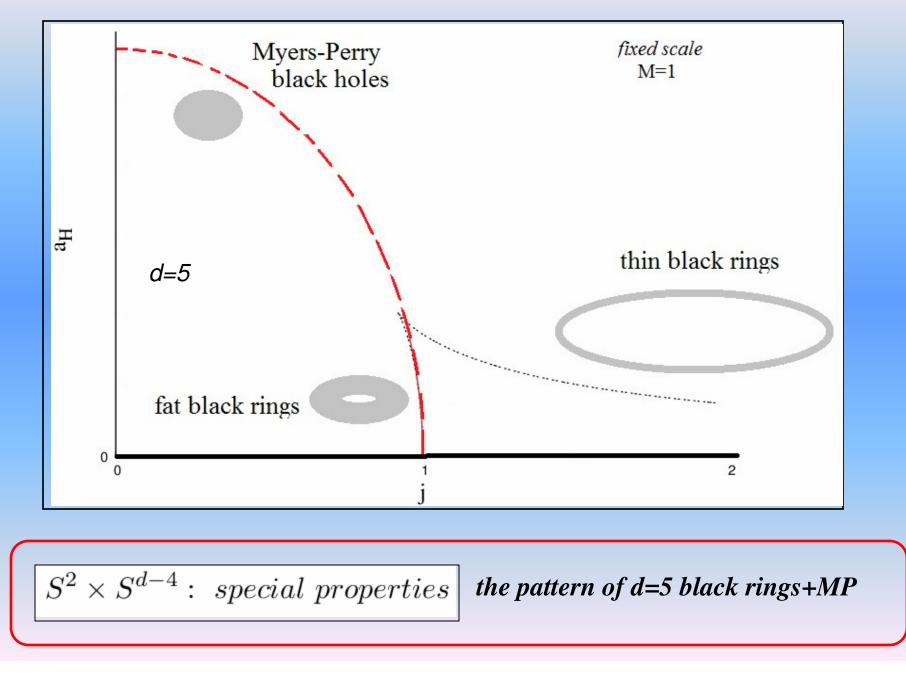
our results (ii):



our results (iii): emerging picture (+ Myers-Perry solutions)

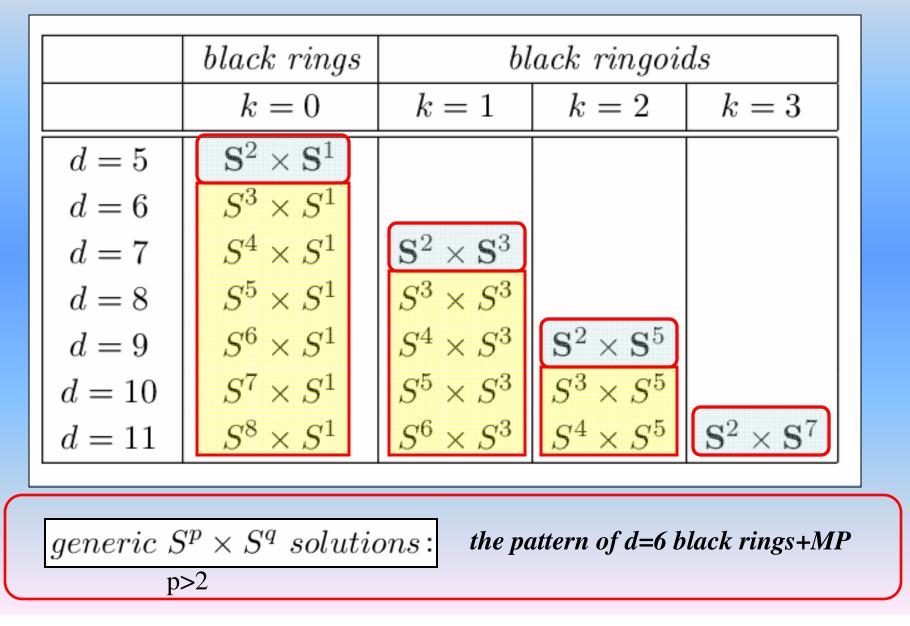


emerging picture:

