Gravitational collapse with rotating thin shells and cosmic censorship

Jorge V. Rocha (Centra-IST, U.Lisboa)

- JVR and R. Santarelli, Phys. Rev. D89, 064065 (2014) [1402.4840 [gr-qc]]
- Ongoing work
Introduction: **Black holes and gravitational collapse**

- There is overwhelming observational evidence that black holes (BHs) exist.

 [M. Begelman, *Science* 300 (2003)]
Introduction: **Black holes and gravitational collapse**

- There is overwhelming observational evidence that black holes (BHs) exist.
 [M. Begelman, Science 300 (2003)]

- BHs are theoretically predicted as the endpoint of gravitational collapse of sufficiently massive stars.
 [Oppenheimer-Snyder (1939)]
Introduction: Black holes and gravitational collapse

- There is overwhelming observational evidence that black holes (BHs) exist. [M. Begelman, Science 300 (2003)]

- BHs are theoretically predicted as the endpoint of gravitational collapse of sufficiently massive stars. [Oppenheimer-Snyder (1939)]

- The vast majority of celestial objects are rotating. Black holes are no exception.
Introduction: Black holes and gravitational collapse

- There is overwhelming observational evidence that black holes (BHs) exist. [M. Begelman, Science 300 (2003)]

- BHs are theoretically predicted as the endpoint of gravitational collapse of sufficiently massive stars. [Oppenheimer-Snyder (1939)]

- The vast majority of celestial objects are rotating. Black holes are no exception.
Introduction: Gravitational collapse with rotation

- Good understanding of rotating but stationary BHs.
Introduction: Gravitational collapse with rotation

- Good understanding of rotating but stationary BHs.
- Poor control over highly dynamical scenarios.

In particular, little is known about **gravitational collapse with rotation**.

[non-spherical gravitational collapse]
Introduction: Gravitational collapse with rotation

✦ Good understanding of rotating but stationary BHs.

✦ Poor control over highly dynamical scenarios.

In particular, little is known about gravitational collapse with rotation.

Why should we care?
Introduction: Gravitational collapse with rotation

✦ Good understanding of rotating but stationary BHs.

✦ Poor control over highly dynamical scenarios.

In particular, little is known about gravitational collapse with rotation.

Why should we care?

1. realistic collapses should include rotation;
Introduction: Gravitational collapse with rotation

✧ Good understanding of rotating but stationary BHs.

✧ Poor control over highly dynamical scenarios.

In particular, little is known about gravitational collapse with rotation.

Why should we care?

1. realistic collapses should include rotation;
2. known ‘violations’ of the cosmic censorship conjecture (CCC) occur in non-rotating — thus non-generic — settings;
Introduction: Approaching the problem

- Advantage of non-rotating setups is their large amount of symmetry. Spherical symmetry reduces problem to 1+1 dims.
Introduction: Approaching the problem

- Advantage of non-rotating setups is their large amount of symmetry. Spherical symmetry reduces problem to 1+1 dims.

- ∃ a larger class of (rotating) BH spacetimes that are stationary and whose metric depends on a single radial coordinate:

 cohomogeneity-1 solutions
Introduction: Approaching the problem

- Advantage of non-rotating setups is their large amount of symmetry. Spherical symmetry reduces problem to 1+1 dims.

- A larger class of (rotating) BH spacetimes that are stationary and whose metric depends on a single radial coordinate:

 Cohomogeneity-1 solutions

 - Perturbative approach
 - Gravitational perturbations
 - [JVR, Santarelli, Delsate (2014)]
 - Exact approach
 - Darmois-Israel junction conditions
 - [Delsate, JVR, Santarelli (2014)]
Introduction: Approaching the problem

- Advantage of non-rotating setups is their large amount of symmetry. Spherical symmetry reduces problem to 1+1 dims.

