Bouncing shells in Anti de Sitter space

Alexandre Serantes

Universidade de Santiago de Compostela

alexandre.serantes@rai.usc.es

VII BHW, December 17, 2014

Alexandre Serantes (USC)

Bouncing shells in Anti de Sitter space VII BHW, December 17, 2014 1 / 16

- ∢ ≣ →

-

æ

- Gravitational collapse process on $AdS_{d+2} \sim$ thermalization of large N, large λ $CFT_d + 1$
- Look for model that allows explicit and straightforward calculations: thin shell spacetimes
- Usually considered in Poincare-AdS, mostly Vaidya spacetimes [Abajo-Arrastia, Aparicio, Lopez; Valasubramaian, Bernamonti, de Boer, Copland, Craps, Keski-Vakkuri, Muller, Schafer, Shigemori, Staessens; Allais, Tonni; Keranen, Nishimura, Stricker, Taanila, Vuorinen and many more...]
- What happens if the field theory lives on a compact space?

What happens in global AdS?

- Global AdS-Vaidya describes direct black hole formation
- More general matter models lead to different behavior Example: massless scalar field
 - Localized scalar pulse can bounce back-and-forth between r = 0 and $r = \infty$ several times before collapsing [Bizon, Rostworowski]
 - There even exist exactly periodic solutions that never collapse [Maliborski, Rostworowski]
- Finite size systems may exhibit instrinsic quantum periodicity: bouncing ~ revivaling + relaxation?

The question I will try to answer...

Can we find exactly periodic solutions in other matter models?

A B F A B F

The problem

- Simplifying assumption (i): *thin shell approximation*
- Simplifying assumption (ii): SO(d) symmetric thin shell
- Simplifying assumption (iii): perfect fluid shell

$$S_{ab} = \sigma u_a u_b + p (h_{ab} + u_a u_b)$$
$$p = \frac{\alpha}{d} \sigma$$

- Schwarzschild coordinates $(t_{\pm}, r, \theta_1 \dots \theta_d)$ outside the shell
- Comoving coordinates $(\tau, \theta_1 \dots \theta_d)$ on the shell worldvolume
- Line element

$$ds_{\pm}^{2} = -f_{\pm}(r)dt_{\pm}^{2} + f_{\pm}(r)^{-1}dr^{2} + r^{2}d\Omega_{d}^{2}$$
$$dh^{2} = -d\tau^{2} + r(\tau)^{2}d\Omega_{d}^{2}$$

$$f_{-}(r) = 1 + r^{2}$$

$$f_{+}(r) = 1 + r^{2} - \frac{m}{r^{d-1}}$$

How do we find the shell trajectory $r(\tau)$? Israel juction conditions

$$\begin{bmatrix} h_{ab} \end{bmatrix} = 0 \\ \begin{bmatrix} K_{ab} \end{bmatrix} = -8\pi G S_{ab}$$

Shell equation of motion

$$\dot{r}(\tau)^{2} + V(r(\tau)) = 0$$

$$V(r) = 1 + r^{2} - \frac{1}{2}mr^{1-d} - \frac{m^{2}}{4M^{2}}r^{2\alpha} - \frac{1}{4}M^{2}r^{-2(d-1+\alpha)}$$

• Shell rest energy $E = \sigma A = M A^{-d\alpha}$

Looking for oscillating trajectories

- Asymptotics of V: $V \to -\infty$ as $r \to 0$; $V \to \infty$ as $r \to \infty$
- Oscillating shell trajectories are confined in an intermediate radial region bounded by two zeros of the potental, such that V < 0 between them

Figure: Example of potential well for d = 3, $\alpha = 0.99$, m = 0.5, M = 0.2421

Alexandre Serantes (USC)

- Fix d, α and m, oscillating shells iff $M \in [M_I, M_u]$
 - $M = M_u$, local minimum of V touching the V = 0 axis (static shell)
 - $M = M_l$, local maximum of V touching the V = 0 axis (shell infalls below)

Figure: Potential for d = 3, $\alpha = 0.99$, m = 10, $M_u = 4.863$ -red- and $M_l = 4.823$ -blue-

• We have to solve the system of equations

$$V(d, \alpha, m, M, r) = \partial_r V(d, \alpha, m, M, r) = 0$$

The allowed M-region for oscillating solutions has an implicit analytic expression

$$r = r(d, \alpha, m, M)$$

$$m = \frac{4r^{d-1}(\alpha - (1 - \alpha)r^2)(d - 1 + \alpha + (d + \alpha)r^2)}{(d - 1 + 2\alpha)\sqrt{1 + r^2}}$$

$$M = \frac{2r^{d-1+\alpha}(\alpha - (1 - \alpha)r^2)}{(d - 1 + 2\alpha)\sqrt{1 + r^2}}$$

• As stated, $M(d, \alpha, m)$ has to branches

Figure: $M(d, \alpha, m)$ for $\alpha = 0.2, 0.5, 0.95$ in AdS_5 -black, brown and orange curves respectively-. All quantities are measured in units of $m_{max}(d, \alpha)$

Some properties for $AdS_{d+2}, d > 1$

- An oscillating shell never crosses its Schwarzschild radius r_h
- There is always a maximum allowed mass m_{max}(d, α) above which there are no oscillating solutions
- $m_{max}(d, \alpha)$ diverges as $\alpha \to 1$

$$m_{max}(d,\alpha) \sim (1-\alpha)^{\frac{1-d}{2}} + \dots$$

We can have oscillating solutions of arbitrary mass as long as the shell matter is sufficiently near conformality

• $m_{max}(d, \alpha)$ goes to zero as $\alpha \to 0$

$$m_{max}(d, \alpha) \sim \alpha^{\frac{d+3}{2}}$$

There are no pressureless oscillating solutions

Figure: For $\alpha = 0.99$, M(2, 0.99, m) -left, brown- versus M(1, 0.99, m) -right, orange-

- There are two different regimes separated by m = 1
- m > 1
 - There are still two *M* branches; for *M* < *M_l*(*α*, *m*) there are no oscillating solutions
 - There is still a maximal mass $m_{max}(\alpha)$ that an oscillating solution can have

$$m_{\max}(\alpha) = \frac{2}{1 + \sqrt{1 - \alpha^2}}$$

Again, there are no oscillating pressureless solutions Now, *m* does not diverge as $\alpha \rightarrow 1$: there is an absolute upper bound on the mass of an oscillating shell

- m < 1
 - There is just one *M* branch; for *M* < *M_u*(*α*, *m*) there are always oscillating solutions
 - These solutions are protected against forming naked singularities

No naked singularities in AdS_3

• The potential barrier that keeps the shell away from r = 0 approaches the origin, but it does not vanish at any finite *m*

$$r_{barrier} \sim \left(rac{M}{\sqrt{m}}
ight)^{rac{1}{lpha}} \qquad V_{barrier} \sim 1-m$$

Figure: Left: for $\alpha = 0.99$ and m = 0.8, potential V at M = 0.3899, which corresponds to a static shell located at $r_u = 7.699$. Right: evolution of the potential barrier for the bouncing shell at different M

Several simplifying assumptions... is the model too simple?

- Do they still exist for other equations of state p = p(σ)?
- Are these solutions stable?
 - Perturbatively: non spherical deformations and/or coupling to external fields...

These may lead to radiation emission by the shell, energy loss and eventual collapse to form a black hole

• Non-perturbatively: quantum tunneling This effect should be relevant on a time scale parametrically larger than the one associated to perturbative effects

Is the collapse time t_c that the shell needs to form a black hole larger than the period t_r of the shell?

Thanks for your time!

э