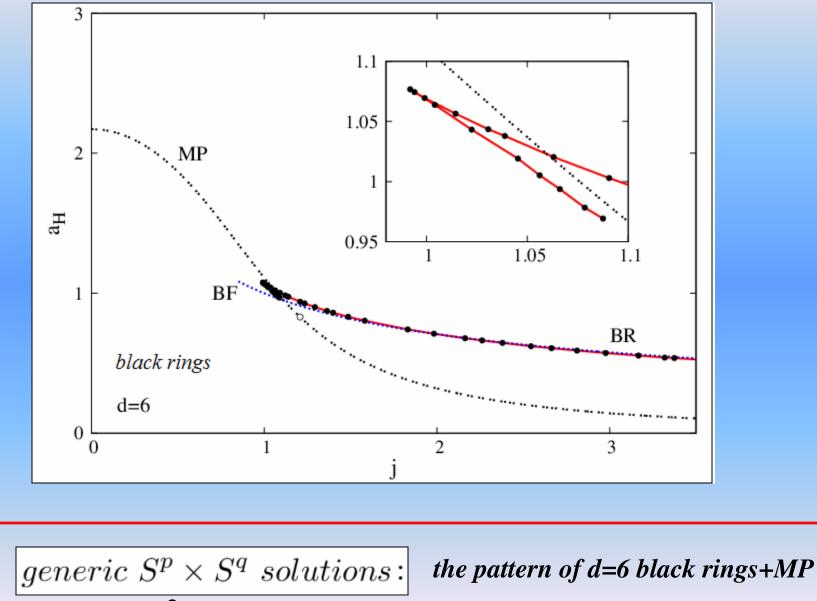


our results (iii):

emerging picture (+ *Myers-Perry solutions*)

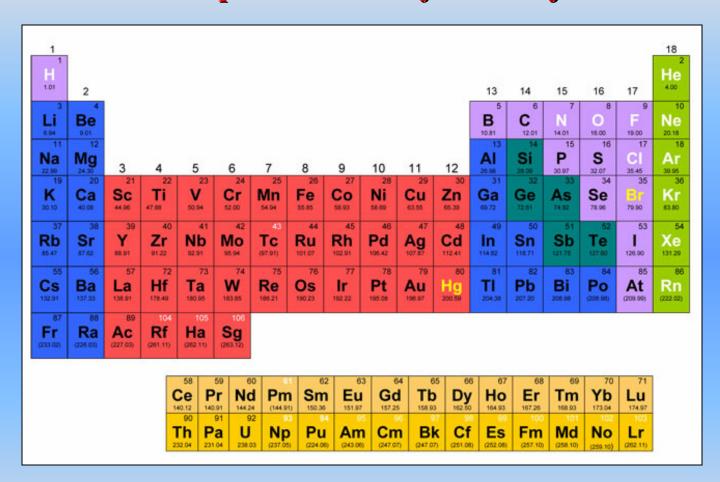


emerging picture:

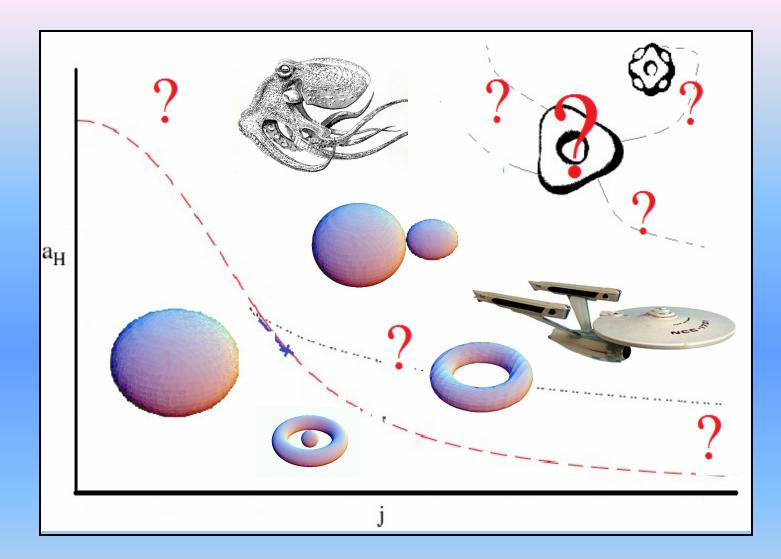


p>2

finally (speculation!): towards a periodic table of black objects?



a black holes classification based on a finite number of simple features ?



THANK YOU VERY MUCH FOR YOUR ATTENTION!