- ∃ a larger class of (rotating) BH spacetimes that are stationary and whose metric depends on a single radial coordinate:
Introduction: Approaching the problem

✦ Advantage of non-rotating setups is their large amount of symmetry. Spherical symmetry reduces problem to 1 + 1 dims.

✦ ∃ a larger class of (rotating) BH spacetimes that are stationary and whose metric depends on a single radial coordinate:

- The price to pay for the convenience provided by cohomogeneity-1 spacetimes is the restriction to higher (odd) dimensions, \(D = 2N + 3 \) with \(N = 1, 2, 3, \ldots \)
Background: **Cohomogeneity-1 black holes**

- Myers-Perry(-AdS) BHs in $D=2N+3$ dims possess isometry group $\mathbb{R} \times U(1)^{N+1}$.

\[
M^\pm = A^{2N+1} 4\pi^{N+1} \left(N + 1 \right) M^\pm, J^\pm = A^{2N+1} 4\pi \left(N + 1 \right) M^\pm a^\pm.
\]
Background: **Cohomogeneity-1 black holes**

- Myers-Perry(-AdS) BHs in $D=2N+3$ dims possess isometry group $\mathbb{R} \times U(1)^{N+1}$.

- When all spin parameters are set equal, $a_i = a$, this symmetry is enhanced:

$$\mathbb{R} \times U(1)^{N+1} \rightarrow \mathbb{R} \times U(N+1)$$

and coordinates can be found that reflect this large amount of symmetry, such that the metric depends on just one (radial) coordinate.

Background: **Cohomogeneity-1 black holes**

- Myers-Perry(-AdS) BHs in $D=2N+3$ dims possess isometry group $\mathbb{R} \times U(1)^{N+1}$.

- When all spin parameters are set equal, $a_i = a$, this symmetry is enhanced:

 $$\mathbb{R} \times U(1)^{N+1} \rightarrow \mathbb{R} \times U(N+1)$$

 and coordinates can be found that reflect this large amount of symmetry, such that the metric depends on just one (radial) coordinate.

- Constant t and r sections are squashed $(2N+1)$-spheres.

- S^{2N+1} can be written as an S^1 bundle over CP^N.
Background: **Cohomogeneity-1 black holes**

- The metric for these cohomogeneity-1 BHs is

\[
ds^2 = g_{\mu\nu}dx^\mu dx^\nu = -f(r)^2 dt^2 + g(r)^2 dr^2 + r^2 \tilde{g}_{ab}dx^a dx^b + h(r)^2 [d\psi + A_a dx^a - \Omega(r) dt]^2
\]
The metric for these cohomogeneity-1 BHs is

\[
ds^2 = g_{\mu\nu}dx^\mu dx^\nu = -f(r)^2 dt^2 + g(r)^2 dr^2 + r^2 \tilde{g}_{ab} dx^a dx^b + h(r)^2 \left[d\psi + A_a dx^a - \Omega(r) dt \right]^2
\]

where

\[
g(r)^2 = \left(1 + \frac{r^2}{\ell^2} - \frac{2M\Xi}{r^{2N}} + \frac{2Ma^2}{r^{2N+2}} \right)^{-1},
\]

\[
f(r) = \frac{r}{g(r)h(r)},
\]

\[
h(r)^2 = r^2 \left(1 + \frac{2Ma^2}{r^{2N+2}} \right),
\]

\[
\Omega(r) = \frac{2Ma}{r^{2N}h(r)^2},
\]

\[
\Xi = 1 - \frac{a^2}{\ell^2}.
\]
Background: **Cohomogeneity-1 black holes**

- The metric for these cohomogeneity-1 BHs is

\[ds^2 = g_{\mu\nu}dx^\mu dx^\nu = -f(r)^2 dt^2 + g(r)^2 dr^2 + r^2 \hat{g}_{ab} dx^a dx^b + h(r)^2 [d\psi + A_a dx^a - \Omega(r) dt]^2 \]

where

\[
\begin{align*}
g(r)^2 &= \left(1 + \frac{r^2}{\ell^2} - \frac{2M \Xi}{r^{2N}} + \frac{2Ma^2}{r^{2N+2}}\right)^{-1}, \\
h(r)^2 &= r^2 \left(1 + \frac{2Ma^2}{r^{2N+2}}\right), \\
\Omega(r) &= \frac{2Ma}{r^{2N} h(r)^2}, \\
f(r) &= \frac{r}{g(r)h(r)}, \\
\Xi &= 1 - \frac{a^2}{\ell^2}.
\end{align*}
\]

\(\hat{g}_{ab} \) denotes the Fubini-Study metric on \(CP^N \) and \(A_a dx^a \) is its Kahler potential.

For \(N=1 \): \(\hat{g}_{ab} dx^a dx^b = \frac{1}{4} \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right) \), \(A = \frac{1}{2} \cos \theta \, d\phi \).
Background: Cohomogeneity-1 black holes

- The metric for these cohomogeneity-1 BHs is

\[ds^2 = g_{\mu\nu}dx^\mu dx^\nu = -f(r)^2dt^2 + g(r)^2dr^2 + r^2\hat{g}_{ab}dx^a dx^b + h(r)^2[d\psi + A_a dx^a - \Omega(r)dt]^2 \]

where

\[
\begin{align*}
 g(r)^2 &= \left(1 + \frac{r^2}{\ell^2} - \frac{2M\Xi}{r^{2N}} + \frac{2Ma^2}{r^{2N+2}}\right)^{-1}, \\
 f(r) &= \frac{r}{g(r)h(r)}, \\
 h(r)^2 &= r^2\left(1 + \frac{2Ma^2}{r^{2N+2}}\right), \\
 \Omega(r) &= \frac{2Ma}{r^{2N}h(r)^2}, \\
 \Xi &= 1 - \frac{a^2}{\ell^2}.
\end{align*}
\]

\(\hat{g}_{ab} \) denotes the Fubini-Study metric on \(CP^N \) and \(A_a dx^a \) is its Kahler potential.

For \(N=1 \):

\[\hat{g}_{ab}dx^a dx^b = \frac{1}{4} \left(d\theta^2 + \sin^2 \theta d\phi^2\right), \quad A = \frac{1}{2} \cos \theta d\phi. \]

- n.b. These solutions accommodate a non-vanishing cosmological constant:

\[R_{\mu\nu} = -(D-1)\ell^{-2}g_{\mu\nu} \]
Background: Thin shells in cohomogeneity-1 spacetimes

- The cohomogeneity-1 property allows an exact calculation, by ‘gluing’ an interior to an exterior geometry.

Background: Thin shells in cohomogeneity-1 spacetimes

- The cohomogeneity-1 property allows an exact calculation, by ‘gluing’ an interior to an exterior geometry.

- Take advantage of high degree of symmetry: consider shells that respect full set of spatial isometries. Focus on $N=1$, for simplicity.
Background: Thin shells in cohomogeneity-1 spacetimes

- The cohomogeneity-1 property allows an exact calculation, by ‘gluing’ an interior to an exterior geometry. [Boulware (1973)] [Crisóstomo-Olea (2004)] [Gao-Lemos (2008)]

- Take advantage of high degree of symmetry: consider shells that respect full set of spatial isometries. Focus on $N=1$, for simplicity.

- n.b. For test particles, the dynamics on the $CP^1\cong S^2$ and on the S^1 separate:

\[
\{r, \theta, \phi\} \quad \text{and} \quad \{r, \psi\}
\]

[JVR, Santarelli, Delsate (2014)]
Rotating thin shells: **Junction conditions**

- Use junction conditions along a timelike hypersurface, \(t = T(\tau), r = R(\tau) \):

\[
\begin{align*}
g^{(+)}_{ij} &= g^{(-)}_{ij} = g_{ij}, \\
(k^{(+)}_{ij} - k^{(-)}_{ij}) - g_{ij}(k^{(+)} - k^{(-)}) &= -8\pi G S_{ij}
\end{align*}
\]
Rotating thin shells: Junction conditions

- Use junction conditions along a timelike hypersurface, \(t = T(\tau), r = R(\tau) \):

 \[
 g_{ij}^{(+)} = g_{ij}^{(-)} = g_{ij},
 \]
 \[
 (k_{ij}^{(+)} - k_{ij}^{(-)}) - g_{ij}(k^{(+) - k^{(-)})} = -8\pi G S_{ij}
 \]

induced metric

extrinsic curvature

shell's stress-energy tensor
Rotating thin shells: Junction conditions

- Use junction conditions along a timelike hypersurface, \(t = T(\tau), r = R(\tau) \):

\[
\begin{align*}
\text{induced metric} & \quad \mathcal{g}_{ij}^{(+)} = \mathcal{g}_{ij}^{(-)} = \mathcal{g}_{ij}, \\
\text{extrinsic curvature} & \quad (k_{ij}^{(+)} - k_{ij}^{(-)}) - \mathcal{g}_{ij}(k^{(+)}) - k^{(-)} = -8\pi G S_{ij}
\end{align*}
\]

This formalism has been applied to rotating spacetimes in \((2+1)\) dims. [Mann-Oh-Park (2009)]
Rotating thin shells: Junction conditions

- Use junction conditions along a timelike hypersurface, \(t = T(\tau), r = R(\tau) \):

 \[
 g_{ij}^{(+)} = g_{ij}^{(-)} = g_{ij},
 \]

 \[
 (k_{ij}^{(+)} - k_{ij}^{(-)}) - g_{ij}(k_{ij}^{(+)} - k_{ij}^{(-)}) = -8\pi G S_{ij}
 \]

 This formalism has been applied to rotating spacetimes in \((2+1)\) dims. [Mann-Oh-Park (2009)]

- For \(D>3\), we get one additional constraint from the 1st junction condition:

 \[
 M_+ a_+^2 = M_- a_-^2 \quad \Rightarrow \quad h_+(R) = h_-(R) \equiv h(R)
 \]
Rotating thin shells: Junction conditions

- Use junction conditions along a timelike hypersurface, \(t = \mathcal{T}(\tau), r = \mathcal{R}(\tau) \):
 - induced metric: \(g_{ij}^{(+)} = g_{ij}^{(-)} \equiv g_{ij} \)
 - extrinsic curvature: \((k_{ij}^{(+)} - k_{ij}^{(-)}) - g_{ij}(k_{ij}^{(+)} - k_{ij}^{(-)}) = -8\pi G S_{ij} \)

This formalism has been applied to rotating spacetimes in \((2+1)\) dims. [Mann-Oh-Park (2009)]

- For \(D>3\), we get one additional constraint from the 1st junction condition:
 \[M_+ a_+^2 = M_- a_-^2 \quad \text{and} \quad h_+(\mathcal{R}) = h_-(\mathcal{R}) \equiv h(\mathcal{R}) \]

- The 2nd junction condition requires the shell stress-energy tensor to take the form of an imperfect fluid:
 \[S_{ij} = (\rho + P) u_i u_j + P g_{ij} + 2\varphi u_{(i} \xi_{j)} + \Delta P \mathcal{R}^2 \hat{g}_{ij} \]
Rotating thin shells: Junction conditions

- Use junction conditions along a timelike hypersurface, \(t = T(\tau), r = R(\tau) \):

 \[
 g^{(+)}_{ij} = g^{(-)}_{ij} \equiv g_{ij},
 \]
 induced metric

 \[
 (k^{(+)}_{ij} - k^{(-)}_{ij}) - g_{ij}(k^{(+)} - k^{(-)}) = -8\pi G S_{ij}
 \]
 extrinsic curvature

 This formalism has been applied to rotating spacetimes in \((2+1)\) dims. [Mann-Oh-Park (2009)]

- For \(D > 3 \), we get one additional constraint from the 1st junction condition:

 \[
 M_+ a_+^2 = M_- a_-^2 \rightarrow h_+(R) = h_-(R) \equiv h(R)
 \]

- The 2nd junction condition requires the shell stress-energy tensor to take the form of an imperfect fluid:

 \[
 S_{ij} = (\rho + P)u_i u_j + P g_{ij} + 2\varphi u_i \xi_j + \Delta P R^2 \hat{g}_{ij}
 \]

 energy density pressure intrinsic momentum / heat flow pressure anisotropy
Rotating thin shells: Equation of state and shell equation of motion

- The stress-energy tensor components are dictated by the metric components:

\[
\rho = -\frac{(\beta_+ - \beta_-)(\mathcal{R}^2h)'}{8\pi \mathcal{R}^3}
\]

\[
P = \frac{h}{8\pi \mathcal{R}^3} \left[\mathcal{R}^2(\beta_+ - \beta_-) \right]'
\]

\[
\varphi = -\frac{(\mathcal{I}_+ - \mathcal{I}_-)(\mathcal{R}h)'}{4\pi^2 \mathcal{R}^4 h}
\]

\[
\Delta P = \frac{(\beta_+ - \beta_-)}{8\pi} \left[\frac{h}{\mathcal{R}} \right]'
\]

where \(\beta_\pm \equiv f_\pm \sqrt{1 + g_\pm^2 \mathcal{R}^2} \).
Rotating thin shells: Equation of state and shell equation of motion

- The stress-energy tensor components are dictated by the metric components:

\[
\rho = -\frac{(\beta_+ - \beta_-)(\mathcal{R}^2 h)'}{8\pi \mathcal{R}^3},
\]

\[
P = \frac{h}{8\pi \mathcal{R}^3} \left[\mathcal{R}^2 (\beta_+ - \beta_-) \right]'
\]

\[
\varphi = -\frac{(\mathcal{I}_+ - \mathcal{I}_-) (\mathcal{R} h)'}{4\pi^2 \mathcal{R}^4 h},
\]

\[
\Delta P = \frac{(\beta_+ - \beta_-)}{8\pi} \left[\frac{h}{\mathcal{R}} \right]'
\]

where \(\beta_\pm \equiv f_\pm \sqrt{1 + g_\pm^2 \mathcal{R}^2} \).

- For simplicity, assume a linear equation of state, \(P = w\rho \).
 (Other EoS can be considered, e.g., polytropic)
Rotating thin shells: Equation of state and shell equation of motion

- The stress-energy tensor components are dictated by the metric components:

\[
\begin{align*}
\rho & = - \frac{(\beta_+ - \beta_-)(\mathcal{R}^2 h)'}{8\pi \mathcal{R}^3} \\
P & = \frac{h}{8\pi \mathcal{R}^3} \left[\mathcal{R}^2 (\beta_+ - \beta_-) \right]' \\
\varphi & = - \frac{(\mathcal{I}_+ - \mathcal{I}_-) (\mathcal{R} h)'}{4\pi^2 \mathcal{R}^4 h} \\
\Delta P & = \frac{(\beta_+ - \beta_-)}{8\pi} \left[\frac{h}{\mathcal{R}} \right]'
\end{align*}
\]

where \(\beta_\pm \equiv f_\pm \sqrt{1 + g_\pm^2 \mathcal{R}^2} \).

- For simplicity, assume a linear equation of state, \(P = w\rho \).
 (Other EoS can be considered, e.g., polytropic)

- These equations can be integrated, yielding the shell’s equation of motion:

\[
\dot{\mathcal{R}}^2 + V_{\text{eff}} (\mathcal{R}) = 0
\]
Rotating thin shells: Full collapse in asymptotically flat spacetime

- Take asymptotically flat limit, $\ell \to \infty$.

I. BACKGROUND

Isometries:

$$R \mathcal{U} (1)$$

\[a_i = a_{(2)}\]

The metric is a solution of the Einstein equations with a negative cosmological constant,

$$R_{\mu \nu} = -\frac{1}{2} \mathcal{R} g_{\mu \nu}. \tag{4}$$

The largest real root, r_+, of g_{rr} marks an event horizon which possesses the geometry of a homogeneously squashed S^2. The mass M and angular momentum J of the spacetime are given by

$$M = \mathcal{F} 2 N + 1 4 \pi G M \right(N + 1 2 + a^2 \right), \tag{5}$$

$$J = \mathcal{F} 2 N + 1 4 \pi G (N + 1) M a, \tag{6}$$

where $\mathcal{F} 2 N + 1$ is the area of the unit $(2N + 1)$-sphere.

A system of coordinates can be found such that the metric only depends on a single radial coordinate,

$$ds^2 = f(r)^2 dt^2 + g(r)^2 dr^2 + r^2 g_{ab} dx^a dx^b + h(r) \left[d\delta + A^a dx^a \right]^2, \tag{7}$$

where

$$g(r)^2 = \sqrt{1 + r^2 \frac{1}{2} a^2}, f(r) = r g(r) h(r), \tag{8}$$

$$h(r)^2 = \frac{r^2}{2} \frac{1}{a^2}, \delta = 1, A^a = \frac{2 M a}{r^2} h(r)^2. \tag{9}$$

In the simplest case, $D = 5$, the base space is \mathbb{CP}_1, which is isomorphic to the sphere S^2, and $g_{ab} dx^a dx^b = \frac{1}{4} d\theta^2 + \sin^2 \theta d\phi^2$, $A^a = \frac{1}{2} \cos \theta d\phi$. \(\mathcal{F}^{11}\)
Rotating thin shells: Full collapse in asymptotically flat spacetime

- Take asymptotically flat limit, \(\ell \to \infty \).
- Collapse starting from rest at infinity imposes: \(w = 0 \) i.e., matter on the shell has EoS of dust
 \(m_0 = \Delta M \) i.e., the increment in mass of the spacetime is given precisely by the mass of the shell

[Delsate, JVR, Santarelli (2014)]
Rotating thin shells: Full collapse in asymptotically flat spacetime

- Take asymptotically flat limit, $\ell \to \infty$.
- Collapse starting from rest at infinity imposes:

\[w = 0 \]

i.e., matter on the shell has EoS of dust

\[m_0 = \Delta M \]

i.e., the increment in mass of the spacetime is given precisely by the mass of the shell

Weak energy conditions (WEC) are satisfied

No fine tuning of parameters is necessary

[Images and equations as described in the document]
Rotating thin shells: **Full collapse in asymptotically flat spacetime**

- Take asymptotically flat limit, $\ell \to \infty$.
- Collapse starting from rest at infinity imposes: $w = 0$ i.e., matter on the shell has EoS of dust $m_0 = \Delta M$ i.e., the increment in mass of the spacetime is given precisely by the mass of the shell

[Diagram showing WEC and V_{eff} vs $R(\tau)$]

- If initially one has a (sub-extremal) BH, then after the shell collapses there will be a larger horizon covering the singularity.

[Reference: Delsate, JVR, Santarelli (2014)]

Weak energy conditions (WEC) are satisfied

No fine tuning of parameters is necessary

CCC is preserved
Rotating thin shells: **Diverse scenarios**

- **Full collapse**
Rotating thin shells: **Diverse scenarios**

Full collapse

Bounce
Rotating thin shells: **Diverse scenarios**

Full collapse

Bounce
Rotating thin shells: **Diverse scenarios**

- **Full collapse**
 - $M_-=0.2$, $M_+=0.25$, $Ma^2=0.012$, $m_0=0.05$

- **Bounce**
 - $M_-=0.2$, $M_+=0.25$, $Ma^2=0.016$, $m_0=0.05$

- **Oscillatory**
 - $M_-=0.2$, $M_+=0.25$, $Ma^2=0.016$, $m_0=0.04$, $w=-0.15$
Rotating thin shells: Diverse scenarios

Full collapse

Bounce

Oscillatory
Rotating thin shells: **Stationary shell around a BH in AdS**

- Confining nature of the potential (due to negative cosmological constant) + Centrifugal barrier (due to rotation)
Rotating thin shells: Stationary shell around a BH in AdS

- Confining nature of the potential (due to negative cosmological constant) + Centrifugal barrier (due to rotation)

∃ (stable) stationary configurations of shells around rotating BHs in AdS
Rotating thin shells: Stationary shell around a BH in AdS

- Confining nature of the potential (due to negative cosmological constant) + Centrifugal barrier (due to rotation)

∃ (stable) stationary configurations of shells around rotating BHs in AdS

\[
m_0/\ell^2 = 0.324, \quad w = 0.285, \quad Ma^2/\ell^4 = 0.02, \quad R_*/\ell = 1.8
\]

[Delsate, JVR, Santarelli (2014)]
Test particles: Spinning up equal angular momenta AdS BHs

- Attempt to over-spin extremal AdS rotating BHs and test the CCC in higher (odd) dimensions with a cosmological constant, following Wald’s gedanken experiment.

Test particles: Spinning up equal angular momenta AdS BHs

- Attempt to over-spin extremal AdS rotating BHs and test the CCC in higher (odd) dimensions with a cosmological constant, following Wald’s gedanken experiment. [Wald (1974)] [Bouhmadi-López, Cardoso, Nerozzi, Rocha (2010)]

- Mass and angular momentum of cohomogeneity-1 BH spacetime:
 \[
 \mathcal{M} = \frac{\Omega_{2N+1}}{4\pi G} M \left(N + \frac{1}{2} + \frac{a^2}{2\ell^2} \right),
 \]
 \[
 \mathcal{J} = \frac{\Omega_{2N+1}}{4\pi G} (N + 1) M a,
 \]

- Dimensionless combinations:
 \[
 m \equiv \frac{M}{\ell^{2N}}, \quad j \equiv \frac{a}{\sqrt{M}} \ell^{N-1}
 \]

\[D = 5\]

Test particles: Spinning up equal angular momenta AdS BHs

- Attempt to over-spin extremal AdS rotating BHs and test the CCC in higher (odd) dimensions with a cosmological constant, following Wald’s gedanken experiment.

- Mass and angular momentum of cohomogeneity-1 BH spacetime:
 \[
 \mathcal{M} = \frac{\Omega_{2N+1}}{4\pi G} M \left(N + \frac{1}{2} + \frac{a^2}{2\ell^2} \right),
 \]
 \[
 \mathcal{J} = \frac{\Omega_{2N+1}}{4\pi G} (N + 1) Ma,
 \]

- Dimensionless combinations:
 \[
 m \equiv \frac{M}{\ell^{2N}}, \quad j \equiv \frac{a}{\sqrt{M}} \ell^{N-1}
 \]

- Throw in \((N+1)\) point particles, one for each rotation plane, to preserve symmetry.
Test particles: Cosmic censorship in AdS (and hiD)

- For each geodesic particle (of given energy parameter E), determine critical value of the particles’ angular momentum L. separates bouncing trajectories from plunges
Test particles: Cosmic censorship in AdS (and hiD)

- For each geodesic particle (of given energy parameter E), determine the critical value of the particles’ angular momentum L.

- Consider the (non back-reacted) effect of the absorption of particles with maximal angular momentum by an already extremal BH:

 $$m_0 \rightarrow m_0 + \delta m, \quad j_0 \rightarrow j_0 + \delta j$$
Test particles: Cosmic censorship in AdS (and hiD)

- For each geodesic particle (of given energy parameter E), determine critical value of the particles’ angular momentum L.

- Consider the (non back-reacted) effect of the absorption of particles with maximal angular momentum by an already extremal BH:

$$m_0 \rightarrow m_0 + \delta m, \quad j_0 \rightarrow j_0 + \delta j$$

No violation of the CCC in $D = 5, 7, 9, 11$.

Worst-case scenario generates a flow along the curve of extremal solutions.
Conclusions

- Developed a framework to study effects of rotation on gravitational collapse of matter shells.
Conclusions

- Developed a framework to study effects of rotation on gravitational collapse of matter shells.

- Matching two rotating BH spacetimes across a thin shell is possible.
 - It requires matter on the shell to be an imperfect fluid.
 - Full collapse onto rotating, asymptotically flat, BH (satisfying energy conditions) respects the CCC.
 - Stationary solutions describing rotating shells of matter surrounding spinning BHs exist in AdS.
Conclusions

- Developed a framework to study effects of rotation on gravitational collapse of matter shells.

- Matching two rotating BH spacetimes across a thin shell is possible.
 - It requires matter on the shell to be an imperfect fluid.
 - Full collapse onto rotating, asymptotically flat, BH (satisfying energy conditions) respects the CCC.
 - Stationary solutions describing rotating shells of matter surrounding spinning BHs exist in AdS.

- Test of CCC, à la Wald, applied to AdS black holes in higher (odd) dimensions shows no evidence of violation: spin-up process is at most marginal.
Conclusions

✦ Developed a framework to study effects of rotation on gravitational collapse of matter shells.

✦ Matching two rotating BH spacetimes across a thin shell is possible.
 ❖ It requires matter on the shell to be an imperfect fluid.
 ❖ Full collapse onto rotating, asymptotically flat, BH (satisfying energy conditions) respects the CCC.
 ❖ Stationary solutions describing rotating shells of matter surrounding spinning BHs exist in AdS.

✦ Test of CCC, à la Wald, applied to AdS black holes in higher (odd) dimensions shows no evidence of violation: spin-up process is at most marginal.

Thank you.
Appendix: Effective potential for shell equation of motion

- For generic values of N, and a linear equation of state:

$$
\dot{R}^2 + V_{\text{eff}}(R) = 0
\quad \Rightarrow \quad
V_{\text{eff}}(R) = 1 + \frac{R^2}{\ell^2} + \frac{2Ma^2}{\ell^2 R^{2N}} + \frac{2Ma^2}{R^{2N+2}} - \frac{M_+ + M_-}{R^{2N}}
- \left(\frac{M_+ - M_-}{m_0} \right)^2 \left(\frac{R^{2N}}{m_0} \right)^{\frac{2N+1}{N}w} \left(1 + \frac{2Ma^2}{R^{2N+2}} \right)^{w-1}
- \frac{1}{4} \left(\frac{m_0}{R^{2N}} \right)^{2+\frac{2N+1}{N}w} \left(1 + \frac{2Ma^2}{R^{2N+2}} \right)^{1-w}.
$$

- For $N=1$ and large values of R:

$$
V_{\text{eff}} \approx 1 + \frac{R^2}{\ell^2} - \left(\frac{\Delta M}{m_0} \right)^2 \left(\frac{R^2}{m_0} \right)^{3w} - \frac{1}{4} \left(\frac{m_0}{R^2} \right)^{2+3w}
$$

- For $N=1$ and small values of R:

$$
V_{\text{eff}} \approx \frac{2Ma^2}{R^4} - \frac{M_+ + M_-}{R^2} - \frac{1}{4} \left(\frac{2Ma^2}{m_0^2} \right)^{1-w} \left(\frac{m_0}{R^2} \right)^{4+w} - \left(\frac{2Ma^2}{m_0^2} \right)^{w-1} \left(\frac{\Delta M}{m_0} \right)^2 \left(\frac{R^2}{m_0} \right)^{2+w}.
$$